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The problem of registering images or point sets is addressed. At first, a pixel similarity-based algorithm
for the rigid registration between single and multimodal images is presented. The images may present
dissimilarities due to noise, missing data or outlying measures. The method relies on the partitioning
of a reference image by a Student’s t-mixture model (SMM). This partition is then projected onto the
image to be registered. The main idea is that a t-component in the reference image corresponds to a t-
component in the image to be registered. If the images are correctly registered the distances between
the corresponding components is minimized. Moreover, the extension of the method to the registration
of point clouds is also proposed. The use of SMM components is justified by the property that they have
heavier tails than standard Gaussians, thus providing robustness to outliers. Experimental results indi-
cate that, even in the case of low SNR or important amount of dissimilarities due to temporal changes,
the proposed algorithm compares favorably to the mutual information method for image registration
and to the Iterative Closest Points (ICP) algorithm for the alignment of point sets.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The goal of image registration is to geometrically align two or
more images in order to superimpose pixels representing the same
underlying structure. Image registration is an important prelimin-
ary step in many application fields involving, for instance, the
detection of changes in temporal image sequences or the fusion
of multimodal images. For the state of the art of registration meth-
ods we refer the reader to [43]. Medical imaging, with its wide
variety of sensors (MRI, nuclear, ultrasonic, X-ray) is probably
one of the first application fields [24,1,15]. Other research areas re-
lated to image registration are remote sensing, multisensor robot
vision and multisource imaging used in the preservation of artistic
patrimony. Respective applications include the following of the
evolution of pathologies in medical image sequences [28], the
detection of changes in urban development from aerial photo-
graphs [20] and the recovery of underpaintings from visible/X-
ray pairs of images in fine arts painting analysis [16].

The overwhelming majority of change detection or data fusion
algorithms assume that the images to be compared are perfectly
registered. Even slightly erroneous registrations may become an
important source of interpretation errors when inter-image
changes have to be detected. Accurate (i.e., subpixel or subvoxel)
registration of single modal images remains an intricate problem
ll rights reserved.

annis), cnikou@cs.uoi.gr (C.
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when gross dissimilarities are observed. The problem is even more
difficult for multimodal images, showing both localized changes
that have to be detected and an overall difference due to the vari-
ety of responses by multiple sensors.

Since the seminal works of Viola and Wells [41] and Maes et al.
[23], the maximization of the mutual information (MI) measure
between a pair of images has gained an increasing popularity as
a criterion for image registration [31]. The estimation of both mar-
ginal and joint probability density functions of the involved images
is a key element in MI-based image alignment. However, this
method is limited by the histogram binning problem. Approaches
to overcome this limitation include Parzen windowing [41,19],
where we have the problem of kernel width specification, and
spline approximation [39,25]. A recently proposed method relies
on the continuous representation of the image function and devel-
ops a relation between image intensities and image gradients along
the level sets of the respective intensity [33].

Gaussian mixture modeling (GMM) [5,26] constitutes a power-
ful and flexible method for probabilistic data clustering that is
based on the assumption that the data of each cluster has been
generated by the same Gaussian component. In [22], GMMs were
trained off-line to provide prior information on the expected joint
histogram when the images are correctly registered. GMMs have
also been successfully used as models for the joint [14] as well as
the marginal image densities [17], in order to perform intensity
correction. They have also been applied in the registration of point
sets [21] without establishing explicit correspondence between
points in the two images. The parameters of GMMs can be esti-
mated very efficiently through maximum likelihood (ML) estima-
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tion using the EM algorithm [8]. Furthermore, it is well known that
GMMs are capable of modeling a large variety of pdfs [26].

An important issue in image registration is the existence of out-
lying data due to temporal changes (e.g. urban development in sa-
tellite images, lesion evolution in medical images) or even the
complimentary but non-redundant information in pairs of multi-
modal images (e.g. visible and infrared data, functional and ana-
tomical medical images). Although a large variety of image
registration methods have been proposed in the literature only a
few techniques address these cases [18,28,36].

The method proposed in this study is based on mixture model
training. More specifically, we train a mixture model once for the
reference image and obtain the corresponding partitioning of im-
age pixels into clusters. Each cluster is represented by the param-
eters of the corresponding density component. The main idea is
that a component in the reference image corresponds to a compo-
nent in the image to be registered. If the images are correctly reg-
istered the sum of distances between the corresponding
components is minimum.

