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Abstract—In this paper, the blind image deconvolution (BID)
problem is addressed using the Bayesian framework. In order
to solve for the proposed Bayesian model, we present a new
methodology based on a variational approximation, which has
been recently introduced for several machine learning problems,
and can be viewed as a generalization of the expectation maxi-
mization (EM) algorithm. This methodology reaps all the benefits
of a “full Bayesian model” while bypassing some of its difficulties.
We present three algorithms that solve the proposed Bayesian
problem in closed form and can be implemented in the discrete
Fourier domain. This makes them very cost effective even for very
large images. We demonstrate with numerical experiments that
these algorithms yield promising improvements as compared to
previous BID algorithms. Furthermore, the proposed method-
ology is quite general with potential application to other Bayesian
models for this and other imaging problems.

Index Terms—Bayesian parameter estimation, blind deconvolu-
tion, graphical models, image restoration, variational methods.

I. INTRODUCTION

HE blind image deconvolution (BID) problem is a diffi-

cult and challenging problem because from the observed
image it is hard to uniquely define the convolved signals. Never-
theless, there are many applications where the observed images
have been blurred either by an unknown or a partially known
point spread function (PSF). Such examples can be found in as-
tronomy and remote sensing where the atmospheric turbulence
cannot be exactly measured, in medical imaging where the PSF
of different instruments has to be measured and thus is subject
to errors, in photography where the PSF of the lens used to ob-
tain the image is unknown or approximately known, etc.

A plethora of methods has been proposed to address this
problem; see [1] for a seven-year-old survey of this problem.
Since, in BID, the observed data are not sufficient to specify
the convolved functions, most recent methods attempt to
incorporate in the BID algorithm some prior knowledge about
these functions. Since it is very hard to track the properties of
the PSF and the image simultaneously, several BID methods
attempt to impose constraints on the image and the PSF in
an alternating fashion. In other words, such approaches cycle
between two (the image and the PSF) estimation steps. In the
image estimation step, the image is estimated assuming that the
PSF is fixed to its last estimate from the PSF estimation step.
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In the PSF estimation step, the PSF is estimated assuming the
image to be fixed to its last estimate from the image estimation
step. This decouples the nonlinear observation model in BID
into two linear observation models that are easy to solve.
Algorithms of this nature that use a deterministic framework
to introduce a priori knowledge in the form of convex sets,
“classical” regularization, regularization with anisotropic
diffusion functionals, and fuzzy soft constraints were proposed
in [5]-[7] and [15], respectively.

A probabilistic framework using maximum likelihood (ML)
estimation was applied to the BID problem in [2]-[4] using
the expectation maximization (EM) algorithm [11]. However,
the ML formulation does not allow the incorporation of prior
knowledge, which is essential in order to reduce the degrees of
freedom of the available observations in BID. As a result, in
order to make these algorithms to work in practice, a number of
deterministic constraints such as the PSF support and symmetry
had to be used. These constraints, although they make intuitive
sense, strictly speaking, cannot be justified theoretically by the
ML framework.

In [8]-[10], the Bayesian formulation is used for a special
case of the BID problem where the PSF was assumed partially
known. In this case, the PSF was assumed to be given by the sum
of aknown deterministic component and an unknown stochastic
component. In these works, two strategies were adopted in order
to bypass the above-mentioned difficulties in writing down the
probabilistic law relating the observations and the quantities to
be estimated. First, in [8], the stochastic model that relates the
observations with the quantities to be estimated was simplified.
The direct dependence on the unknown image of the statistics
of the additive noise component due to the PSF uncertainty was
removed. This made possible to write down in closed form the
probabilistic law that relates the observations with the quantities
to be estimated and extend the EM algorithm in [3], [4], and [24]
to this problem. Second, in [9] and [10], the use of the above-
mentioned probabilistic law was bypassed by integrating out the
dependence of the unknown image to the observations. More
specifically, a Laplace approximation of the Bayesian integral
that appears in this formulation was used. In spite of this, it
was reported in [9] that the accuracy of the obtained estimates
of the statistics of the errors in the PSF and the image could
vary significantly, depending on the initialization. Thus, using
the Bayesian approach in [9], it is impossible to obtain accurate
restorations unless accurate prior knowledge about either the
statistics of the error in the PSF or the image is available in the
form of hyper-priors [10].

The Bayesian framework is a very powerful and flexible
methodology for estimation and detection problems because
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it provides a structured way to include prior knowledge
concerning the quantities to be estimated. Furthermore, both
the Bayesian methodology and its application to practical
problems have recently experienced an explosive growth;
see, for example, [12]-[14]. In spite of this, the application
of this methodology to the BID problem remains elusive
mainly due to the nonlinearity of the observation model. This
makes intractable the computation of the joint probability
density function (PDF) of the image and the PSF, given the
observations. One way to bypass this problem is to employ in
a Bayesian framework the technique of alternating between
estimating the image and the PSF while keeping the other
constant, as previously described. The main advantage of such
a strategy is that it linearizes the observation model, and then,
it is easy to apply the Bayesian framework. However, clearly,
this is a suboptimal strategy. Another approach to bypass this
problem could be to use Markov chain Monte Carlo (MCMC)
techniques to generate samples from this elusive conditional
PDF and then estimate the required parameters from the
statistics of those samples. However, MCMC techniques are
notoriously computational intensive, and furthermore, there
is no universally accepted criterion or methodology to decide
when to terminate [13].

