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Abstract—A technique is developed based on the use of a neural
network model for performing information retrieval in a pictorial
information system. The neural network provides autoassociative
memory operation and allows the retrieval of stored symbolic
images using erroneous or incomplete information as input.
The network used is based on an adaptation of the random
neural network model featuring positive and negative nodes
and symmetrical behavior of positive and negative signals. The
network architecture considered here has hierarchical structure
and allows two level operation during learning and recall. An
experimental software prototype, including an efficient graphical
interface, has been implemented and tested. The performance of
the system has been investigated through experiments under sev-
eral schemes concerning storage and reconstruction of patterns.
These schemes are either based on properties of the random
network or constitute adaptations of known neural network
techniques.

Index Terms—Associative memory, Hebbian learning, informa-
tion retrieval, neural computation, pictorial information systems,
random neural network.

I. INTRODUCTION

ICTORIAL information systems have raised an increas-
ing interest during the last decade. The role of images
as a basic component of information interchange has been
well established, and a great number of applications based
on image processing and management have been realized,
including medical diagnosis, geographic information systems,
robot navigation and task planning, satellite image processing;
there have also been several industrial applications [21], [22].
In general, a pictorial information system constitutes a
combination of three basic components. The first component
deals with image processing and the extraction of informa-
tion from physical images. Typical operations provided by
image processing packages include image segmentation, edge
detection, thresholding, contour drawing, similarity retrieval,
texture measurement, clustering, interpolation, set operations,
etc. [22].

The second component is a pictorial database that is re-
sponsible for the storage and management of both the orig-
inal images and the extracted information. Due to its multi-
dimensional nature, an image incorporates a large amount of
both explicit and implicit information [21]. Explicit infor-
mation concerns the object entities contained in the image
as well as pixel-level information such as color and bright-
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ness. Implicit information is related to the relative positions
of objects in the image and to distances between objects.
This implicit information is very important and results in
vast amounts of data if storage in a relational database is
attempted. For such reasons, traditional approaches that have
been successfully applied to conventional databases cannot be
directly applied to pictorial information systems. In addition,
the problem of inferencing is more difficult when dealing with
spatial information [19].

The third component of a pictorial information system con-
cerns the user interface and the various mechanisms that enable
the user to effectively exploit iconic information. Several
high-level query languages, adapted to the needs of pictorial
systems, have been developed in this direction [6], [22].
But, as pictorial databases tend to grow rapidly in size, the
problem of how to get at the data becomes central. The
user no longer knows the exact contents of the database nor
does he have a clear sense of what should be retrieved [11].
Thus, concepts such as visualization and browsing have gained
interest recently and interactive visual languages have been
developed [10], [11].

As stated in [21], in order to progress in image databases
from the software perspective, it is important to examine
innovations in both processing and representations of images
and also to devise techniques that significantly accelerate
the speed of computation. Neural network technology con-
stitutes a candidate that may offer effective solutions to
many problems related to information systems [5], [13], [18].
The incorporation of neural network models as modules of
pictorial information systems would provide several signif-
icant advantages. First of all, neural network models are
inherently parallel and many of them can be implemented
directly in hardware or can be easily simulated on massively
parallel machines. Therefore, the speed of computation can
be increased by several orders of magnitude. Moreover, the
connection weights of a neural network constitute its long term
memory. Thus, a high degree of fault-tolerance is achieved,
since the damage of some connection or neurons does not
lead to significant performance degradation. Finally, the most
distinguished features of neural networks are related to their
learning and self-organizing capabilities, as well as to their
ability to automatically generalize and make inferences.

Neural networks have been successfully applied to problems
related to the first component of pictorial information systems,
as previously mentioned. Neural network models that perform
adaptive pattern recognition, image segmentation, object clas-
sification, and other related operations have been developed
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and tested with satisfactory results [24], [29]. In this paper we
study the use of the random neural network model [16], [17] as
a module of the second component. More specifically, we use
it for the storage of symbolic pictures and their retrieval based
on incomplete information. As will be described in the next
section, symbolic images constitute an abstraction of physical
images and play a very important role in pictorial information
systems.

In Section II, we present the general framework of our
approach, while Section III focuses on the random neural
network model. In Section IV, a prototype system is described,
which has been constructed for testing purposes, while some
performance results are presented in Section V. Finally, the
main issues addressed and conclusions drawn during this work
are summarized in Section VI

II. GENERAL DESCRIPTION OF THE PROPOSED APPROACH

A pictorial information system generally exhibits a complex
hierarchical structure [6]. Several levels of abstraction may be
defined, starting from the original physical images and moving
towards more abstract layers containing symbolic (logical)
pictures. Our approach deals with the use of a neural network
model with associative memory properties for the storage and
flexible retrieval of symbolic pictures.