A straightforward implementation of the above idea would con-
sider models with Gaussian components. However, it is well
known that GMMs are sensitive to outliers and may lead to exces-
sive sensitivity when the number of data points is small. This is
easily understood by recalling that maximization of the likelihood
function under an assumed Gaussian distribution is equivalent to
finding the least-squares solution which lacks robustness. Conse-
quently, a GMM tends to over-estimate the number of clusters
since it uses additional components to capture the tails of the dis-
tributions [4]. The problem of attaining robustness against outliers
in multivariate data is difficult and increases with the dimension-
ality. In this paper, we consider mixture models (SMM) with Stu-
dent’s-t components for image registration. This pdf has heavier
tails compared to a Gaussian [29]. More specifically, each compo-
nent in the SMM mixture originates from a wider class of ellipti-
cally symmetric distributions with an additional parameter called
the number of degrees of freedom. In this way, a more robust mix-
ture model is employed than the typical GMM.

The main contributions of the proposed registration method are
the following: (i) the histogram binning problem is overcome
through image modeling with mixtures of distributions which pro-
vide a continuous representation of image density. (ii) Robustness
to outlying pixel values is achieved by using mixtures of Student’s
t-distributions. The widely used method of maximization of the MI
is outperformed. (iii) The method may be directly applied to vector
valued images (e.g. diffusion tensor MRI) where standard histo-
gram-based methods fail due to the curse of dimensionality. (iv)
The proposed method is faster than histogram based methods
where the joint histogram needs to be computed for every change
in the transformation parameters.

Moreover, the registration problem is extended to the case of
point sets where the nature of the problem is different since there
is no spatial ordering contrary to image grids (e.g. pixelized
images). Therefore, the difficulty consists in simultaneously esti-
mating the transformation parameters and establishing correspon-
dences between points.

In the related literature of point set registration, the standard
approach is the well known Iterative Closest Points (ICP) algorithm
[3] and its variants [37,13,8,30]. In [9,10] a robust point matching
algorithm is proposed relying on soft-assign [34] and an iterative
optimization procedure. The soft-assign is based on a matrix whose
entries describe the probability that a point of one set matches
upon transformation to one of the other set. MI was also used as
a constraint [35] for point set matching under the above frame-
work. Features extracted from the point sets are employed in
[2,40], a kernel-based method is used in [38] and a method model-
ing the point sets by a GMM with constraints on the component
centers is presented in [27]. Also, an approach to the construction
of an atlas from multiple point sets is proposed in [42]. Finally, a
work related to the herein proposed approach is presented in
[21]. The authors propose to model the probability density func-
tion (pdf) of the points of the two sets by GMMs and estimate
the transformation parameters through the minimization of an en-
ergy function describing the distance of the two GMMs. Our model
completes this study by proposing a more robust framework for
modeling the point sets.

The remainder of this paper is organized as follows. In Section 2,
the image registration method as a problem of minimizing dis-
tances between mixture models is presented. ML estimation of
the parameters of a Student’s t-mixture model and the generaliza-
tion of the image registration method using SMMs are described in
Section 3, while the extension of the algorithm to the registration
of point sets is described in Section 4. Experimental results and
comparison with the state of the art image registration method
of maximization of the MI are provided in Section 5. Results on
the registration of point sets are also presented in this section. Fi-
nally, conclusions are drawn in Section 6.

2. Image registration by minimization of the distance between
mixture models

Let Iref be an image of N � N pixels with intensities denoted as
Iref ðxiÞ, where xi; i ¼ 1; . . . ;N2, is the ith pixel index. The purpose
of rigid image registration is to estimate a set of parameters S of
the rigid transformation TS minimizing a cost function
EðIref ð�Þ; IregðTSð�ÞÞÞ that, in a similarity metric-based context, ex-
presses the similarity between the image pair. In the 2D case the
rigid transformation parameters are the rotation angle and the
translation parameters along the two axes. In the 3D case, there
are three rotation and three translation parameters. Eventually,
scale factors may also be included, depending on the definition
of the transformation.

Consider, now, a partitioning of the reference image Iref into K
clusters (groups) by training a mixture model with K components
with arbitrary pdf pðIðxÞ; HÞ:

/ðIref ðxÞÞ ¼
XK

k¼1

pkpðIref ðxÞ; Href
k Þ:

Therefore, the reference image is represented by the parameters
Href

k ; k ¼ 1; . . . ;K of the mixture components. The partitioning of
the image is described using the function
f ðxÞ : ½1;2; . . . ;N� � ½1;2; . . . ;N� ! f1;2; . . . ;Kg, where f ðxÞ ¼ k
means that pixel x of the reference image Iref belongs to the cluster
defined by the kth component. Let us also define the sets of all pix-
els of image Iref belonging to the kth cluster:

Pk ¼ fxi 2 Iref ; i ¼ 1;2; . . . ;N2jdðf ðxiÞ � kÞ ¼ 1g

for k ¼ 1; . . . ;K , where dðxÞ is the Dirac function

dðf ðxiÞ � kÞ ¼ 1 if f ðxiÞ ¼ k;