In what follows, we propose to use a new methodology
termed “variational” to adress the Bayesian BID problem in a
computationally efficient way, resorting neither to the subop-
timal linearization by alternating between the assumption that
the image and the PSF are constant as previously explained nor
to MCMC. The proposed approach is a generalization of both
the ML framework in [2]-[4] and [24] and the partially known
PSF model in [8]-[10]. The variational methodology that we
use was first introduced in the machine learning community to
solve Bayesian inference problems with complex probabilistic
models; see, for example, [17], [19], [20], [22], and [23]. In
the machine learning community, the term graphical models
has been coined in such cases since a graph can be used to
represent the dependencies among the random variables of the
models, and the computations required for Bayesian inference
can be greatly facilitated based on the structure of this graph.
It has also been shown that the variational approach can be
viewed as a generalization of the EM algorithm [16]. In [21],
a similar methodology to the variational, which is termed
ensemble learning, is used by Miskin and MacKay to address
BID in a Bayesian framework. However, the approach in
[21] uses a different model for both the image and the PSF.
This model assumes that the image pixels are independent
identically distributed and, thus, does not capture the between
pixel correlations of natural images. Furthermore, our model
allows simplified calculations in the frequency domain. This
greatly facilitates the implementation of our approach for
realistic high-resolution images. We believe that the approach
in [21] cannot be applied to large images.

The rest of this paper is organized as follows: In Section II, we
provide the background on variational methods; in Section III,
we present the Bayesian model that we propose for the BID
problem and the resulting variational functional; in Section IV,
two iterative algorithms are presented that can be used to solve
for this model, and we provide numerical experiments indi-
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cating the superiority of the proposed algorithms as compared
with previous BID approaches; finally, in Section V, we provide
our conclusions and suggestions for future work.

II. BACKGROUND ON VARIATIONAL METHODS

The variational framework constitutes a generalization of
the well-known expectation maximization (EM) algorithm
for likelihood maximization in Bayesian estimation problems
with “hidden variables.” The EM algorithm has been proved
to be a valuable tool for many problems, since it provides
an elegant approach to bypass difficult optimization and
integrations required in Bayesian estimation problems. In
order to efficiently apply the EM algorithm, two requirements
should be fulfilled [11]: i) In the E-step, we should be able to
compute the conditional PDF of the “hidden variables” given
the observation data. ii) In the M-step, it is highly preferable
to have analytical formulas for the update equations of the
parameters. Nevertheless, in many problems, it is not possible
to meet the above requirements and several variants of the basic
EM algorithm have emerged. For example, a variant of the
EM algorithm, called the “generalized EM” (GEM), proposes
a partial M step in which the likelihood always improves. In
many cases, partial implementation of the E step is also natural.
An algorithm along such lines was investigated in [16].

The most difficult situation for applying the EM algorithm
emerges when it is not possible to specify the conditional PDF
of the hidden variables given the observed data that is required
in the E-step. In such cases, the implementation of the EM al-
gorithm is not possible. This significantly restricts the range of
problems where EM can be applied. To overcome this serious
shortcoming of the EM algorithm, the variational methodology
was developed [17]. In addition, it can be shown that EM natu-
rally arises as a special case of the variational methodology.

Assume an estimation problem where z and s are the ob-
served and hidden variables, respectively, and 6 are the model
parameters to be estimated. All PDFs are parameterized by the
parameters 6, i.e., p(x; 0), p(s, z; 0), and p(s|z; 0), and we omit
6 for brevity in what follows.

For an arbitrary PDF q(s) of the hidden variables s, it is easy
to show that

log p(z) + E, (log q(s)) = E, (log p(z, s))
+Eq (logq(s)) — Eq (logp(s|z))

where E, denotes the expectation with respect to g(s). The
above equation can be written as

L(0) + Eq (log q(s)) = Ey (logp(z,5)) + KL (q(s)[lp(s]x))

where L(6) = logp(xz;#) is the likelihood of the unknown
parameters, and K L(q(s)||p(s|z)) is the Kullback-Liebler dis-
tance between ¢(s) and p(s|z).

Rearranging the previous equation, we obtain

F(q,0) = L(6)— KL (q(s)l[p(s]x)) = Eq (logp(z, s))+H(q)

(H
where H(q) is the entropy of ¢(s). From (1), it is clear that
F(q, ) provides a lower bound for the likelihood of § param-
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eterized by the family of PDFs ¢(s) since K L(q(s)||p(s|z)) >
0. When ¢*(s) = p(s|z;0), the lower bound becomes exact:
F(q*,0) = L(6). Using this framework, EM can then be viewed
as a special case when ¢*(s) = p(s|z;6).