The role of symbolic pictures in pictorial information sys-
tems is of great significance, because they allow fast and
intelligent treatment of useful information. They are especially
suitable for capturing the spatial knowledge embedded in
images, i.e., knowledge related to the relative positions of
image objects. The manipulation of physical images each time
we wish to extract and exploit spatial knowledge is inefficient
and time consuming. On the other hand, the maintenance of
spatial information in the form of relations of a conventional
database requires excessive storage space and access time.

First, in order to produce a symbolic picture from a physical
one, image processing techniques are applied that result in
segmentation of the physical image and recognition of the
contained objects. Then objects are classified and a symbol or
name is assigned to the objects of each category. In a symbolic
picture, symbols are used in the places of objects taking special
care to maintain their relative positions and distances. In [9],
an abstraction methodology that is flexible enough to allow
the representation of even complex spatial relationships is
introduced. This methodology is based on orthogonal relations
[7] and uses the notion of minimum enclosing rectangles to
define the primitive ortho-relational subobjects into which an
object is segmented. Details on this methodology can be found
in [8] and [9]. An important issue is that symbolic images can
be used as the basis for constructing indexes to the pictorial
database. As a matter of fact, they constitute a natural coding
mechanism relying on information drawn directly from the
contents of the physical image. The actual symbolic image
representation or some pattern derived from the symbolic
image can be efficiently used as index to the database [8], [9].

Another significant point is that, given a symbolic picture,
visualization of the physical image can be obtained in the
form of a visual sketch composed of icons, i.., graphical
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Fig. 1. (a) A symbolic image and (b) the corresponding visual sketch.

symbols representing objects. This seems easy in the case
where the objects of the symbolic picture are “point objects,”
i.e., objects not segmented into subobjects, since it is sufficient
to substitute the icon of the object for the object symbol. In a
different case, visualization becomes a more difficult task and
“connection rules” have to be applied to form an integrated
object by connecting ortho-relational subobjects [9]

In what follows, it is convenient to consider the symbolic
image as a two-dimensional array, with each array element
corresponding to the symbol of an object (the null object is
also assigned a special symbol). In Fig. 1, a symbolic picture is
demonstrated along with the corresponding visual sketch that
results from the visualization procedure. Symbols C,H, R, and
T stand for car, house, road, and tree respectively.

Our objective is to examine the suitability of an artificial
neural network with error correction capabilities for the re-
trieval of symbolic images based on incomplete information.
Retrieval operations based on information that is either impre-
cise or vague constitute a very active research field, especially
in very large and multimedia databases. Imprecision may
characterize the data contained in the database, the retrieval
request, or the notion of the user regarding the contents of
the database [28]. The neural network approach can be used
to deal with imprecision concerning the second and third of
the above cases.

If the level of imprecision or noise in the retrieval request
is not excessive, the neural network will eliminate imprecision
or vagueness and provide the stored symbolic picture that is
closest to the specifications imposed by the user. Moreover, it
can be combined with visualization that is easily achieved from
the symbolic picture as stated previously. Based on the result,
the user can specify a new retrieval request and so on. Thus,
using the neural network, we can achieve interactive browsing
through a pictorial database using only symbolic pictures and
without needing to perform the time consuming retrieval of
physical images.

The above operation can also be useful in eliminating
insignificant information in a changing environment, as, for
example, in robot navigation or path planning. In such a case,
navigation and planning decisions are made on the basis of
an abstract picture containing the relative positions of relevant
environmental objects.

In order to store symbolic images in an associative neural
network, an internal representation of both objects and sym-
bolic images must be constructed. In our approach, objects are
encoded in terms of bipolar vectors (with elements in {—1,1}).
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By substituting object codes for the corresponding objects,
a symbolic image can be transformed into a bipolar pattern
suitable for manipulation by the network. The structure of the
neural network architecture reflects the two-dimensional array
representation of symbolic images, with a group of neurons
(or nodes) corresponding to each array position. The number
of neurons in each group is fixed and equal to the size of
object codes.

When using an autoassociative neural network model for
the storage and retrieval of symbolic images, some interesting
singularities arise. First, an erroneous symbolic image contains
errors at the object level, i.e., an existing object is missing, a
nonexisting object is present, or some object appears in place
of another. Due to this fact, the erroneous patterns that are
presented as inputs to the neural network contain noise at the
group level, i.e., wrong object codes. As will be explained
in a later section, this phenomenon of noise accumulation
in local regions of the pattern may affect the reconstruction
capability of the network. A second peculiarity deals with
the fact that patterns resulting as outputs of the network
should contain legal object codes in all groups, i.e., codes
that correspond to existing objects. Otherwise, the resulting
output cannot be translated into a symbolic image. Because of
the above properties of patterns, the autoassociative network
must operate in a hierarchical fashion providing reconstruction
both at the symbolic image level and at the object level. This
means that, once the output pattern has been obtained through
global correction, a second correction phase must be performed
locally to ensure legal subpatterns.

