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ABSTRACT 
In this paper the blind image deconvolution (BID) problem is 
solved using the Bayesian framework. In order to find the 
parameters of the proposed Bayesian model we present a new 
generalization of the expectation maximization (EM) algorithm 
based on the variational approximation methodology. The 
proposed variational-based algorithm for BID can be derived in 
closed form and can be implemented in the discrete Fourier 
domain. Thus, it is very efficient even for very large images. We 
demonstrate with numerical experiments that the algorithm 
which was derived by the variational methodology yields 
promising improvements as compared to previous Bayesian 
algorithms for BID. Furthermore, the methodology presented 
here is very general with potential applications to other 
Bayesian models for this and other imaging problems.  
 

1. INTRODUCTION 
The blind image deconvolution (BID) problem is a 
difficult and challenging problem because the observed 
data does not define uniquely the convolved signals. In 
many applications the observed images have been blurred 
by an unknown or a partially known point spread function 
(PSF).  Such examples include astronomy and remote 
sensing where the atmospheric turbulence cannot be 
exactly measured, medical imaging where the PSF of 
different instruments is measured and thus is subject to 
errors, in photography where the camera settings might be 
unknown etc.  
 
A plethora of methods has been proposed to solve this 
problem, see [1] for a six year old survey.  Since in BID 
the observed data are not sufficient to specify the 
convolved functions, most recent methods attempt to 
incorporate in the BID algorithm some prior knowledge 
about these functions.  Since it is very hard to track the 
properties of the PSF and the image simultaneously most 
recent BID methods include a loop in which image and 
PSF are estimated in an alternating manner keeping the 
other constant; see for example [2, 3]. Prior knowledge in 
the form of convex sets and regularization with 
anisotropic diffusion functionals were used in [2, 3]. In 
[4] a Bayesian framework was used to tackle this 
problem.  
 
The Bayesian approach provides a very powerful and 
flexible methodology for estimation problems including 
BID.  It provides a structured framework to include prior 

knowledge concerning the quantities to be estimated.  
Nevertheless, in most Bayesian estimation problems of 
interest in order to obtain the final solution we are faced 
either with a hard optimization problem or a very difficult 
integral that cannot be computed analytically. In [4, 11] a 
Laplace approximation of the integral that appears in the 
Bayesian formulation of the BID problem was used. In 
spite of this, it was reported in [4] that the estimates of the 
statistics of the errors in the PSF and the image could be 
in error by orders of magnitude depending on their 
initialization. Thus, using the Bayesian approach in [4], it 
is impossible to obtain accurate restorations unless 
accurate prior knowledge about either the statistics of the 
error in the PSF or the image is available in the form of 
hyper-priors [11]. 
 
 In what follows we present a new Bayesian model of the 
BID problem and a new variational framework which was 
applied to solve for it. This results in an algorithm that 
finds iteratively the parameters of this model. We present 
numerical experiments where we observe that the 
proposed algorithm provides simultaneously reasonable 
estimates of the errors in both the PSF and the image. 
Thus, a good restoration of the degraded image is 
possible even when very little is known a priori about the 
PSF and the image.  In addition, the proposed 
methodology is very general and can be applied to many 
other Bayesian models for both the BID and other 
imaging problems.   
 

2. BACKGROUND ON VARIATIONAL  
METHODS 

The variational framework constitutes a generalization of 
the well-known Expectation Maximization (EM) 
algorithm for likelihood maximization in Bayesian 
estimation problems with “hidden variables”. The EM 
algorithm has been proved a valuable tool for many 
problems, since it provides an elegant approach to bypass 
difficult optimization and integrations in Bayesian 
estimation problems. In order to efficiently apply the EM 
algorithm two requirements should be fulfilled [5]: i) In 
the E-step we should be able to compute the probability 
density function (PDF) of the “hidden variables” given 
the observation data. ii)  In the M-step, it is highly 
preferable to have analytical formulas for the update 
equations of the parameters. Nevertheless, in many 



problems it is not possible to meet the above requirements 
and several variants of the basic EM algorithm have 
emerged. For example, a variant of the EM called the 
“generalized EM” (GEM) proposes a partial M step in 
which the likelihood always improves. In many cases 
partial implementation of the E step is also natural.  An 
algorithm along such lines was investigated in [6]. 
 
The most difficult situation for applying the EM 
algorithm emerges when it is not possible to specify the 
conditional PDF of the hidden variables given the 
observed data that is required in the E-step.  In such cases 
the implementation of the EM is not possible. This 
significantly restricts the range of problems where the 
EM can be applied. To overcome this serious 
shortcoming of the EM, the variational methodology was 
developed [12].  In addition, it can be shown that the EM 
naturally arises as a special case of variational 
methodology. 
 