However, the previous framework allows us, based on (1),
to find a local maximum of L(#) using an arbitrary PDF q(s).
This is a very useful generalization because it bypasses one of
the main restrictions of EM that of exactly knowing p(s|x). The
variational method works to maximize the lower bound F(q, )
with respect to both ¢ and q. This is justified by a theorem in
[16], stating that if F'(g, #) has a local maximum at ¢*(s) and 6*,
then L(#) has a local maximum at §*. Furthermore, if F(q, §)
has a global maximum at ¢*(s) and 6*, then L(#) has a global
maximum at §*. Consequently, the variational EM approach can
be described as follows:

E-step: ¢**Y) = arg max, F (q7 H(t)>
M-step: 8%+ = arg maxg F (q(t“), 9) .

This iterative approach increases at each iteration ¢, the value of
the bound F(g, #), until a local maximum is attained.

III. VARIATIONAL BLIND DECONVOLUTION
A. Variational Functional F(q, )

In what follows, we apply the variational approach to the
Bayesian formulation of the blind deconvolution problem. The
observations are given by

g=hxf4+w=H -f+w=F -h+w 2)

and we assume the N X 1 vector g to be the observed vari-
ables, the N x 1 vectors f, h are the hidden variables, w
is Gaussian noise, and H and F' are the N X N convolu-
tion matrices. We assume Gaussian PDFs for the priors of
f and h. In other words, we assume p(f) = N(us, Xj),
p(h) = N(pn,Xn), and p(w) = N(0,%,,). Thus, the param-
eters are = (i, X ¢, i, L, ] . The dependencies of the
parameters and the random variables for the BID problem can
be represented by the graph in Fig. 1.

The key difficulty with the above blind deconvolution
problem is that the posterior PDF p(f, h|g;0) of the hidden
variables f and h given the observations g is unknown. This fact
makes impossible the direct application of the EM algorithm.
However, with the variational approximation described in the
previous section, it is possible to bypass this difficulty. More
specifically, we select a factorized form for q(s) that employs
Gaussian components

q(S) = q(h7 f) = q(h)q(f> = N(qu ) Of‘l>N(mh‘77 Chq)
3
where 0, = [mfa, C'a, mpa, Cha]® are the parameters of ¢(s).
This choice for ¢(s) can be justified because it leads to a
tractable variational formulation that allows for the variational
bound F(q, ) (1) to be specified analytically in the discrete
Fourier domain (DFT) domain if circulant covariance matrices
are used. From the right-hand side of (1), we have

F(q,0) = E, (log (p(z,s)) + H(q) 4)
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Fig. 1. Graphical model describing the data-generation process for the blind
deconvolution problem considered in this paper.

where p(z,s) = plg,f.h) = p(glf,h) - p(f) - p(h) with
plglh, ) = N(h f.50).

The variational approach requires the computation of the ex-
pectation (Gaussian integral) in (4) with respect to ¢(s). In order
to facilitate computations for large images, we will assume cir-
culant convolutions in (2) and that matrices X ¢, Xp, Xy, Cya,
and C}q are circulant. This allows an easy implementation in
the DFT. Computing the expectation E,(log(p(g, f, h)) as well
as the entropy of ¢(s), we can write the result in the DFT do-
main as (5), shown at the bottom of the next page (the deriva-
tion is described in Appendix A), where Sya (k), Spa (k), Af(k),
Ap(k), and A, (k) are the eigenvalues of the N x N circulant
covariance matrices C'¢a, Cha, X5, Xp, and X, respectively. In
addition, G(k), M4 (k), and M. (k) are the DFT coefficients

of the vectors g, m ¢4, and mpaq, respectively.

B. Maximization of the Variational Bound F(q, )

In analogy to the conventional EM framework, the maximiza-
tion of the variational bound F(g, #) can be implemented in two
steps, as described in the end of Section II. In the E-step, the
parameters 0, = [mga, Cya, mpa, Chal’ of ¢(s) are updated.
Three approaches have been considered for this update. The first
approach (called VARI1) is based on the direct maximization of
F(q, 8) with respect to the parameters ¢,. It can be easily shown
that such maximization can be performed analytically by setting
the gradient of F(q, §) with respect to each parameter equal to
zero, thus obtaining the update equations for m}tfl), C’}ZH),

mg;_l) ,and C,SZH). The detailed formulas of this approach are

given in Appendix B.