Several neural network models exhibit autoassociative mem-
ory capabilities [23]. We have implemented the above de-
scribed approach using the random neural network model,
which will be presented in the next section.

III. THE NEURAL NETWORK MODEL

A. The Random Neural Network

The random neural network model has been introduced
recently [14]—[16] and is characterized by the existence of
positive and negative signals, which represent excitation and
inhibition, respectively. The model is based on probabilistic
assumptions and accepts a product form stationary probability
distribution. In the implementation presented here, we have
used an extension of the original random network model
that exhibits associative memory capabilities [17], [25]. This
extended model includes two types of nodes—positive and
negative—and preserves the main properties of the original
model, which considers only positive nodes. In the following,
we will use the term random network to refer to the extended
version, of which we will provide a brief description. Then, we
will focus on the associative memory operation of the model.

Each node in the random network accumulates signals that
either arrive from the outside of the network or from other
nodes. External positive and negative signal arrivals to each
node i are considered Poisson with rates A(¢) and A(3),
respectively. A node can fire if its total signal count at a
given instant of time is strictly positive. When firing, a node
sends signals to other nodes or to the outside of the network.

Firing occurs at random, the intervals between successive
firing instants at node 7 following an exponential distribution
with mean 1/7(¢).

Positive and negative nodes have completely symmetrical
behavior, in that only positive (negative) signals can accu-
mulate at positive (negative) nodes. At each node, the role
of signals of the opposite sign is purely suppressive, i.e., a
negative (positive) signal arriving to a positive (negative) node
cancels a positive (negative) signal if the node is not empty
or has no effect (is lost) if the node is empty.

We distinguish positive and negative connections between
nodes, which imply, respectively, that a signal leaving a node
will move to another node as a signal of the same or the
opposite category. More specifically, a positive signal that
leaves positive node i arrives to node j as a positive signal with
probability p* (i, j) and as a negative signal with probability
p~(4,7). Similarly, a negative signal leaving negative node ¢
arrives to node j as a negative signal with probability p* (7, j)
and as a positive signal with probability p~(i,j). Also, a
signal departs from the network upon leaving node i with
probability d(i). For a network with n nodes we shall have
2?:1 [P+('L,j) +p—(ivj)] + d(Z) =1l fori=1,---,m.

An analogy between usual neural network representation
and the model above described can be constructed [14], [16].
Each neuron is represented by a node of the random network.
Considering the non-output neuron ¢, the parameters of the
corresponding node 7 are chosen as follows:

d(i)=0 Q)
r(@)pT(i,5) = wij, ifwy >0 )
T(i)p_(iv.j) = Iwij!, if Wij < 0 (3)

where w;; is the connection weight from neuron 1 t0 neuron
j. Summing over all j, the firing rate (i) of the non-output

node 7 is set:
r() = ) lwil-
)

Finally, for each output node ¢, d(¢) = 1 and some appropriate
value is assigned to 7(i).

The above described Markovian network has product form
solution; that is, the network’s stationary probability distribu-
tion can be written as the product of the marginal probabilities
of the state of each node. Thus, the network is seemingly
composed of independent nodes, though this is obviously not
the case, since in fact nodes are coupled via the circulating
signals. This property was shown in {14] and [16] for the
original version of the random network.

Let us consider a random network with n nodes. Also let
K(t) be the state vector at time ¢ representing the signal
count at each node of the network, and k = (ki,--,kn)
be a particular value of the vector. The stationary probabil-
ity distribution of the network’s state is given by p(k) =
lim t_mProb[ff t) = I%] whenever this limit exists. Since

@
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both types of nodes accumulate signals of the corresponding
sign only, an unsigned value is sufficient for describing the
state of a node once the node sign is given.

If we denote by P and A the sets of positive and negative
nodes, respectively, the flow of signals in the network can be
described by the following equations:

yHE) = AG) + 7 () = AG@) + D ar(G)pt(9)
J€EP

+ 3 gr(G)p(G.9) ©)

JEN

Y7 (@) = AG) + v (D) = A0 + D qsr(G)p™(:1)
JjEP
+ > gt G0 6)
JEN
where it (i), ¥, (1) represent the internal arrival rates of
positive and negative signals, respectively, and

RO -
“Eimrrw <7 @
) ew 8)

EEORER0l

It can be shown that, if a unique non-negative solution
{v*(i),7~ (i)} to the above equations exists such that g; < 1,
then the steady-state network probability distribution has the
form

R n
p(k) =TT - aial™. ©)
i=1
The proof is analogous to the corresponding proof in [14] and
[16]. In the Appendix, we give the global balance equations
that are satisfied by p(k).