Assume that x and s are the observed and hidden 
variables, respectively, and that θ  are the unknown 
parameters to be estimated. All PDFs are parameterized 
by the parameters, ie. ( ; ),  ( , ; ) and ( / ; )p x p s x p s xθ θ θ  
and we omit θ  for brevity. By selecting an arbitrary 
PDF ( )q s  of the hidden variables s it is easy to show that: 

( ) ( ) ( ) ( )log ( ) log ( ) log ( , ) log ( ) log ( / )q q q qp x E q s E p x s E q s E p s x+ = + −  
where qΕ  denotes the expectation with respect to ( )q s .  

The above equation can be written as,  
 
 

where ( ) log ( ; )L p xθ θ=  the likelihood of the unknown 
parameters and ( )( ) // ( / )KL q s p s x  the Kullback-

Liebler distance between ( ) and ( / )q s p s x .  
Rearranging the previous equation we obtain: 
( ) ( ) ( ) ( ), ( ) // ( / ) log ( , ) ( )qq L KL q s p s x E p x s H qθ θ= − = +F (1) 

where ( )H q  is the entropy of q(s). From Eq. (1) it is clear 
that ( , )q θF provides a lower bound for the likelihood of 
θ parameterized by the family of PDFs ( )q s , since 

( )( ) // ( / ) 0KL q s p s x ≥ . 
When ( )*( ) / ;q s p s x θ= , 

then the lower bound becomes exact: *( , ) ( )F q Lθ θ= .  
Using this framework the EM can then be viewed as a 
special case when ( )*( ) / ;q s p s x θ= . 

 
However, the previous framework allows based on Eq. 
(1) to find a local maximum of ( )L θ using an arbitrary 
PDF q(s). This is a very useful generalization because it 
bypasses one of the main restrictions of the EM that of 
exactly knowing p(s/x). The variational method works to 

maximize the lower bound of ( , )q θF  with respect to 
both θ and q. This is justified by a theorem in [6] stating 
that, if ( , )q θF has a local maximum at ( )q s∗  andθ ∗ , then 

( )L θ  has a local maximum at θ ∗ . Furthermore, if 

( , )q θF has a global maximum at ( )q s∗  and θ  then 

( )L θ has a global maximum at θ
∗ . Consequently the 

variational EM approach can be described as follows: 
E-step: ( 1) ( )arg max ( , )t t

qq F q θ+ =  

M-step: ( 1) ( 1)arg max ( , )t tF qθθ θ+ +=  

This iterative approach increases at each step ( )1t + the 
value of the bound ( , )q θF  until a local maximum is 
attained. 
 
3. VARIATIONAL BLIND DECONVOLUTION 
In what follows we apply the variational approach to the 
Bayesian formulation of the blind deconvolution problem. 
The observations are given by: 
g h f w H f w F h w= ∗ + = ⋅ + = ⋅ +  (2) 
and we assume the 1N × vector g to be the observed 
variables, the 1N × vectors f and h are the hidden 
variables and w is Gaussian noise. For this problem we 
assume Gaussian PDFs for the priors of f and h. In other 
words, we assume  

( )( ) ,f fp f N µ= Σ , ( )( ) ,h hp h N µ= Σ and ( )( ) 0, wp w N= Σ . 

Thus, the parameters are [ ], , , ,
t

f f h h w
θ µ µ= Σ Σ Σ . The key 

difficulty here is that the PDF ( ), / ;p f h g θ  is unknown. 
This does not allow the direct application of the EM. 
However, with the variational approximation we can 
bypass this difficulty. More specifically, we select ( )q s to 

be ( ) ( )( ) ( , ) ( ) ( ) / ; / ;q s q h f q h q f p h g f p f g h= = ⋅ = ⋅ . (3) 
Since the observed data can be seen both as 

[ ] [ ]
f h

g H I F I
w w

= =
   
      

 we have that 

( ) ( )/ // ; ,f g f gp f g h N m C= and ( ) ( )/ // ; ,h g h gp h g f N m C=  

with the means and covariances known [9]. The above 
choice of q is justified by the fact that it seems a 
reasonable approximation of ( ), / ;p f h g θ  that also 
leads to a tractable variational formulation. 
 
From the RHS of Equation (3) we have 

( )( , ) log ( , ) ( )
q

q E p x s H qθ = +F           (4) 
where, ( , ) ( , , ) ( / , ) ( ) ( )p x s p g f h p g f h p f p h= = ⋅ ⋅  

with ( / , ) ( , )wp g h f N h f= ∗ Σ .The variational approach 
requires the computation of the expectation (Gaussian 

( ) ( ) ( ) ( )log ( ) log ( , ) ( )// ( / )q qL E q s E p x s KL q s p s xθ + = +



integral) in Eq. (4).  The term in the expectation of the 
first part of Eq. (4) is given by 
log ( , , ) log ( / , ) log ( ) log ( )p g f h p g f h p f p h= + + =

( ) ( ) ( ) ( ){

( ) ( )}

1 1

1

1

1
log log

2

         +log .

