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Abstract

A new approach is presented to the traveling salesman problem (TSP) relying on a novel greedy representation of the solution space
and leading to a different definition of neighborhood structures required in many local and random search approaches. Accordingly, a
parallelizable search strategy is proposed based upon local search with random restarts that exploits the characteristics of the rep-
resentation. Preliminary experimental results on several sets of test problems, among which very well-known benchmarks, show that
the representation developed, matched with the search strategy proposed, attains high quality near-optimal solutions in moderate
execution times. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The traveling salesman problem (TSP) is stated as: given the distances between N cities, find the shortest
(in the sense of total distance) closed tour through the set of N cities so that each city is visited exactly once
[7]. TSP is one of the most known NP-complete problems and has strongly influenced the emergence and
evolution of domains as complexity theory, operations research, combinatorial optimization. In most
practical cases and, moreover, in most published scientific works about TSP, the matrix of intercity dis-
tances is considered symmetric (this is the version of symmetric TSP with which we deal in this paper).

Since exact TSP-algorithms require excessive computation times on powerful machines, many approx-
imation algorithms have been developed that aim at providing, for any instance, near-optimal solutions (a
few percent from optimum) in reasonable computation times. But even this aim is far from being always
achieved. In fact, one of the first negative results in polynomial approximation theory (the chapter of
complexity theory dealing with finding, in polynomial time, sub-optimal solutions for NP-complete
problems), is that for every approximation (polynomial) algorithm for TSP, there exists a TSP-instance for
which the worst-case approximation ratio ‘objective value of approximate solution over optimal TSP-value’
is arbitrarily large [3]. This strongly negative approximation context has been lightened by some positive
approximation results for restrictive TSP-cases. We quote here the classical Christofides’ algorithm
achieving worst-case approximation ratio bounded above by 3/2 for metric TSP [2], the Papadimitriou and
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Yannakakis’ algorithm achieving worst-case approximation ratio 7/6 for TSP with edge-distances 1 or 2 [9]
or, even, the very recent polynomial time approximation schema of Arora for Euclidean TSP [1].

Let us note that modeling natural problems in terms of TSP instances arises not only in economy,
complex systems administration, decision-making, etc., but also in mechanics, physics, chemistry or even in
biology. This multiplicity and diversity of problems having TSP as common mathematical ground, explains
the great scientific interest that researchers (both mathematicians and computer scientists) always have for
TSP and the intensive research-work about effectively solving it.

In general, TSP-heuristics can be classified as: tour-construction procedures, tour-improvement proce-
dures and composite procedures based upon both construction and improvement techniques [10].

In the case of construction procedures, a tour is built gradually by selecting one city at each step and by
appropriately inserting this city into the current tour. The local improvement techniques are based upon
perturbations of the current solution that aim to generate a new improved tour. The most widely used
techniques are the k_opt exchange heuristics and in particular the 2_opt, 3_opt and Lin—Kernighan heu-
ristics [8]. The k_opt heuristics generate a new tour from the current one by replacing k edges in the tour by
k new edges. Usually, these heuristics are used as perturbation mechanisms in local search procedures, i.e.,
they are applied iteratively until no further improvement is possible. They have also been employed in
global optimization techniques that are able to escape from local minima (e.g., simulated annealing, tabu
search and genetic algorithms). Finally, the composite heuristics are more recent and were developed from
the combination of characteristics of the previous categories [4,5]. A detailed and very interesting pre-
sentation of the most-known techniques used to approximately solve TSP can be found in [6].

The proposed approach belongs to the category of composite heuristics. The current solution is not di-
rectly represented as a sequence of cities as it happens in most heuristics, rather each string encodes the
strategy that will be used for tour construction. Therefore, the search is oriented towards the identification of
tour construction strategies that lead to near-optimal solutions. Such strategies result as appropriate mod-
ifications to the greedy heuristic strategy which assumes that the best decision is made at each step during
tour construction. The proposed representation allows for significant improvements over the greedy heuristic
by allowing the possibility of inferior decisions at each step of tour construction that may finally lead to tours
of optimal length. The identification of the appropriate decisions to be made at each step of tour construction
constitutes the objective of the search algorithms that are based upon local improvements. Nevertheless the
perturbation principle (i.e., the way new solutions are generated from the current one) is totally different
from the k_opt principle. In general, heuristics working in a very satisfactory way when dealing with the
classical representation (sequence of cities) may be unsatisfactory or even senseless dealing with our rep-
resentation. Consequently new heuristics, compatible with this novel representation need to be developed.