0 otherwise:

(
ð1Þ

The above mixture-based segmentation of the reference image is
performed once, at the beginning of the registration procedure.
The reference image Iref is, thus, partitioned into K groups, generally,
not corresponding to connected components in the image. This spa-
tial partition is projected on the image to be registered Ireg , yielding
a corresponding partition of this second image (i.e., the partitioning
of the reference image acts as a mask on the image to be registered).
Then, we assume that the pixel values of each cluster k in Ireg are
modeled using a mixture component with parameters Hreg

k obtained
from the statistics of the intensities of pixels in group k of Ireg .
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In order to apply our method it should be possible to define a
distance measure DðHref

k ;Hreg
k Þ between the corresponding mixture

components with pdf pðIÞ. Then the energy function we propose, is
expressed by the weighted sum of distances between the corre-
sponding components in Ireg and Iref :

EðIref ð�Þ; IregðTSð�ÞÞÞ ¼
XK

k¼1

pkDðHref
k ;Hreg

k Þ; ð2Þ

where pk is the mixing proportion of the kth component

pk ¼
jPkjPK
l¼1jPlj

;

where jPkj denotes the cardinality of set Pk. If the two images are
correctly registered the criterion in (2) assumes that the total dis-
tance between the whole set of components would be minimum.

For a given set of transformation parameters S, the total energy
between the image pair is computed through the following steps:

� Segment the reference image Iref ð�Þ into K clusters by a mixture
model.

� For each cluster k ¼ 1;2; . . . ;K of the reference image:

� project the pixels of the cluster onto the transformed
image to be registered IregðTSð�ÞÞ.

� determine the parameters Hreg

k of the projected partition of
Ireg .

� Evaluate the energy in Eq. (2) by computing the distances
between the corresponding densities.

In the case of GMMs, the above registration procedure can be
applied as follows:

Consider the multivariate normal distributions N1ðl1;R1Þ and
N2ðl2;R2Þ and denote Hi ¼ fli;Rig, with i ¼ f1;2g, their respective
parameters (mean vector and covariance matrix). The Chernoff dis-
tance between these distributions is defined as [12]

CðH1;H2; sÞ ¼
sð1� sÞ

2
ðl2 � l1Þ

T ½sR1 þ ð1� sÞR2��1ðl2 � l1Þ

þ 1
2

ln
jsR1 þ ð1� sÞR2j
jR1jsjR2j1�s

 !
:

The Bhattacharyya distance is a special case of the Chernoff distance
with s ¼ 0:5:

BðH1;H2Þ ¼
1
8
ðl2 � l1Þ

T R1 þ R2

2

� ��1

ðl2 � l1Þ

þ 1
2

ln
j R1þR2

2 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR1jjR2j

p
 !

: ð3Þ

A representative GMM for the reference image can be obtained via
the EM algorithm [5]. Therefore, the reference image is represented
by the parameters Href

k ¼ fl
ref
k ;Rref

k g; k ¼ 1; . . . ;K of the GMM com-
ponents. After projecting the pixel groups of the reference image to
obtain the corresponding groups in the registered image, the
parameters Hreg

k can be estimated by taking the sample mean lreg
k

and the sample covariance matrix Rreg
k :

lreg
k ¼

1
jPkj

XN2

i¼1

IregðTSðxiÞÞdðf ðxiÞ � kÞ ð4Þ

and

Rreg
k ¼

1
jPkj

XN2

i¼1

ðDIi
kÞðDIi

kÞ
Tdðf ðxiÞ � kÞ; ð5Þ

where DIi
k ¼ IregðTSðxiÞÞ � lreg

k . The role of dðf ðxiÞ � kÞ in Eqs. (4) and
(5) is to determine the support (the pixel coordinates) for the calcu-
lation of the mean and covariance. These parameters are computed
on the image to be registered for the pixel coordinates belonging to
the kth group on the reference image. This also implies a Gaussian
mixture model for the components of Ireg . The total distance be-
tween the two images is computed using Eq. (2), where the Bhatta-
charyya distance between the corresponding Gaussian components
is considered as distance measure D.

However, GMMs are very sensitive to outlying data and their
outcome is largely influenced by pixels not belonging to the dom-
inating model. In order to overcome this drawback of GMMs, we
have employed in our registration method mixtures of Student’s
t-distributions. These mixtures are more robust to outliers as it is
described in the next section.

3. Robust image registration with mixtures of Student’s t-
distributions

In what follows, we briefly present the properties of mixtures of
Student’s t-distributions (SMMs), as well as the ML estimation of
their parameters using the EM algorithm. Then, we describe how
SMMs can be employed as mixture models in the general registra-
tion approach presented in the previous section.