The quantity ¢; represents the steady-state probability that
node ¢ is firing. Clearly, the quantity ¢;/(1 — ¢;) is the average
number of signals at node i in the steady-state. Results
concerning the existence and uniqueness of the solution to
the set of equations (5)—(8) can be found in [15].

Applications of the random network model (original or
extended version) have been reported in the fields of image
processing [3], [27], combinatorial optimization [16], and
associative memory [17].

B. Autoassociative Memory Operation

Suppose that we want to store m bipolar patterns
{z',---,2™} of the form i* = (%,---,zk) in a random
network with n nodes. In order to determine the characteristics
of the network, we first compute the connection weights
using some learning rule and subsequently the parameters
pt(i,7), p~(i,4), 7(i), following the correspondence de-
scribed earlier. The description of the network is completed
only after characterizing its nodes as positive or negative
and specifying external arrival rates. This characterization,

however, shall not be fixed for all patterns, but will depend on

the input pattern that should be reconstructed during operation.
If the ith element of the input pattern is equal to 1, then the
ith node of the network is set positive and the arrival rates of
positive and negative signals to this node are A(3) # 0 and
A(3) = 0, respectively. If the ith element of the input pattern
is equal to —1, then the ith node is set negative with A(¢) =0
and A(z) # 0.

Thus there is a distinction between the fixed part of a
network (routing probabilities and firing rates), which is set
a priori according to some construction (learning) scheme and
a variable part (sign of nodes and external signal arrivals)
dictated by the pattern applied as input to the network. In the
following, the term “network” shall mainly be used to denote
the fixed part, whereas the variable part will be expressed in
terms of the input pattern.

The operation principle of the random network can be
summarized as follows. After constructing the network in a
way to store a number of bipolar patterns, we apply input
patterns that constitute noisy versions of stored patterns and
determine the sign of nodes. The solution of the nonlinear
system (5)—(8) yields the quantities ¢; fori = 1,---,n. Let
us define the bipolar output pattern § = (y1,---,Yn) that is
initially set equal to the input pattern . Through application
of a correction procedure based on information provided by
the ¢; values, some components of § are eventually modified
and § finally constitutes the output of the network.

A first general approach for defining the correction pro-
cedure is based on the fact that the solution of the flow
equations yields low and high g; values for nodes correspond-
ing to wrong and correct components of the input pattern,
respectively. This means that the wrong components of the
input pattern are expected to correspond to the lowest g;
values. The above behavior of the network has been verified
experimentally and accepts a simple intuitive justification
depending on the learning rule adopted.

There exists, however, no obvious mechanism for deter-
mining the exact number of components that should change
their value. In fact, experimental results show that the network
clearly tends to enhance the distance between ¢; values that
are supposed to indicate wrong and correct components, but
this differentiation is not always strong enough and can vary
following the input pattern. Hence, it is not possible to define a
threshold value that could help us perform the discrimination.

Instead, we can successively correct the sign of components
of the output pattern starting from the lowest g; value and
following an increasing g; value order, until a good recon-
struction is obtained. Since the number of wrong components
is generally not known a priori, in order to stop the correction
procedure we need a means of identifying stored patterns or,
accordingly, of estimating the quality of an output pattern
in case perfect reconstruction is not required. The idea is to
take advantage of some characteristic of the stored patterns
that allows us to recognize whether an output pattern is one
of them. Moreover, reliability is enhanced if only the stored
patterns exhibit this characteristic.

In conclusion, in order to implement the autoassociative
memory operation described above, two issues should be
addressed, which can be dealt with either in common or
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separately:
+ An algorithm for appropriately storing the desired patterns
(learning rule);

« a scheme for correctly identifying stored patterns during

recall.

The correction procedure is implemented as follows. With
each one of the successively produced candidate output pat-
terns ¢ (in fact, with each g; value) we associate a counter,
whose value is equal to the number of nodes for which the
identification criterion is not satisfied. If this value is equal to
zero, then this pattern is accepted as the output. Of course, the
initial vector g is first considered as a candidate output before
performing any correction. Otherwise, if after n steps no such
pattern has been encountered, the pattern with the minimum
counter value could be taken as the output pattern. However,
the correction procedure need not be pushed on to the end if no
zero counter value is found. In fact, a moderate level of noise
in the input pattern is generally considered; hence, the number
of components that should change their sign is expected to
be rather low. Therefore, the number of iterations should be
bounded by a number w that is a small percentage of the size
of the network. If after w corrections the counter is not yet
zero, we accept the pattern with the minimum counter value
so far. Of course, it is always possible to obtain an output that
corresponds to a spurious pattern.