2. The greedy-solution representation

Consider a general TSP (symmetric or asymmetric) with N cities. In the proposed method each tour is
described by a string S = (sy,...,sy_1) with 0<s; <N —i—1 for each i =1,...,N — | which encodes a
modified greedy search strategy. In order to map this string to a valid tour and evaluate the corresponding
tour length, the following procedure is used:

e a city is randomly selected that will always correspond to the first city in the tour specification procedure;
we shall refer to this city as the initial city;

o the remaining N — 1 cities are ordered with respect to their distance from the initial city and we select the
second city of the tour according to the value of s;; if s; = 0 we select the closest city, if s; = 1 we select
the second closest, and so on; the city selected according to the s; value is added to the tour and becomes
the new current city;

¢ in the same way, in order to specify the ith city of the tour, we rank the remaining N — i cities with respect
to their distances from the current city (selected at step i — 1) and select one of them according to the
value of s;,, 0<s;, <N —i— 1.

Example 1. Consider the TSP-instance of Fig. 1 and suppose that the tour is described by the string
(0,2,1,0); finally, suppose that the initial city is A.
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Fig. 1.

Following the representation string, starting from 4 we move to its closest city, E. Then, starting from
E, we will move to its third-closest city (excluding A4); this city is B. From B, we move to its second-closest
city (excluding 4 and E); this city is D. Finally, from D, we move to its closest city (excluding 4, E and B);
this city is C. Thus, given that the initial city is 4, the tour represented by the string (0,2,1,0) is (4, E, B, D,
C,A).

Remark 1. Under the above interpretation schema, the tour corresponding to the string with s; = 0 for each
i is the greedy solution starting from the specified initial city. We shall call this string zero_State.

Remark 2. The above interpretation schema works for asymmetric TSP as well.

Remark 3. The evaluation of a string under the proposed representation is computationally more expensive
compared to the conventional descriptive approach since at each step a sorting of the remaining cities is
required with respect to their distances from the current city.

Nevertheless, complexity can be significantly reduced by adding a preprocessing stage in which a list is
constructed for each city that contains the other cities sorted according to their distance from that city.
During tour construction, if s; = k, we scan the list of the current city and ignore the entries of the list
corresponding to cities that have already been allocated. The kth entry in the ordered list of unallocated
cities corresponds to the city that will be added to the solution tour.

On the other hand, the method described above has the advantage of incorporating knowledge
about the relative values of the intercity distances. So, we almost always know from the beginning
(unless the problem is a very strange one) that near-optimal solutions are expected in the neighborhood
of zero_State. In fact, as experiments indicate, even simple local search starting from strings in the
neighborhood of zero_State is sufficient for obtaining solutions about 5-10% from optimal in a relative
small number of iterations for many problem instances with up to 200 cities. In the case where lo-
cal search is repeated (random restarts) much better results are obtained as shown in the following
sections.

In what concerns the neighborhood of a given state (used in local improvement techniques), the pro-
posed representation leads to a more natural definition than the ones used in common TSP-heuristics like
the two or three city exchange heuristic [8]. In our case, since the representation is numerical, it is natural to
define the neighboring states as those that differ from the current one in the values of one or more string
positions. In the case where only one string position i is allowed to change its value, but can take any value
in the range [0, N — i — 1], the size of the neighborhood is O(N?). In our tests we have considered a stricter
neighborhood definition: the value s; of a string position 7 is allowed to take integer values in the range
R; = [max{0,s; — a}, min{s; + a,N — i — 1}] with a < N, since from the representation definition it must
always hold that 0<s; <N —i— 1. This leads to a neighborhood definition with size O(N), since two
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neighboring strings are allowed to differ in the value of only one position i, and the number of allowable
different values for s; is less than, or equal to, 2a.