t t

w w f f f f

t

h h h h

K g h f g h f f f

h h

µ µ

µ µ

− −

−

− Σ + − ∗ Σ − ∗ + Σ + − Σ −

Σ + − Σ −

where K is a constant. In order to facilitate computations 
for large images, we will assume circulant convolutions 
in (2) and that matrices , ,f h wΣ Σ Σ , /f gC ,and /f gC are 
circulant. This allows an easy implementation of matrix-
vector equations in the Discrete Fourier Domain (DFT). 
Computing this expectation and the entropy of ( )q s in (4) 
we can write the result in the DFT domain as 

( )
1

/ /
0

1( , )  C- log ( ) log ( ) log ( ) log ( ) log ( )
2

N

w f h f g h g
k

q k k k S k S kθ
−

=

= Λ + Λ + Λ + +∑F

{ }( )
( )

2

1 / /

0

1
( ) 2Re ( ) ( ) ( )

1

2

N f g h g

k w

G k M k M k G k
N

k

∗

−

=

−

−
Λ

∑               (5) 
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where / ( ),f gS k / ( ),h gS k ( ),f kΛ ( ),h kΛ  and ( ),w kΛ the 
eigenvalues of the N N× circulant covariance 
matrices /f gC , /h gC , fΣ . hΣ and wΣ ,  respectively. 

Also ( )kG , ( )/f gM k and ( )/h gM k  are the DFT 

coefficients of the vectors /,  f gg m  and /h gm , 
respectively.  
 
In the E-step, Eq. (5) is minimized with respect to the 
parameters of q(s), which are the ( )

/f g
M k , ( )

/f g
kC , 

( )
/h g

M k  and ( )
/h g

kC . It can be easily shown that this 
maximization can be performed analytically, thus 
providing the updated values for the conditional means 
and variances. 
 
In the M-step, the parameters of q(s) are considered fixed 
and Eq. (5) is maximized with respect to the parameters θ 
leading to the following update equations for θ: 

/( ) ( )f f gM k M k= , /( ) ( )h h gM k M k= , 

/( ) ( )f f gk S kΛ = /( ) ( )h h gk S kΛ = . 
 

4. NUMERICAL EXPERIMENTS 
In our experiments we used a simultaneously 
autoregressive model [8] for the image, in other words we 

assumed ( )( )1

( ) 0, Tp f N Q Qα
−

= , for h we assumed 

2

h hC Iσ=  and ( )2( ) 0,p w N Iσ=  , where Q the circulant 
matrix that represents the convolution with the Laplacian 
operator. In this paper we present two experiments where 
the PSF was a sum of a random component and a 
deterministic component as 0h h h= + ∆ . For the first 

experiment the deterministic component 0h was a 

Gaussian kernel with variance 2 20hσ = . The random 

component was ( )0,h N Iβ∆ ∼  with .001β = . Gaussian 

noise w with 2 .001wσ = was also added to generate the 
observations in Fig. 1(a). The iterative Wiener filter [9] 
was used to restore this image (Fig. 1(b)) and the 
variational approach presented in this paper (Fig. 1(c)). 
As metric of performance the improvement in signal-to-
noise ratio (ISNR) was used. This metric is defined as 

2

2
log10

ˆ
f g

ISNR
f f

−
=

−
, where f̂ the restored image. In 

the second experiment a Gaussian PSF with variance  
2 20hσ =  was used for blurring to generate the 

observations while a Gaussian PSF with 2 12hσ = was 
given to the restoration algorithm. The variance of the 
additive noise in the data w  was the same as before.  As 
the initial estimate of the mean of the PSF provided to the 
proposed variational algorithm and as the PSF of the 
iterative Wiener filter [9] the Gaussian with 2 12hσ =  was 
given .  The results of this experiment are shown in Fig.s 
2. The variational algorithm in both experiments showed 
the ability to estimate simultaneously the variances of the 
errors in both the observation and the PSF.  For example, 
in the first experiment the noise in the PSF was estimated 
as ˆ .0007β = and the noise in the data as 2ˆ .0015Wσ = . 
This is an important improvement over the hierarchical 
Bayesian approach of [4] where the estimates could be in 
error by orders of magnitude. Furthermore, the proposed 
approach does not rely on the use of hyper-priors as in 
[11].  
 

 
 



5. CONCLUSIONS AND FUTURE RESEARCH 
In this paper a new framework for estimation problems 
was presented. This framework is an extension of the 
popular EM algorithm and was applied to a Bayesian 
formulation of the blind image deconvolution problem. 
We demonstrated with numerical experiments that this 
algorithm showed promise as compared to previous 
Bayesian solutions to this problem. We plan to test this 
algorithm with more numerical experiments and derive 
other variational algorithms for this problem using 
different ( )q s .  

        
Fig. 1(a): Observed image 

      
Fig. 1(b): Iterative Wiener (ISNR: 1.1dB) 

       
Fig1 (c): Variational (ISNR: 2.1dB) 

       
Fig. 2(a): Observed Image 

 
Fig. 2(b): Iterative Wiener (ISNR2.1dB) 

 
Fig. 2 (c): Variational (ISNR=3.2dB) 
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