The identification of stored patterns considered above is
based on characteristics of stored patterns that refer to the pat-
tern as a whole, i.e., provide a criterion as to whether an output
pattern is a good reconstruction or not. If, instead, we disposed
of a criterion that could be applied to each node separately,
thus allowing direct identification of wrong components, we
could perform correction in a straightforward manner without
resorting to the iterative approach. This idea, which implies
a variant of the correction procedure, is investigated later in
this section.

C. Identification Based on Stability

To achieve reliability in the identification procedure we
can use the fact that in a Hopfield-type associative neural
network, all stored patterns should be stable states of the
network. This means that once the network has attained such
a state, no transition out of this state can occur according to
the operation of the network [20]. In other terms, all stored
patterns {£', -+, 2™} must satisfy the following equation [1],
[26]:

n

sign szu}ji :sign(:rf),
=1

k=1,---,m. (10)

i=1,---,n,

In the case where an outer-product scheme (Hebbian learn-
ing) is used for constructing the connection matrix W, the
above property of the stored patterns holds with high proba-
bility, especially when the number of patterns is significantly
smaller than the size of the network [2], [4], [26]. In general,
we cannot guarantee that the stability property holds for every

pattern ¥, especially when m has a magnitude comparable
to n. This property is guaranteed for every pattern in the
case where all patterns #* are orthogonal. This fact can be
established with high probability when the patterns &* are
generated from a sequence of symmetric Bernoulli trials [2].
The capacity of this scheme is m = O(n/log n) [1], [26].

When the Hebbian rule is used for computing the matrix
W of a random network, the stability property is satisfied
by the stored patterns with high probability as stated above.
We should note here that in this case the stability property
must be viewed as a characteristic of stored patterns ex-
pressed mathematically by (10). This property is due to the
construction scheme and is not related to the operation of
the network, as is the case with the Hopfield network. Being
a characteristic of stored patterns the stability property can
be used for their identification. Thus, during the correction
procedure, each candidate output pattern § is associated with
a counter, whose value is equal to the number of indexes 3
that do not satisfy the equation

sign Zy]-w]i = sign(y;). 11)

i=1

The pattern with zero counter or minimum counter after w
corrections is taken as the output pattern.

Regarding the computational efficiency of the correction
procedure, it is not difficult to verify that an efficient imple-
mentation can be obtained. In fact, at the expense of some
memory space, we can initially perform the computations
necessary for application of the identification criterion to the
first candidate pattern and store the results in an appropriate
form. Then, at each subsequent step we need only update the
stored data by performing the minimum necessary amount of
computation relative to the change of sign of the last corrected
node.

In [30], a different construction scheme has been pro-
posed, called the spectral scheme, which seems to significantly
increase the capacity and reconstruction capabilities of associa-
tive neural networks. The main advantage of this scheme is that
it can guarantee that each pattern #* will be a stable state of the
network provided that the m patterns are linearly independent.
It seems to exhibit better performance than the outer-product
scheme (capacity m = O(n)) and it can operate effectively
under both synchronous and asynchronous modes of operation.
Its main disadvantage consists of the computational cost of
constructing the interconnection matrix W.

Several “spectral” formulations of the matrix W have been
proposed [12], [30]. We shall make use of the following
computation scheme.

We define the m x m diagonal matrix A = dg[Al, -+, A™]
and the n x m matrix X = [¢,---,&™]. Then W =
XA(UTU)ilUT. For a constant choice of the values A* =
A >0,k = 1,---,m, the matrix W can be computed
iteratively:

k,kT

W[k}:W[k—1]+;k—§e—k, k=1, (12)

,m
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with W[0] = 0 and e* = (\] — W[k — 1])&*. For this choice
of AF, the resulting matrix W is symmetric and nonnegative
definite.

Based on the spectral approach, we can construct a random
network scheme as follows. The connection matrix W is
calculated using the procedure described above. As a con-
sequence, all stored patterns correspond to stable states of the
corresponding neural network. This increases the reliability of
the correction procedure, where we check whether a candidate
output pattern § has the stability property (satisfies (11))
proceeding exactly as in the previous scheme. It can be
verified that there is an improvement in performance under
the spectral scheme with respect to the outer-product scheme.
This happens because on the one hand the spectral scheme
increases the reconstruction capability of the random network,
and on the other hand it also increases the reliability during
identification. A disadvantage concerns the computational cost
of constructing the connection matrix.