In the second approach (called VAR2), we assume that ¢(f) =
p(flg; h)andq(h) = p(h|g; f). Whenhor f areassumed known,
the observation model in (2) is linear. Thus, for Gaussians priors
on h, f, and Gaussian noise w, the conditionals of & and f, given
the observations, are Gaussians p(f|h,g) = N(mg;4,Cy/y),
p(h|f,9) = N(my,q, Ch,/4) withknownmeansandcovariances,
which are given by (see [3] and [4])

g = pp+ Sy H-(H- S H 4 5,) " (9= H-pig)

Cprg =%s—Sp-H'-(H-Sp-H'+%,) -H-Zp  (6)

Mgy =+ SnFL (B S F 45,7 (= F )

Chy/g :Eh_Eh'Ft'(F'Eh'Ft‘i‘En)_l'F'Eh- @)
Therefore, we set mgfqﬂ) = mj/gs C}ZH) = Cy/yr m§:q+1) _
mp/g, and ct+h = Chyg-

ha
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Since, in the above equations, we do not know the values of h
and f,weusetheir current estimates mgfq) andm(tq) .Itmustalsobe
noted that all computations take place in the DFT domain. A dis-
advantage of this approach is that the update equations of the pa-
rameters ¢, donot theoretically guarantee the increase of the vari-
ational bound F(q, #). Nevertheless, the numerical experiments
have shown that this is not a problem in practice, since in all ex-
periments, the update equations resulted inanincrease of F (¢, 6).

In the M-step, the parameters §, are considered fixed, and
(5) is maximized with respect to the parameters 6, leading to

the following update equations:
(t+1) o (t+1)
= Jisq
t+1 t+1
H’gz ) Eﬂ )
E;H'l) = C(H'l) and
s Oﬁi*” ®)

for both approaches VAR1 and VAR2. The covariance of the
noise is updated for the VAR1 and VAR2 approaches according
to

1 *
A55+1><k>=N(|G<k>|2—2Re{M<2“><k>M,Ei+”< )G ()})
+N( t+1) ‘M(t+1) ‘ )

(st W ) ) ©
fork=0,1... N — 1, where AWV (%), SV (k). 5550 (k).
M](cf’fl) (k), M,SZH) (k), and G(k) are defined as previously. The
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detailed derivations of the formulas for the parameter updates of
our models are given in Appendix B.

In the third approach (called VAR3), the optimization of the
function F(q, #) at each iteration is done in two stages, assuming
f and h to be constant in an alternating fashion. At the first stage
of each iteration, f is assumed a random variable, and the param-
eters associated with f are updated, while A is kept constant. In
the second stage, the reverse happens. More specifically, at the
E-step of the first stage, since h is assumed deterministic, we have

that ¢(s) = q(f), and from (1), the new variational bound can be
written
Fy(q(f):0) = By (logp(g, f)) + H (¢(f))  (10)

where 6 = [pf, X, B,,]7. F£(q, 0) can be easily obtained from
F(q, ) in (5) by replacing M. (k) with H (k), setting Spa (k) =
0, and dropping the all the terms that contain Ay, (k). From (1), it
is clear that in this case, setting ¢(s) = q(f) = p(f|g; h) [given
by (6)] leads to maximization of F ¢ (g, ) withrespectto ¢(f). In
the M-step of the first stage, in order to maximize F (g, #) with
respect to ¢, it suffices to maximize E (¢ /4.1)(log p(g, f)) since
the entropy termis not a function of 6. Thus, the first stage reduces
to the “classical” EM for the linear model g = H f + w, whichis
also known as the “iterative Wiener filter”; see, for example, [3].
In the second stage of the VAR3 method, the role of f and A is
interchanged, and the computations are similar. In other words,
the variational bound F,(q,6) (where = [, Xn, Xo]T) is
obtained from F(q, 6) in (5) by replacing M. (k) with F(k),
S¢a(k) = 0and dropping all the terms that contain A (k). The
parameters of p(h|g; f), in this case, are updated by (7).

For the VAR3 approach, the M-step updates specified in (8)
still hold for both stages. However, the update of Aq(,t,H)(k) in

F(g, % (1og Aw () + log A £ (k) + log An(k) — log Sfa (k) — log Sha (k)
- ALEk)
1 V=1 1 (IGRI — 2Re (Mo (k) Mis (K)G* ()
24 Ao (k)
4a (k)
L N (850004 5 171 (Sia08) + 1)
P> Rulh)
B(k)
Lzt (8004 171 ) + 5 (IM5 0 = 2Re {050y (1))
2 Ag(k)
C(k)
vt (S04 5 187+ (1M D = 2Re (M) M (1)
2 Ap (k) ©)
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the stage where £ is considered deterministic and known is ob-
tained from (9) by following the same rules as the ones used to
obtain F¢(q, #) from F(q, ). This yields the update

AL (k) = % (161 - 2Re{M<z+”<k>H(k>G*(k>})

+|H (k) <s}€,“>( M k)‘ ) (11)

v

Similarly, the update A,, (k) in the stage where f is considered
deterministic and known is

AGHD () = % (16 = 2Re { F() M (R)G™ (k) })

HIEWE (S0 + a1

M (k) ‘ ) . (12)

It is worth noting that the VAR3 approach, since it uses linear
models, can be also derived without the variational principle by
applying the “classical” EM (iterative Wiener filter) twice: once
for f using as data-generationmodel g = H f +w with H known
and once for h using as data-generation model ¢ = F'h + w with
F known. From a Bayesian inference point of view, clearly, VAR3
is suboptimal since it alternates between the assumptions that f
is random and h deterministic and vice-versa.