3.1. ML estimation of mixtures of Student’s t-distributions

A d-dimensional random variable X that follows a multivariate
t-distribution with mean l, positive definite, symmetric and real
d� d covariance matrix R and has m 2 ½0;1Þ degrees of freedom
has a density expressed by

pðx; l;R; mÞ ¼
C mþd

2

� �
jRj�

1
2

ðpmÞ
d
2C m

2

� �
½1þ m�1dðx;l; RÞ�

mþd
2

; ð6Þ

where dðx;l; RÞ ¼ ðx� lÞTR�1ðx� lÞ is the Mahalanobis squared
distance and C is the Gamma function.

It can be shown that the Student’s t distribution is equivalent to
a Gaussian distribution with a stochastic covariance matrix. In
other words, given a weight u following a Gamma distribution
parameterized by m:

u � Cðm=2; m=2Þ: ð7Þ

The variable X has the multivariate normal distribution with mean
l and covariance R=u:

Xjl;R; m; u � Nðl;R=uÞ: ð8Þ

It can be shown that for m!1 the Student’s t-distribution tends to
a Gaussian distribution with covariance R. Also, if m > 1; l is the
mean of X and if m > 2; mðm� 2Þ�1R is the covariance matrix of X.
Therefore, the family of t-distributions provides a heavy-tailed
alternative to the normal family with mean l and covariance matrix
that is equal to a scalar multiple of R, if m > 2 (Fig. 1). A K-compo-
nent mixture of t-distributions is given by

/ðx;WÞ ¼
XK

i¼1

pipðx; li;Ri; miÞ; ð9Þ

where x ¼ ðx1; . . . ; xNÞT denotes the observed-data vector and

W ¼ ðp1; . . . ;pK ; l1; . . . ;lK ; R1; . . . ;RK ; m1; . . . ; mKÞT ð10Þ

are the parameters of the components of the mixture.
A Student’s t-distribution mixture model (SMM) may also be

trained using the EM algorithm [29]. Consider now the complete
data vector

xc ¼ ðx1; . . . xN; z1; . . . ; zN; u1; . . . ; uNÞT ; ð11Þ



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p(
x)

ν=0.1
ν=1
ν=10

Fig. 1. A univariate Student’s t-distribution (l ¼ 0, r ¼ 1) for various degrees of
freedom. As m!1 the distribution tends to a Gaussian. For small values of m the
distribution has heavier tails than a Gaussian.
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where z1; . . . ; zN are the component-label vectors and zij ¼ ðzjÞi is
either one or zero, according to whether the observation xj is gener-
ated or not by the ith component. In the light of the definition of the t-
distribution, it is convenient to view that the observed data aug-
mented by the zj, j ¼ 1; . . . ;N are still incomplete because the compo-
nent covariance matrices depend on the degrees of freedom. This is
the reason that the complete-data vector also includes the additional
missing data u1; . . . ; uN . Thus, the E-step on the ðt þ 1Þth iteration of
the EM algorithm requires the calculation of the posterior probability
that the datum xj belongs to the ith component of the mixture:

ztþ1
ij ¼

pt
i pðxj;lt

i ;R
t
i ; mt

i ÞPK
m¼1pt

mpðxj; lt
m;R

t
m; mt

mÞ
ð12Þ

as well as the expectation of the weights for each observation:

utþ1
ij ¼

mt
i þ d

mt
i þ dðxj;lt

i ; R
t
i Þ
: ð13Þ

Maximizing the log-likelihood of the complete data provides the
update equations of the respective mixture model parameters:

ptþ1
i ¼ 1

N

XN

j¼1

zt
ij; ð14Þ

ltþ1
i ¼

PN
j¼1zt

iju
t
ijxjPN

j¼1zt
iju

t
ij

; ð15Þ

Rtþ1
i ¼

PN
j¼1zt

iju
t
ijðxj � ltþ1

i Þðxj � ltþ1
i Þ

TPN
j¼1ztþ1

ij

: ð16Þ

The degrees of freedom mtþ1
i for the ith component, at time step

t þ 1, are computed as the solution to the equation

log
mtþ1

i

2

� �
� w

mtþ1
i

2

� �
þ 1� log

mt
i þ d
2

� �

þ
PN

j¼1zt
ijðlog ut

ij � ut
ijÞPN

j¼1zt
ij

þ w
mt

i þ d
2

� �

¼ 0; ð17Þ

where wðxÞ ¼ @ðln CðxÞÞ
@x is the digamma function.