D. Correction Based on Node Consistency

The stability property defined in the previous subsection is a
characteristic of stored patterns which is closely related to the
operation of the Hopfield network. In this section, we define
an analogous property of the stored patterns in the context of
the random neural network model. This property is based on
the notion of node consistency defined as follows.

Definition 1: We shall say that a node of the random network
is consistent with its sign if in the steady-state the internal
arrival rate of signals it can accept is greater than the internal
arrival rate of signals it rejects, namely:

Vi (1) > Vi (1), P€P (12)

Ve (D) > V(@) FEN. (13)

A random network is called consistent if all its nodes are
consistent with their sign. O
Definition 2: Suppose that a bipolar pattern & = (21, -+, %)

is presented as input to a given random network with n nodes.
We shall say that the pattern & constitutes a consistent pattern
with respect to the random network if it makes the work
consistent, i.e., if it yields
2i(vh (i) = V@) >0, i=1-m. (14)
O
It is important to notice the similarity between the definition
of a stable pattern in the context of the Hopfield neural network
model and the definition of a consistent pattern in the context
of the random network model [25]. In the Hopfield model
the asynchronous update algorithm is based on the stability
property of stored patterns. The same principle can be applied
in order to develop algorithms for the random network model
that exploit the consistency property of stored patterns.
Suppose that we want to store m bipolar patterns in a
random network. We claim that any learning algorithm (e.g.,
Hebbian, spectral) that establishes stable patterns in the context

(R o= = = . . .

of the Hopfield neural network model also establishes con-
sistent patterns in the context of the random neural network
model (with high probability). A justification of this argument
follows.

A stable pattern ¢ in the context of the Hopfield model
satisfies the following condition for each ¢:

> yjwiid (ywii > 0) > > lyjwsilI (yjwss < 0),
j i

J

iy =1 (15)
2 |ijﬁ|I(ijﬁ < 0) > Zijjif(ijﬁ > 0),
J J
ify; =—1 (16)

where the indicator function I(X) takes the value O if the
logical expression X is false; otherwise, it takes the value 1.

A consistent pattern § in the context of the random network
mode] satisfies the following condition for each ::

S et Ui + Y ar(pT i) > Y ar(0pT ()

JEP JEN JEP
+ 3 gt (),
JEN
i€P (e, y=1) an

S g G+ 3 arpt UL > D ar (T ()

JjEP JEN JEP
+3 gr(p(h1)s
JEN
ieN (ie,y=-1). (18)

By taking into account (2)—(4), the above equations can be
rewritten as follows:

> qyyjwid (yjwsi > 0) > > ailywsil I(ywsi < 0),
j J

J
if g =1 (19)

> aslyjwsil I (yswsi < 0) > > gsyiwil (yswsi > 0),
3 i

if y; = —1. (20)

By examining (19) and (20) we can observe that if all the
g; were equal, i.e., ¢; = ¢, j=1,--,n, then these equations
would be identical to (15) and (16). A great number of
experiments has shown that, if a consistent pattern is presented
as input to the random network, the resulting ¢; values are
close to each other. Thus, we expect that if (15) and (16)
hold, then (19) and (20) will also hold with high probability.

This is the reason why we consider that the Hebbian
(or spectral) rule is good enough for constructing a random
network in which the stored patterns will be consistent. As
expected, the ability to establish consistent patterns depends
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on the relation between n and m as well as on the ability of
the used learning algorithm to establish stable patterns in the
context of the Hopfield neural network model.

Once a noisy version of a stored pattern is presented as
input to the network, the recall procedure can be described
as follows. First we solve the nonlinear system of equations
that describes the steady-state behavior of the random network
model, and compute the analog vector ¢ = (g1, -, Gn).
Then we recognize the erroneous nodes using the notion of
consistency. We calculate the quantities ;- (i), i (¢) for
each i = 1,---,n and check whether condition (14) holds. In
case a node 7 does not satisfy the above condition, there exists
an error in the component i of the input pattern. Thus, we
can identify erroneous nodes and reconstruct the noisy input
pattern. The operation is synchronous since, once the analog
vector § has been computed, all nodes are simultaneously
examined for satisfaction of the consistency criterion. In this
way, the effect caused on other nodes by the change of the
sign of a node is neglected.

This method is very simple and provides identification and
correction based on information that is local to each node
of the network. The stability criterion does not feature this
locality property and, therefore, implies a correction procedure
based on iterative application of the criterion to whole patterns.