IV. NUMERICAL EXPERIMENTS

In our experiments, we used a simultaneously autoregressive
(SAR) model [18] for the image; in other words, we assumed
p(f) o (a)((V=D/D exp(—L1a||Qf||?), where Q is the circu-
lant matrix that represents the convolution with the Laplacian
operator. For h, we assume p(h) = N(my,3%I) and, for the
noise, p(n) = N(0,021). Therefore, the parameters to be esti-
mated are o, my, 3, and o2.

The following five approaches have been implemented and
compared:

1) variational method VARI;

ii) variational method VAR2 (with ¢(f)
q(h) = p(h|f.9))

iii) variational approach VAR3 in which h and f are es-
timated in an alternating fashion (Since the VAR3 ap-
proach, in contrast with the VAR1 and VAR2 methods,
does not use a “full Bayesian” model, it serves as the
comparison benchmark for the value of such model.);

iv) Bayesian approach for partially known blurs (PKN) as
described in [9]

v) iterative Wiener filter (ITW) as described in [3] where
only the parameters « and o are estimated.

= p(flh,g) and

The ITW, since it does not attempt to estimate the PSF, is ex-
pected to give always inferior results. However, it serves as a
baseline that demonstrates the difficulty of each BID case we
show in our experiments.

As a metric of performance for both the estimated image and
the PSF the improvement in the signal-to-noise ratio (ISNR)
was used. This metric is defined for the image as ISNRy =
log 10(]|f — glI2/Ilf = flI?), where f is the restored image
and, for the PSF, as ISNR;, = log 10(||h — hinl|?/[|h — h|?),
where h;, and h are the initial guess and the estimate of the PSF,
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respectively. Two series of experiments were performed: first,
with PSFs that were partially known, in other words, corrupted
with random error and, second, with PSFs that were completely
unknown.

A. Partially Known Case

Since, in many practical cases, the PSF is not completely un-
known, in this series of experiments, we consider that the PSF
is partially known [8]-[10], i.e., it is the sum of a determin-
istic component and a random component: h = hg + Ah. The
Bayesian model that we use in this paper includes the partially
known PSF case as a special case. Thus, in this experiment, we
compared the proposed variational approaches with previous
Bayesian formulations designed for this problem. The deter-
ministic component hg was selected to have a Gaussian shape
with support 31 X 31 pixels given by the formula ho(k, m) =
exp((k?/o%) + (m? /o)) with k,m = —15...15 that is also
normalized to one such that Zk__15 Zm——lo ho(k,m) = 1.
The width and the shape of the Gaussian are defined by the
variances, which were set at 0% = o2 = 20. For the random
component Ah, we used white Gaussian noise with p(Ah) =
N (0, 32I). In these experiments, since m;, = hg is known, the
parameters to be estimated are «, (3, and o2,

The following three cases were examined where, in each case,
a degraded image was created by considering the following
values for the noise and the PSF: i) ¢ = 1072, 8 = 107*
ii)o = 1073, 8 = 1074 iii) ¢ = 1074, B = 10~*. In all
experiments and for all tested methods, the initial values of the
parameters were @ = 500, 32 = 1077, and 02 = 10~°. The
obtained ISNR ¢ values of the restored images are summarized
in Table I. Table I clearly indicates the superior restoration
performance of the proposed variational methods (VARI and
VAR?2) as compared with both the partially known (PKN)
method and the VAR3 approach. As expected, the improvement
becomes more significant when the standard deviation of the
PSF noise  becomes comparable with the standard deviation
of the additive noise o. In addition, as the noise in the PSF
becomes larger, the benefits of compensating for the PSF
increase as compared with using the ITW. It must be noted
that, as also reported in [9], the PKN method is very sensitive
to initialization of 3 and o, and it did not converge in the third
experiment. It is also interesting to mention that the first two
variational schemes provide similar reconstruction results in
all tested cases. In Fig. 2, we provide the images for the case
c=10"303=10"*

B. Unknown Case

In this series of experiments, we assumed that the PSF is un-
known; however, an initial estimate is available. In this experi-
ment,anadditional image was used to test the proposed algorithm.
An initial estimate of the PSF was used for restoration with the
iterative Wiener (ITW), and the same estimate was also used as
the initial value of the PSF mean for the three variational (VARI,
VAR?2, VAR3) methods. More specifically, the degraded image
was generated by blurring with a Gaussian-shaped PSF Ay, e, as
before, and additive Gaussian noise with variance 02 = 1079,

g
The initial PSF estimate hy,;; was also assumed Gaussian shaped
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(a)