Another issue that must be emphasized concerns the initial city specification that is necessary in order to
evaluate a given string. Obviously, different assumptions about the initial cities lead to different tours of
different lengths. It is possible to make the evaluation of a given string independent of the initial city se-
lection as follows: we evaluate all the N tours that result by considering every city i, i =1,...,N, as the
initial one, and find the tour of minimum distance which will constitute the final evaluation of the given
string. Of course, this evaluation schema leads to solutions of better quality at the expense of being N times
slower. Another possible approach is to perform N different local searches, each one assuming a different
initial city for string evaluation. In the last two cases, it is natural to use parallel processors in order to face
up with increasing computational times.

3. An optimization strategy with random restarts

Once a solution representation and a neighborhood structure have been defined, there are many alter-
native search schemas that can be used for exploration of the state space. For example, it is possible to test
several variants of local search, various kinds of random search (e.g., simulated annealing), tabu search,
genetic algorithms, etc.

In our case we have considered an optimization strategy based upon local search with random restarts
where the initial state of each restart was not selected completely at random, but in a more specific way in
order to deal with the special characteristics of the solution space. Moreover, a search phase (called phase 1)
takes place at the beginning of the procedure in order to specify a promising initial city that will be sub-
sequently used for the construction of the tour corresponding to each solution string.

Concerning local search starting from an initial state, we have considered the steepest descent approach
according to which the whole neighborhood of the current state is visited at each step and we move to the
state of minimum cost if this cost is lower than the cost of the current state, otherwise we consider that a
local minimum state has been encountered. In all our experiments the value of the parameter a (described in
the previous section), which determines the neighborhood size, was set equal to 4. If the local minimum
state is of lower cost than any other previous local minimum state, then we consider it as the current best
state. The global search terminates if no state better than the current best one is found for a prespecified
number of restarts.

The proposed search algorithm proceeds in two phases. In phase 1 we perform local search with random
restarts, where at each restart a different city is considered as the initial one. Moreover the initial state for
each restart is obtained through small perturbations of the zero state. All cities are sequentially considered
as initial ones and the city that leads to better results is permanently considered as the initial one in the
computations of the next phase. In phase 2, each tour is constructed by considering the same initial city and
the starting state at each restart is obtained through small perturbations of the current best state.

Random perturbations were carried out in a manner analogous to the mutation operation in genetic
algorithms, i.e., by deciding for each string position i (with low probability p,,) whether its value will change
or not. In the case of positive decision, the new s;-value is randomly selected in the interval
[max{0,s; — 3}, min{s; +3,N —i—1}]. The mutation probability was taken equal to p, =0.15
(#Restarts/ max _Restarts) + 0.05, where #Restarts denotes the number of restarts already performed for
the current best state. If a new best state is found then we set #Restarts = 0 and we start counting restarts
from the beginning.

An overall specification of the whole search strategy is described in what follows.

e Phase 1: search for a good initial city

o Initializations

x #Restarts «— 0

* best_State < zero_State
x best_Initial_City <« 0

* max_Restarts «— 2*N
xi=0
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o repeat steps 1-5 below until #Restarts = max_Restarts
1. initial_City « i;
2. define Initial_State by mutating zero_State
3. starting from the Initial_State perform local search to find Final_State
4. if Final_State better than best_State then
x best_State < Final_State
x best_Initial_City « i
x #Restarts «— 0
5.i—i+1mod N
e Phase 2: global search using best_Initial_City as the initial city
o Initializations
x #Restarts < 0
x max_Restarts < 500
x initial_City « best_Initial_City
o repeat steps 1-3 below until #Restarts = max_Restarts
1. define Initial_State by mutating best_State
2. starting from the Initial_State perform local search to find Final_State
3. if Final_State better than best_State then
* best_State «— Final_State
x #Restarts « 0

4. Experimental results

The proposed method has been tested on three categories of TSP-instances, called in the sequel I, IT and
II1, respectively. Experiments were carried out on a ULTRA SPARCstation with 512Mb RAM.