As indicated by experimental results, the performance of
the method under Hebbian learning is comparable (perhaps
slightly worse) to that of the outer-product scheme, but it is
preferable in terms of speed and simplicity. In case a spectral
learning algorithm is used, the performance is better, but the
computational cost is increased.

IV. A PROTOTYPE IMPLEMENTATION

Our aim has been to develop a software module that could
be integrated in a pictorial information system in order to
provide retrieval capabilities based on imprecise or incomplete
information. Consider that a number of symbolic images is
stored in the system. Each symbolic image is composed of a
number of object symbols or icons. The user of the module
is provided with a graphical interface that assists him in
specifying an incomplete visual sketch of the desired image.
The symbolic representation of this sketch is then presented
to the module that performs correction and provides the stored
symbolic image that is closest to the presented sketch. A
visualization of this image is displayed to the user, who either
accepts the result or modifies the visual sketch and proceeds
in an iterative manner until a satisfactory response is obtained.

During the above operation the user essentially composes a
symbolic image based on an imprecise notion of the contents
of the database. This symbolic image contains a number of
visual clues that are provided by the user and describe the
desired image. The system responds by returning a stored sym-
bolic image that is close to the specifications, thus allowing the
user to perform information retrieval even if the key presented
to the system contains a percentage of error. This is a feature
that is generally not provided by existing pictorial information
systems. If the module is integrated in a real pictorial database
environment, the above phase can be followed by retrieval
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Edit Image

Image Dispiay Select ioon from Libra

Add Selected Icon
Delete lcon from Image
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? @) £
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— Message Display

Image ID:
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Fig. 2. The graphical interface.

of the corresponding physical image and related information
using the symbolic image as the basis for indexing. The use
of symbolic images for the construction of database indexes is
a major advantage as already stated and provides the coupling
mechanism between the neural network-based module and the
database.

It is clear from the above specifications that the software
module involves two basic components: a graphical interface
and the underlying neural network structure. By means of
menus appearing at various levels, the interface allows the
user to select the necessary operations for treating symbolic
images and iconic objects. Objects constitute the elementary
entities that can be manipulated by the user, who is provided
with a set of object editing facilities. Icons can be created
and modified through simple line drawing operations in a
rectangular workspace. Each new icon is associated with an
internal representation and becomes part of an object library.
The user can select objects from the library in order to
compose symbolic images. The latter constitute the high-level
data structure of the system in that they are defined in terms
of elementary objects. As already mentioned, an image is
represented as a ¢ X ¢ array of icons. The graphical workspace
for manipulation of symbolic images has the form of a
lattice whose contents are determined by assigning objects to
cells. A symbolic image created using the above composition
technique is either a new registration that is appropriately
stored in the network or will be used in a retrieval operation.
Symbolic images stored in the network are also stored on a
secondary device in a conventional manner. This component
was necessary for creating noisy input images and evaluating
reconstruction during experiments. The user can index each
stored image by a unique identification name, so that a specific
image can also be retrieved directly from the secondary device
by specifying its identification. If this loading operation is
selected, the image is visualized and can be edited following
the same technique as for the original creation of images.
Iconic objects are also assigned identification names. Fig. 2
displays an instance of image editing operation.

The random neural network operates at low level and
constitutes the kernel of the system. The network architecture
corresponds to the internal representation of symbolic images.
An image is represented as a bipolar pattern composed of
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Fig. 3. The hierarchical neural network architecture. (a) Subnetworks.
(b) Global network.

smaller subpatterns corresponding to iconic objects. Thus,
the network contains ¢ x ¢ groups of p nodes, each group
representing an iconic object. Objects are internally encoded
by means of a p-dimensional subpattern vector. The size p of
the vector as well as the exact encoding mechanism should
yield the maximum possible orthogonality and independence
of stored objects. In our implementation, we have used the
random generation scheme based on symmetric Bernoulli
trials (2], [26], [30] that ensures orthogonality with high
probability. However, due to the hierarchical nature of the
network architecture, the search for efficient encoding schemes
is a subject of further investigation.

The operation of the network is hierarchical as far as both
learning and recall are concerned. Storage of information is
based on one of the learning schemes (Hebbian or spectral)
described in the previous section. An advantage of the above
schemes is that learning can be performed in an incremental
manner, i.e., each time a new pattern is stored in the network
the connection weights can be updated using only information
related to that pattern and not to previously stored ones. We
distinguish two types of connections: intra-group and inter-
group and two different views of the random network. A
first view regards the network as containing ¢ x c disjoint
subnetworks, where the (4,7) group of nodes (1 < 7,5 < ¢)
together with its intra-group connections constitutes a subnet-
work that can operate in isolation. On the other hand, the total
of the ¢?p nodes together with the inter-group connections can
be viewed as the global network (Fig. 3). During registration
of a new image, learning involves two types of computation
corresponding to the levels of hierarchical architecture.