Fig. 2.
dB.
TABLE I
ISNR¢ VALUES FOR THE PARTIALLY KNOWN EXPERIMENTS
o=10%,4=10" | 6=102,8=10" | c=10", =10
VARI 2.6dB 3.9dB 4.8dB
VAR2 2.6dB 3.9dB 4.9dB
VAR3 2.5dB 2.9dB 3.0dB
PKN 2.1dB 3.0dB No convergence
ITW 2.5dB 2.8dB 1.64dB

but with different variances than those used to generate the im-
ages. Furthermore, the support of the true PSF is unknown. For
this experiment, the unknown parameters to be estimated are «,
muy, 3, and o2. The PKN method was not tested for this set of ex-
periments since it is expected to yield suboptimal results because
it is based on a different PSF model. Two cases were examined,
and the results are presented in Table IT along with the obtained
ISNR values after 500 iterations of the algorithm. The PSF initial-
izationsh, ;, and h? ,, forthese twoexperiments were chosen such
that ||hirue — b s || = ||Ptrue — b2 5, ||, where Ay isthe true PSF,
which we are trying to infer.

In Figs. 3 and 4, we provide the images for cases 1 and 2
of Table II. In Fig. 5, we show the images that resulted from
the experiments tabulated in Table III case 1, where the “Lena”
image has been used.

From this set of numerical experiments, it is clear that the
VARI approach is superior to both the VAR2 and VAR3 ap-
proaches in terms of both ISNR ¢ and ISNRy,. This is expected
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(d

Images from Table I case with o = 1072, 3 = 10~*. (a) Degraded image. (b) ITW, ISNR= 2.8 dB. (c) PKN, ISNR= 3.0 dB. (d) VAR2, ISNR= 3.9

since both VAR2 and VAR3 are suboptimal in a certain sense.
VAR2, since it is in the E-step, does not explicitly optimize
F(q,6) with respect to ¢(s) and VAR3 since it does not use
the “full Bayesian” model, as previously explained. Neverthe-
less, we observed in all our experiments, all methods increased
monotonically the variational bound F(g, 6). This is somewhat
surprising since the VAR2 method does not optimize F(q, 6)
in the E-step, and the VAR3 method optimizes F (g, §) and
F1(q,0) in an alternating fashion.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the blind image deconvolution (BID) problem
was addressed using a Bayesian model with priors for both the
image and the point spread function. Such a model was deemed
necessary to reduce the degrees of freedom between the esti-
mated signals and the observed data. However, for such a model,
even with the simple Gaussians priors that used in this paper,
it is impossible to write explicitly the probabilistic law that re-
lates the convolving functions given the observations required
for Bayesian inference. To bypass this difficulty, a variational
approach was used, and we derived three algorithms that solved
the proposed Bayesian model. We demonstrated with numer-
ical experiments that the proposed variational BID algorithms
provide superior performance in all tested scenarios compared
with previous methods. The main shortcoming of the variational
methodology is the fact that there is no analytical way to eval-
uate the tightness of the variational bound. Recently, methods
based on Monte Carlo sampling and integration have been pro-
posed to address this issue [23]. However, the main drawback
of such methods is, on the one hand, computational complexity
and, on the other hand, convergence assessment of the Markov
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TABLE

1I

ISNRS OF ESTIMATED IMAGES AND PSF WITH THE “TREVOR” IMAGE

case 1

Generating PSF  Initialization

2 _ 2_ 2 _ 2_
oy —20,cry—20 oy =12,0,=12

case 2

Generating PSF  Initialization

2 _ 2_ 2 _ 2_
0y =20,0,=20 oy, =40,0,=40

ISNR, ISNR, ISNR, ISNR,

VARI 3.18dB 7.45dB 1.63dB 2.92dB

VAR2 1.8dB -6.54dB 1.59dB 2.36dB

VAR3 2.24dB -0.59dB 1.53dB 2.52dB
ITW 2.25dB NA -15.7dB NA

©

Fig. 3. Images from Table II case 1. (a) Degraded. (b) ITW, ISNR; = 2.25 dB. (c) VAR, ISNR; = 3.18 dB (d) VAR2, ISNR; = 1.8 dB (e) VAR3,ISNR; =

2.24 dB.

chain. Thus, clearly, this is an area where more research is re-
quired in order to implement efficient strategies to evaluate the
tightness of this bound. Furthermore, research on methods to
optimize this bound is also necessary. In spite of this, the pro-
posed methodology is quite general, and it can be used with

other Bayesian models for this and other imaging problems. We
plan in the very near future to apply the variational methodology
to the BID problem with more sophisticated prior models that
capture salient properties of the image and the PSF such as dc
gain, nonstationarity, positivity, and spatial support.
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(c) | (d)

Fig. 4. Restored images from Table II case 2. (a) ITW, ISNR; = —15.7 dB. (b) VARI ISNR; = 1.63 dB. (c) VAR2, ISNR; = 1.59 dB. (d) VAR3, ISNR; =
1.56 dB.