At the end of the algorithm, the data are assigned to the compo-
nent with maximum responsibility using a maximum a posteriori
(MAP) principle.
The Student’s t-distribution is a heavy tailed approximation to
the Gaussian. It is therefore, natural to consider the mean and
covariance of the SMM components to approximate the parame-
ters of a GMM on the same data as it was described in the previous
section. If the statistics of the images follow a Gaussian model, the
degrees of freedom mi are relatively large and the SMM tends to be
a GMM with the same parameters. If the images contain outliers,
parameters mi are weak and the mean and covariance of the data
are appropriately weighted in order not to take into account the
outliers. Thus, the parameters of the SMM, computed on the refer-
ence image Iref , are used as component parameters Href

k in a
straightforward way as they generalize the Gaussian case by cor-
rectly addressing the outliers problem. After projection of the pixel
groups of the reference image to their corresponding groups in the
registered image, the parameters Hreg

k are computed using the sam-
ple mean (4) and the sample covariance matrix (5).

Once model inference is accomplished, the Bhattacharyya dis-
tance between the components of the Student’s t-mixtures is min-
imized. The difference with respect to the GMM is that the
covariance matrices are properly scaled by the Gamma distributed
parameters u as it is defined in Eqs. (7) and (8).

Finally, let us notice that the energy in (2) may be applied to
both single and multimodal image registration. In the latter case,
the difference in the mean values of the distributions in (3) should
be ignored, as we do not search to match the corresponding Stu-
dent’s t-distributions in position but only in shape. In that case,
the distance in (3) becomes

BðH1;H2Þ ¼ ln
j R1þR2

2 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR1jjR2j

p
 !

; ð18Þ

which is equivalent to a correlation coefficient between the two
distributions.

4. Robust registration of point sets with mixtures of Student’s t-
distributions

An extension of the registration algorithm to handle point sets
is described in this section. Given two sets of points X and Y such
that Y is derived from X after applying a rigid transformation TS

with parameters S, that is Y ¼ TSðXÞ, the problem consists in esti-
mating the transformation parameters from the two data sets
without prior knowledge on any correspondence. In fact, in our for-
mulation, there could be no exact correspondence at all due to
noise or outlying points.

Let us denote pðxÞ the density at a point x 2 X and assume that it
is expressed by a GMM of M components:

pðxÞ ¼
XM

j¼1

px
j Nðxjlx

j ;R
x
j Þ: ð19Þ

By the same assumption, the density at a point y 2 Y is given by an-
other GMM:

qðyÞ ¼
XN

j¼1

py
j Nðyjl

y
j ;R

y
j Þ: ð20Þ

Considering the transformed point set distribution as pR;tðxÞ, where
R is the rotation matrix ant t is the translation vector, that is

pR;tðxÞ ¼
XM

i¼1

px
i NðxjRlx

i þ t;RRx
i RTÞ; ð21Þ

we seek to minimize the energy function

DðpR;t; qÞ ¼
Z
½pR;tðzÞ � qðzÞ�2dz ð22Þ
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with respect to R and t. More specifically, we seek to match the con-
tinuous shapes of the mixtures pR;t and q over their region of sup-
port. Eq. (22) may be simplified:

DðpR;t ; qÞ ¼
Z

p2
R;tðzÞ þ q2ðzÞ � 2pR;tðzÞqðzÞ

h i
dz: ð23Þ

The first two terms are invariant under rigid transformation and
therefore, the above expression yields the maximum of the product
of the two distributions over the whole sets of points. This is equiv-
alent to maximizing the correlation between the pdfs. The cross
term may be also expressed as[21]Z Z

pR;tðxÞqðyÞdxdy ¼
XM

i¼1

XN

j¼1

px
i p

y
j Nð0jRlx

i þ t � ly
j ;RRx

i RT

þRy
j Þ ð24Þ

meaning that given the ith component from the first mixture and the
jth component from the second mixture, each term of the sum is
evaluated as a Gaussian pdf with mean vector Rlx

i þ t � ly
j and

covariance matrix RRx
i RT þ Ry

j at x ¼ 0.
Replacing the GMMs by the more robust SMMs in the above

equations (19) and (20) leads to a better modeling of the point sets.
Figs. 2 and 3 illustrate the performance of a mixture of Student’s t-
mixture with respect to a standard GMM to model a 2D point set.
In the original set, both methods correctly captured the shape of
the data (Fig. 2). On the other hand, when a small amount of out-
liers (5%) was present in the set the GMM failed to provide a satis-
factory solution while the heavier tailed SMM correctly modeled
the point sets (Fig. 3). Thus, SMM seems to be a preferable model
for density-based point set registration.

An alternative approach would be to provide a model for the
outliers using a GMM with a background component or, generally,
a probabilistic a model for false observations [29,6]. However, as it
will be shown in the experimental results, if the background outli-
ers are not uniformly or normally distributed this approach has its
limitations.

Let us note that the above formulas also apply for the registra-
tion of point sets using the mixtures of Student’s t-distributions by
properly computing the components mean vectors and covariance
matrices following the definition of the distributions (7) amd (8)
and the respective EM algorithm described in Section 3.