Category I concerns small instances (with 10-15 cities), for which the optimal solution was obtained
using a branch-and-bound technique. Here we have tested three classes of random instances:

1. 209 randomly generated TSP-instances, i.c., complete graphs on 10-15 vertices, with random integer
edge-distances from the the set {1,...,150};

2. 202 Euclidean TSP-instances, i.e., complete graphs of order 1015, vertices of which are points of the
rectangle [0, 1] x [0, 1] with random (x, y)-coordinates; edge-distances are, obviously, the Euclidean dis-
tances between points;

3. 173 TSP-instances with edge-distances randomly chosen in {1,2}.

Ten experiments were performed for each instance and the method exhibited excellent performance. More

specifically, in 95% of the instances all 10 runs were successfully terminated at the optimal solution, while in

the remaining 5% of the instances, at least seven of the 10 runs gave the optimal solution and the remaining
runs terminated at solutions less than 1% from optimal. Moreover the execution time was very small (less
than 2 s of CPU time) for all graphs.

The instances of category II have been constructed by the following way. For class 1 of category I, a
number x in the set of integers {103, ...,175} has been randomly chosen. Next, x graphs of class 1 have
been randomly chosen in order to constitute the components of a larger graph and their vertices have been
linked in order that the resulting graph is a complete one. The distances of the edges added (linking vertices
of the different copies) were all taken equal to 150. So, TSP-instances with orders ranging from 1115 to 2428
vertices have been constructed. Almost the same construction principle has been followed for producing
TSP-instances with distances 1 or 2 in category II. Here, the number x of randomly chosen graphs of class 3
was randomly drawn from the set {80,...,95}. Once more, the graphs chosen were the ingredients of a
larger graph. Vertices of the different copies have been mutually linked in order that the graph finally
obtained is complete and the distances of the edges newly added have been randomly chosen in {1,2}. The
orders of the so-constructed graphs ranged from 835 to 1370. In all, the following two classes of random
instances have been tested:

(1) 190 complete graphs on 1115-2428 vertices with integer edge-distances randomly drawn from the set
{1,...,150};
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(i) 135 complete graphs on 835-1370 vertices with edge-distances randomly taken from {1,2}.
For each graph of category II, 10 experiments have also been performed.
The quality criterion retained for categories II and III is the so-called optimality ratio, defined as:

» = 100 < solution_Cost — optimal_Cost ) .
= 0,

optimal_Cost

where solution_Cost denotes the cost of the obtained solution and optimal_Cost is an estimate of the value
of the optimal tour. For each of the problems tested, three ratio-values are retained, namely, the minimum
over all runs (called best p), the maximum one (called worst p) and, finally, the average one (called average
p) computed as the sum, over all runs, of the ratio-values divided by the number of runs.

For the instances of classes (i) and (i) in category II optimal solution-values have not been exactly
computed. Instead, lower bounds for them are used. For each instance of class (i), this bound is the sum of
the optimal solution-values of its ingredient-graphs. Obviously, since the edges linking the different copies
have all distance 150 (the maximum edge-distance considered in class 1 — the ingredient-graphs of class (i))
this sum is smaller than, or equal to, the optimal TSP-value of the graph. For the instances of class (ii), the
lower bound considered was the sum of the optimal solution-values of the ingredient-graphs (the graphs of
class 3) plus x. Of course our algorithm has run in the whole (large) graph. The experimental results ob-
tained seem interesting since the ‘average’ best ratio, i.c., the sum of the best ratios divided by the number of
the graphs is 0.58, while the ‘average’ average ratio (the sum of the average ratios divided by the number of
the graphs) is 1.77 and the average worst ratio (the sum of the worst ratios divided by the number of the
graphs) is 2.85. Moreover, for 71% of the instances the algorithm have computed feasible solutions whose
values are equal to the lower bounds for the optimal ones, consequently, it has returned optimal solutions.
Average execution time for the instances of category II were about 4.2 CPU h (250 min) without never
exceeding 5 CPU h.

Category III of experiments have been conducted with benchmarks from the TSP data library (TSPLIB,
[11]); 14 TSPLIB-problems have been considered with the number of cities ranging from 100 to 200. For
each instance 10 runs have also been performed. Table 1 displays statistical results for several benchmarks,
where 10 experiments were run for each problem. As one can see from this table, the proposed method
provides high-quality solutions to several problem categories with very good best case and worst case ratios
and, in addition, relatively low standard deviation values. All ratios were computed by considering as
optimal values those provided by the TSPLIB library. Average execution time for category III was about
850 CPU s without exceeding 1000 CPU s for 200-city problems.