Fig. 5. Images from Table III case 1. (a) Degraded. (b) ITW, ISNR; = 2.73 dB. (c) VARI, ISNR; = 3.94 dB. (d) VAR2, ISNR; = 2.37 dB. (e) VAR3,
ISNR; = 2.68 dB.
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TABLE III
FINAL ISNRS OF ESTIMATED IMAGES AND PSF FOR THE EXPERIMENTS WITH THE “LENA” IMAGE
Case (1) Case (2)
Generating PSF  Initialization Generating PSF  Initialization
07 =20,07=20 07 =12,07 =12 | oy =20,0; =20 o =40,0, =40
ISNR ' ISNR, ISNR ' ISNR,
VARI1 3.94dB 7.23dB 3.37dB 4.81dB
VAR2 2.37dB -4.87dB 3.14dB 2.87dB
VAR3 2.68dB -1.28dB 2.43dB 2.69dB
W 2.73dB NA -18.01dB NA
APPENDIX A These are the terms that must be integrated with respect to g(h)

COMPUTATION OF THE VARIATIONAL BOUND F(q, 6)
From (1), we have that

F(q,0) = E, (logp(z,s)) + H(q) (A1)

where Q(S> = q(f)q(h’) = N(qu ) qu )N(mhq ’ th>7
plz,s) = plg, f,h) = pglf,h) - p(f) - p(h) (with
p(glh, f) = N(h* f,%,)), and H(q) = E,(logq(s)) is the

entropy of ¢(s).

The implementation of the variational EM requires the com-
putation of the Gaussian integrals appearing in (A.1). The inte-
grand of the first part of (A.1) is given by

logp(g, f,h)

= logp(glf, k) +logp(f) +logp(h)
L

x < log |Sy|+ (g —h* f)'Sy (g — b= f)

g

bl
+1log [S¢ 4+ (f — np) S5 (f — 1)

g

b2

+1og Sl + (b — )35 (h — )

~ v
~~

b3
where K is a constant. The terms that are not constant in this
integration with respect to the hidden variables are called E, (b;)
with ¢ = 1, 2, and 3. These terms can be computed as

(A2)

Eq(b1) = Eq | ¢'Sytg— (h* f)'S, g — 'S, (h* f)
—— ~ ~ >

Il 12

and ¢(f). The last one using the interchangeability of the con-
volution and its matrix vector representation is given by

By() = [ (e £S5 0 £ath-a()-df-dn
= [ ([ et sztat oty ar) ao-an
_ '/</trace(Ht-E;1~H~f~ft)-q(f)~df>

-q(h)-dh
= /trace(Ht-Egjl-H-(C’fq + mpam,))

-q(h)-dh. (A4)

To compute this integral, we resort to the fact that these ma-
trices are circulant and have common eigenvectors given by the
discrete Fourier transform (DFT). Furthermore, for a circulant
matrix C, it holds that WCW —1 = A, where A is the diagonal
matrix containing the eigenvalues, and W is the DFT matrix.
This decomposition can be also written as (1/N)WCW™* = A,
where W* denotes the conjugate since W =1 = (1/N)W*; see,
for example, [3]. Using these properties of circulant matrices we
can write (A.5), shown at the bottom of the page.

In (A.5), Sfa(k), Sha(k), and A, (k) are the eigenvalues of
the covariance matrices C'ya, Cpa, and X,. M ya (k) and My (k)
are the DFTs of the vectors m o and mya, respectively. The re-
maining terms E, (7 + I5) of (A.3) can be computed similarly;
see (A.6), shown at the bottom of the next page.

As aresult, for the term E,(b1) we can write (A.7), shown at
the bottom of the next page. The other terms E, (b2) and E,(b3)
are similarly computed as (A.8), shown at the bottom of the next
page, and (A.9), also shown at the bottom of the next page. The

+£h « )25 (hx fl (A.3)  computation of H (q) is easy because of the Gaussian choice for
I q(f) and ¢(h). In essence, we have to compute the sum of the
N-1 2
[H (k)] 1 2
E, (I3) = Sta(k) + — |Mga(E ~q(h) - dh
(T /;(Aw(k) o)+ 1My (B)) ) - ath)
1

3=t (S50 (k) + % M5 (B ) (Se (k) + & [Mua (0

k=0

Ao (F) (A=)
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entropies E,(J;) with ¢ = 1 and 2 of two Gaussian pdfs, which
is given by

H(q) = — B, | logq(f)+logq(h)
—— —

Jy Jao
=E,(J1) + E, (Jz)

=—C+ N+ = (10g|qu|+10g|Chq|). (A.10)
Replacing (A.7)—(A.10) 1nto (A.2) results in (5) for F(q, 6).