5. Experimental results

A large number of interpolations are involved in the registration
process. The accuracy of the rotation and translation parameter
estimates is directly related to the accuracy of the underlying
interpolation model. Simple approaches such as the nearest neigh-
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Fig. 2. A 2D point set and the obtaine
bor interpolation are commonly used because they are fast and
simple to implement, though they produce images with noticeable
artifacts. More satisfactory results can be obtained by small-kernel
cubic convolution techniques. In our experiments, we have applied
a cubic interpolation scheme, thus preserving the quality of the im-
age to be registered.

The Matlab optimization toolbox was used to perform optimi-
zation. In particular we tested the algorithm with a derivative free
optimization algorithm (simplex) and a Quasi-Newton algorithm
(BFGS) with a numerical calculation of the derivatives. Notice that
the methods mentioned perform only local optimization, thus
depending the final result highly with the initial starting point.
Global optimization methods may also be considered but they
are highly time consuming.

5.1. Image registration

In order to evaluate the proposed method, we have performed a
number of experiments in some relatively difficult registration
problems. Registration errors were computed in terms of pixels
and not in terms of transformation parameters. Registration accu-
racies in terms of rotation angles and translation vectors are not
easily evaluated due to parameter coupling. Therefore, the registra-
tion errors are defined as deviations of the corners of the registered
image with respect to the ground truth position. Let us notice that
these registration errors are less forgiving at the corners of the im-
age (where their values are larger) with regard to the center of the
image frame.

At first, we have simulated a multimodal image registration
example. The image in 4(a) is an artificial piecewise constant
image. The image in 4(b) is its negative image. The image in
4(a) was degraded by uniformly distributed noise in order to
achieve various SNR values (between 14 and �1 dB). The de-
graded images underwent several rigid transformations by rota-
tion angles varying between [0,20] degrees and translation
parameters between [�15,10] pixels. To investigate the robust-
ness of the proposed method to outliers we have applied the
algorithm with K ¼ 3 components considering both GMMs and
SMMs, and 256 histogram bins in the case of the normalized
MI. Fig. 5 illustrates the average registration errors for the dif-
ferent SNR values. For each SNR, four different transformations
were applied to the image and the average value of the regis-
tration error is presented. For comparison purposes, the perfor-
mance of the MI method is also shown. As it can be observed,
both the GMM and the SMM-based registration methods out-
perform the MI which fails when the SNR is low. Moreover,
the heavier tailed SMM demonstrates better performance for
considerable amounts of noise.
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Fig. 3. The point set of Fig. 2 with 5% outliers and the obtained models by (a) GMM and (b) SMM. Notice that the GMM solution is affected by the outliers while the SMM is
more robust.

Fig. 4. (a) A three-class piecewise constant image with intensity values 30, 125 and 220, and (b) its negative image (corresponding values, 225, 130 and 35). (c) The image in
(a) degraded by uniform noise at 14 dB. This image was then registered to the image in (b). The bottom line shows the registration errors for the compared methods. The
ground truth solution is 0� for the rotation and zero translation (the original image). (d) MI, (e) GMM, (f) SMM. The errors present the difference between the noise free
registered image and the reference image. the values are scaled for better visualization.
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Furthermore, let us notice that the proposed energy function
involving the Battacharyya distances is convex around the true
minimum (Fig. 6) as it is also the case for the MI [32].

An open issue in mixture modeling is the determination of the
number of components. In our experiments, in the case of non-arti-
ficial images, the number of components is unknown. If the num-
ber of components of the mixtures is neither too high (overfitting)
nor too low (underfitting) with respect to the ground truth the reg-
istration accuracy is not affected by that parameter. In order to
demonstrate it, we have performed the experiments involving
non-artificial images by varying the number of components in
the experiments.

In that framework, the proposed registration method was tested
on a multimodal image pair such as the cell images in Fig. 7. The
complimentary but not redundant information carried by the mul-
timodal images increases the difficulty of the registration process.
In both experiments, we have applied 20 rigid transformations to
one of the images, for each configuration of the transformation
parameters, with rotation angles varying between [0,20] degrees
and translation parameters between [�15,10] pixels.
The experiments in the case of the images in Fig. 7 were realized
with the number of components varying from K ¼ 2 to K ¼ 5. For
the MI we used 256 histogram bins. Table 1 summarizes the statis-
tics on the registration errors. As it can be observed, the SMM
method achieves highly better registration accuracy. Also, the
number of components did not significantly affect the registration
accuracy.