Let us note that, in general, it is possible to obtain results of better quality by increasing the neigh-
borhood size and performing more than 500 random restarts from the current best state, which will lead to
an increase of the required CPU time. This is not a matter for problem sizes up to 150 cities, but leads to

Table 1

Optimality ratios for several test problems from the TSPLIB library
Problem p (%)

Best Average Worst

eill01 0.6 1.2 1.7
kroA100 0.4 0.8 1.1
kroA150 0.8 1.8 1.1
kroA200 1.9 2.1 2.5
kroB100 0.4 0.8 1.5
kroB150 1.0 3.3 4.1
kroB200 3.1 4.0 5.2
kroC100 0.5 0.8 1.3
kroD100 23 3.2 3.6
kroE100 0.2 1.0 1.8
lin105 0.3 0.6 1.0
rat99 0.9 1.7 2.5
rat195 22 3.4 3.6

rd100 0.4 2.2 32
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increasing CPU times for larger problem-instances. Therefore, we have decided to specify the parameters of
the search strategy under the constraint that the execution time will be less than 5 CPU h for the instances
of category III and less than 1000 CPU s for the instances of category II. Moreover, we have chosen to use
the same number of restarts (in phase 2) regardless the problem size.

Finally, observe that the neighborhood exploration phase exhibits high degree of parallelism, since the
cost of each neighboring state is computed independently and therefore a pool of processors can be easily
employed to perform this task, leading to the expectation of high speedup values and therefore significant
improvements in execution time.

Of course the computational experiments conducted are not still sufficient in order that the operational
interest of the method is definitely concluded. However, we think that they are interesting and promising
enough to justify further developments and refinements.

5. Conclusions

We have proposed and studied a new state space representation for the TSP that is based upon a ranking
of the intercity distances, in order for the corresponding tour to be specified. The method is general and can
be applied to any kind of TSP, even asymmetric one. Experiments have been conducted by performing local
search with random restarts, where a simple neighborhood definition has been used (leading to neigh-
borhood size less than 8 N) and a specific strategy for specifying restart states has been developed in order to
exploit the characteristics of the new representation. Of course, a systematic validation of our method, by
conducting further experiments is needed. But our preliminary experimental results show that this approach
provides solutions of high quality in relatively small execution time. Moreover, as mentioned above, the
devised algorithm is easily parallelizable.

There are many open problems which can be addressed concerning the proposed representation and
which will constitute the subject of our future work. First of all, we aim at integrating the proposed rep-
resentation with global optimization techniques (tabu search, simulated annealing, genetic algorithms and
others) that have already been successfully employed for the solution of the TSP using the conventional
representation and the corresponding heuristics. In addition, we aim at examining alternative neighbor-
hood definitions that may lead to solutions of better quality. Finally we are interested in implementing the
method on parallel machines following the directions suggested in previous sections.

Another promising direction of future research is the use of the proposed greedy representation to tackle
other combinatorial optimization problems for which greedy heuristic approaches exist. So, further studies
are to be performed concerning the application of the method to problems, structurally different from TSP,
for which tailored heuristics (as the Lin—Kernighan one for the TSP) have not been developed. Such studies,
except their evident operational interest, will render clearer the importance and effectiveness of the greedy
representation, as well as its field of applicability.

For example, for the maximum independent set, instead of constructing the greedy solution (minimum-
degree heuristic) by including in the solution set the best vertex at each step (the one minimizing the number
of the immediately excluded vertices), we could use the proposed representation and rank the vertices
according to the number of the remaining neighboring vertices that will be excluded in the case where the
specific vertex will be added to the solution set. From the string representation, a solution is constructed by
selecting at each step i the vertex suggested by the corresponding s; value. An analogous thought process
could be followed for minimum set-covering, where the ranking criterion could be the number of remaining
elements of the ground-set in the case where a specific subset will be included in the solution.

Finally, a very interesting theoretical problem is the achievement of theoretical approximation guar-
antees for the method proposed.
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