APPENDIX B
MAXIMIZATION OF F(q, 0)

We wish to maximize F(q, /) with respect to parameters 6,
and @, where 6, are the parameters that define ¢(-). Since we
are not bounded by the EM framework that contains E and M
steps, we can do this optimization any way we wish. However,
in analogy to the EM framework, we have adopted the following
two steps that we call the E and M steps:

E-step (update of 6,):
9;“ = argmax {F(6,.0")} .
M-step (update of 6):
t+1 t+1
6 —argmgix{F (9q ,6)}.
In the M-step, in order to find the parameters # that maximize

F, we need to find the derivatives (0F(q, §))/(06) and set them
to zero. From (5), we have

OF(,0) _ o 1 AR+ As(k) _
Ohu(k) ~ T Au(R) T (AR
= Ay (k) = Ay (k) + Ay (k)

fork=0,1...N — 1.
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Similarly, we get A¢(k) = B(k) and Ay (k) = C(k) for k =

0,1...N —1.
OF(q,9)
= M - M q
8Mf(k‘) 0= f(k) f (k) and
OF(q,9)
= M = Mpaq fi =0,1...N —1.
8Mh(l) 0= h(l) h (l), ork =0,
Thus, we can compute the unknown parameters #(*+1) as
M) (k) = M (k) (B.1)
MY (k) = MUY (k) (B.2)

AE}H)(k) _ (S](thﬂ)( s ’M(t+1) k)‘ )
(Tt

—9Re { (M](ct+1)(k))* M}Z—i—l)(k)})

=S\ (k). (B.3)
For similar reasons
AT (k) = S5 (k) (B4)
1
ALV = 5 (Iew)?
~2Re {M““)(k)M,Ef,“)(k)G*(k)})
(t+1) (t+1)
+ (qu (k) +  [MeOm)| )
> < (H—l) ’M(H'l) ‘ ) (B.5)

fork=0,1...N — 1.

In our experiments, we have used an SAR prior [12] for the
image model; thus, p(f) o< () (N=17/2) exp(=(1/2)|Qf||*),
p(h) = N(mp,BI), and p(n) = N(0,02I), where Q is the

N—-1 2 * * *
B =LY {|G(k>| +qu(k)th(kiG<$) +M q<k>th<k>G<k>} (A6)
k=0 v
No1 (L (|G(k)|2 + Mo (k) Mo (k) G* (k) + M*q(k)M;:q(k)G(k))
Eq(bl) = A (k)
k=0 v
N (5o (k) + % 1Mpa (0 (Sha (k) + & [Mia (B
T ) (A7)
N-1(Sa(k)+ L [Ma(k L (M=(k)Mya (k) + Ms (k)M M
oy = 5 (50 R M) + 5 f<A>(k)f (k) + My ()M () + My (1)) s
k=0 f
N-1 (8 (kY + L |Ma(k L (M>(k)Mpa (k) + My (k)M My (k)|?
— (s )+ & Mo ()1°) + & (M) Moo (R) + M () M () + M (B) ) o

An (k)
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e (M,S?(k)) Re (G(k)) + Im (M,S?(k)) Im (G(k))
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R
Re (M}Z*l)(k)) = _ (B.9)
a0 [QUR)® + NS{E () + | M7 (k)|
_ (*) (*)
i (M) - im (M (k) Re (G(k)) + Re (th (k) 1m (G()) .
a2 |Q(k)? + NS (k ‘M}Lz ’
SV (k) = - i ; B.11)
a0 |Q(k)[® + NS ‘M,S? ‘
e (e P Re (VAT 0) Re (k) + 1m (M )Im(G(k))} rotRe(MA(K)
e( he ( )) - 02+ﬂNS(t+1 (k)+[3‘M(t+l) ‘ (B.12)
i (000 — 8 [Re (M{ (1) 1 (G (k) = 1m (M) (k) Re (G(K))] + 0Im (M (k) .
m ha - 02+,8NS(H—1 (/i: +l8‘M(t+1) k>‘2 .
Syt (k) = Bo” (B.14)

o2 + NS (k

)+ ‘M(t“) k)

‘ 2

circulant matrix that represents the convolution with the Lapla-
cian operator. Therefore, the unknown parameter vector 6 to
be estimated contains the parameters «, 3, and o2. Because of
the circulant properties, it holds that A s (k) = (1/(a|Q(k)|?)),
An(k) = B, and A, (k) = 0. Based on these assumptions, the
general equations (B.1)—(B.5) for the updates at the M-step take
the specific following form:

M-step
Lo D n( 2
(t4+1) _ t+ t+
“©T N—1Z<Sf" N’M k)‘)
k=0
3 -1
x|Q(k) ] B.6)
1
pu+y _NZ S (k ‘M(“’l) ‘ ) (B.7)
k=0

( (t+1

ZlH

N-—
b
—2Re{M;z+”<k>M,EZ“ ()G ()} )
+NNX_: (S““) ‘M(“’l) ‘ )
k=0

< (st we gt wl)]. @

For the VAR3 approach, the updates for « and (3 remain the
same. However, to obtain the updates for the noise variance,
we apply the same rules that were previously used to obtain
the variational bounds F(g,6) and Fj(g,6) from the bound
F(g,0) in (5).

For the VARI1 approach, the update equations for the pa-
rameters 6, of ¢(s) (which are complex in the DFT domain)
are easily obtained by equating the corresponding gradient of
F(q, ) to zero. This yields the following update equations for
k=0,....N —1:

E-step (VAR1 approach): We have (B.9)—(B.14), shown at
the top of the page.
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