A last experiment demonstrating the ability of the proposed
SMM method to deal with outliers is the registration of a remotely
sensed image pair. The meteorological images of Europe in Fig. 8
were acquired at different dates. The image in Fig. 8(b) underwent
20 rigid transformations for each parameter instance, with values
of rotation angle uniformly sampled in the interval [0,20] degrees
and translations between [�15,10] pixels. The experiments were
realized with the number of components varying between K ¼ 2
and K ¼ 6 for GMM and SMM and 256 bins for the MI.

The large amount of clouds at different locations in the image
pair introduce difficulties in the registration procedure. It is worth
commenting that the MI method failed to register the images and
systematically provided registration errors of the order of 6 pixels.
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Fig. 6. The objective function in Eq. (2) for the registration of the image of Fig. 4(a)
with its counterpart rotated by 20� and translated by 10 pixels.

Fig. 7. A pair of NIH 3T3 electron microscope images (400� magni

Table 1
Statistics on the registration errors for the images in Fig. 7 with varying number of
mixture components. The errors are expressed in pixels.

Registration errors – cell images

K Mean St. dev. Median Max Min

MI 256 bins 3.663 0.957 4.019 4.25 1.461
SMM 2 3.157 0.009 3.153 3.178 3.150
SMM 3 2.955 0.636 3.148 3.178 1.146
SMM 4 2.956 0.604 3.159 3.101 1.146
SMM 5 2.953 0.640 3.152 3.177 1.132
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The SMM method produced very small registration errors which
are summarized in Table 2.

5.2. Registration of point sets

In order to evaluate the proposed point set registration method
we have performed three types of experiments. At first, a 2D set of
600 points was generated from three different Gaussian distribu-
tions with means (�16,9), (0,5) and (18,9) and spherical covari-
ance matrices with the standard deviation being 2 in each
dimension. The point set underwent rotations varying between
[�90�,90�] and translations varying between [�100,100] in both
dimensions. In all of the cases the proposed algorithm provided
solutions close to the true transformation parameters. The registra-
tion error was measured as the average distance between the
points transformed by the true parameters and the points obtained
by the estimated transformation. In all cases, the order of the reg-
istration error was approximatively 10�6. This experiment was re-
peated for increased number of non-overlapping components and
the previous results were confirmed.

A second experiment consisted in comparing the SMM not only
to a typical GMM but also to a GMM having an extra background
component (called GMMb) in order to model the outliers. This is
a standard technique to capture the distribution of outliers and it
is also proposed in [29,6]. We have observed that when the outliers
are normally or uniformly distributed the performance of the two
approaches (GMMb and SMM) is similar because the fourth com-
ponent is a good model for outliers. However, if the outliers are sig-
nal-dependent the fourth component does not provide the optimal
solution.

In our experiments, the previous point set was corrupted by
outlying data from 1% up to 15%. Each of the three set of points
was corrupted by a uniform noise having range the double of the
initial range of the points generated by the respective component.
By these means, the outliers are sparsely distributed around each
component. Also, 1% extra outliers were globally added to make
fication) of rat cells under (a) normal and (b) fluorescent light.



Fig. 8. (a) Image of Europe on 8 January 2007 at 01h00, provided by MeteoSat. (b) Image of Europe on 9 January 2007 at 01h00, provided by MeteoSat (by courtesy of Meteo-
France). Notice the large amount of outliers (cloudy regions in different locations in the image pair) introducing important difficulties in the registration process.

Table 2
Statistics on the registration errors for the images in Fig. 8 with varying number of
mixture components. The errors are expressed in pixels.

Registration errors – satellite images

K Mean St. dev. Median Max Min

MI 256 bins 6.742 1.493 7.463 7.733 3.565
SMM 2 2.975 0.013 2.979 2.991 2.951
SMM 3 1.857 1.202 1.251 3.653 1.283
SMM 4 2.129 2.289 2.960 3.651 1.359
SMM 5 1.208 0.237 1.142 1.999 1.141
SMM 6 1.210 0.238 1.145 2.001 1.142
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the problem more challenging. For each configuration of the per-
centage of the outliers, five registration experiments were per-
formed with random translation and rotation parameters. A
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Fig. 9. Example of a set of points used in the experiments. (a) A point set (presented by
covariance matrices of standard deviation 2. The points were corrupted with 9% outli
component GMM with the fourth component modeling the distribution of outliers and
representative example for 9% of points being contaminated is
shown in Fig. 9. In Fig. 10, the results for the registration errors
are summarized. As it can be observed, although the GMMb per-
forms better than the standard GMM due to its background com-
ponent, the SMM provides smaller registration errors
consistently. This behavior is easily explained by the shapes of
the ellipses in Fig. 9(b) and (c). Both the GMMb and the SMM esti-
mated small covariances but in GMMb the orientations of the ellip-
ses diverge more from the noise-free case. Finally, it is worth
noticing that the standard ICP registration algorithm fails in all
cases to provide an acceptable registration.

Finally, we have tested the efficiency of the proposed method to
the registration of shaped or structured point sets, contrary to the
scattered points of the previous example. This type of problems
may come up from many computer vision applications such as
comparison of trajectories in object tracking or shape discrimina-
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(d) a 3-component SMM.
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Fig. 10. Registration error as a function of outliers for the experiment presented in
Fig. 9.

D. Gerogiannis et al. / Image and Vision Computing 27 (2009) 1285–1294 1293
tion and the presence of outliers makes registration difficult even if
a good initialization is provided. To this end, we have applied the
registration algorithm to data from the Gaitor Bait 100 data base
(as provided by the Department of Computer and Information Sci-
ence and Engineering, University of Florida, USA, http://www.ci-
se.ufl.edu/).

In this experimental setting, we begin by illustrating the differ-
ences of the compared methods (GMM and SMM) in capturing the
data. At first, the same shape, was modeled by a GMM (Fig. 11(a))
and an SMM (Fig. 11(b)) both with K ¼ 30 components. The meth-
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Fig. 11. Modeling of a shaped point set from the Gator Bait 100 data base by (a) GMM w
models provided similar solutions. The bottom row shows the modeling of the point set
solution of the SMM was less affected. In all cases the mixtures were similarly initialized
the outliers.
ods employed the same initialization by the K-means clustering
algorithm. As it can be observed, both methods provided similar
approximations. Consequently, the registration algorithm is not af-
fected and the compared methods (GMM and SMM) provide equiv-
alently good performances.

We then eliminated a certain amount of points by to simulate
missing data and added outliers to the remaining points. In that
case, we also used the same K-means initialization which naturally
provided a certain number of centers that captured the structure of
the outliers. However, in any case, the SMM modeled the degraded
data better than the GMM by eliminating the majority of erroneous
centers, due to its heavier tails. A representative example is pre-
sented in Fig. 11(c) and (d), where the missing data percentage is
20% and the percentage of outliers is 10%. In these figures, one
can observe that the GMM finally provided two noisy components
of relatively large covariance. On the other hand, due to the heavier
tails of the SMM components, not only more outlier points were
absorbed by the components located on the fish shape, but also
the erroneous component has smaller support. This is important
in a registration procedure because the L2 distance in Eq. (24) will
be less influenced in the case of the SMM, as indicated by the
experiments that follow.

The original point set was artificially rotated, translated and
corrupted by outliers at 15%. The transformed point set was then
registered to its original, noise free counterpart. We have com-
pared the proposed GMM and SMM algorithms with the ICP by ini-
tializing them from the ground truth. The results are summarized
in Table 3, where it is clear that both of the proposed methods
(GMM and SMM) perform better than the ICP. Also, SMM is more
accurate than the less robust GMM. It is worth noticing that the
ICP algorithm, as it is sensible to initialization, is always trapped
around the same minimum.
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Table 3
Registration errors for the shaped point set of Fig. 11 when it is corrupted by 15%
outliers.

Method Mean St. dev. Median Max Min

ICP 40.3784 15.8546 43.6067 58.0508 10.3555
GMM (K ¼ 15) 2.6950 1.5169 2.8450 5.1540 0.5894
SMM (K ¼ 15) 2.1136 0.8052 1.8880 3.5104 1.2366
GMM (K ¼ 20) 2.4334 1.1380 2.4886 4.5563 0.9656
SMM (K ¼ 20) 1.9506 0.9084 2.0361 3.4830 0.5927
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6. Conclusion

In this paper, we have shown how a mixture model consisting
of Students’s t components may be efficiently used for registering
images and point sets. We have shown the effectiveness and accu-
racy of the proposed method especially with images presenting
dissimilarities where the MI method fails to correctly register the
two images. The same is confirmed for point sets where the stan-
dard ICP algorithm fails in such setups.

Let us also notice that Student’s t-mixtures overcome the bin-
ning problem of histogram based methods and provide a continu-
ous model of the image density. When successfully trained, they
produce a sensible approximation of the pdf of the image intensity,
by placing density components in a sensible data-driven way (i.e.,
on intensity regions exhibiting high density). Although there is still
the problem of specifying the number of components in finite mix-
ture modeling, our experimental results indicated that our SMM-
based method is robust from this point of view, provided that
the number of components is neither very big (overfitting) nor very
small (underfitting).

Vector valued images or point data are expected to benefit from
this registration technique where the employment of high-dimen-
sional joint histograms makes the use of standard methods
prohibitive.

Important open questions for mixture-based registration are
how the number of model components can be selected automati-
cally [7] and which features, apart from image intensity, should
be used. These are open issues of ongoing research [11].
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