Intra-group connections of group (¢, j) contain knowledge
relative to the subpatterns appearing at the (7, j) position of the
stored patterns. Updating of intra-group connection weights
during registration of a new image is performed as follows.
For each subpattern (i,7) of the image pattern we check
whether it has been already stored in the (4, 7) subnetwork.
This can be done by testing the subpattern for satisfaction of
the identification criterion (stability or consistency depending
on the scheme). If it is already stored, no action is taken; oth-
erwise, the intra-group weights are appropriately updated. Two
observations should be made concerning the above procedure.
First, each subnetwork stores only the subpatterns appearing
at the corresponding position considering all stored images.
Second, subpatterns are memorized in a subnetwork on an
equal basis, since each of them is stored once independently of
the number of images containing it at that particular position.
It is obvious that the computation of intra-group connection

weights of all subnetworks can be carried out in parallel.

On the other hand, inter-group connection weights are com-
puted by directly applying the learning rule to whole patterns,
i.e., by acting on the global network view of the system.
Clearly, this type of computation can be also performed
in parallel with the computation of intra-group connection
weights.

During recall, the hierarchical structure of the system im-
plies two phases of operation. At a first step, the whole pattern
is presented as input to the global network and correction is
performed yielding an output pattern. This part of the recall
procedure is intended to provide correction at the global level,
i.e., to locate and eliminate errors related to the existence
of wrong subpatterns. However, it is possible that correction
at this level does not yield the exact code of a right object
due to the appearance of scattered errors of limited extent.
These errors are eliminated during the second phase where
the output pattern is viewed as consisting of independent
subpatterns. Each subpattern is then presented as input to the
corresponding network that performs correction at a local level
producing a legal object code. A reasonable option, which
has been adopted in our implementation, is to perform local
correction only on output subpatterns of the first phase, which
differ from the respective subpatterns of the original input
pattern, i.e., on subpatterns that have been affected by the
global correction.

The output pattern obtained during recall is transformed
to a symbolic image that is visualized by substituting the
iconic objects for the subpattern codes. However, in spite of
the correction performed during the two phases, it is always
possible that an erroneous output pattern is obtained. Two
types of error should be considered. A first type concerns
the existence of subpatterns that do not correspond to legal
object codes. In this case a special icon is displayed at the
corresponding position indicating to the user that the system
has encountered difficulties in correcting the error at that
position. The user is thus prompted to make another trial.
The second type of error concerns the case where all the
subpatterns of the output pattern correspond to legal object
codes, but the resulting symbolic image does not correspond
to a stored one. In a case where our system were integrated in
a real pictorial database, this symbolic image would provide
an index that would not point to one of the physical images.
If this type of error occurs, a visualization of the output
pattern is displayed, along with a message indicating to the
user the kind of the error. Then, two options are available.
Either the user performs another trial or asks the system to
repeat retrieval using the wrong output as a new input. The
justification for the second option is based on the fact that
gradual iterative correction has proved to be effective in many
retrieval experiments. This means that the network does not
eliminate all errors in one pass, but in each pass the number
of errors is gradually decreased until a satisfactory output is
obtained.

Our prototype software module has been implemented on
a SPARC workstation under Unix and X-Windows. In the
next section, we provide experimental results concerning the
performance of the module.
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V. EXPERIMENTAL RESULTS

In order to evaluate the validity of the method, we have
conducted a series of experiments that allowed us to obtain
a first insight into the storage and retrieval capabilities of the
hierarchical network. The symbolic images were 5 x 5 (i.e.,
¢ = 5) arrays of objects, with each object internally encoded
as a bipolar vector with p = 20 elements. The absence of
objects from an image position, i.e., the null object, was also
encoded using a special vector. The artificial stored images that
were used in the experiments were generated by assigning to
each array position an object selected from an object library.
Selection of objects was made at random following some
nonuniform probability distribution, which varied for different
parts of the image. This option stems from the fact that in real
applications some types of objects are more likely to occupy
a given image position than other ones. Also, care was taken
so that the number of empty positions was always in a given
range, corresponding to 20-50% of the image.

The distorted images that were presented to the module
contained error at the object level. This means that distorted
images were derived from the stored ones by changing the
objects in some array positions. The rate of distortion (per-
centage of wrong objects) was 15-20%, and experiments were
conducted using the schemes described in the previous section.
Both the Hebbian and the spectral learning rules were used for
the storage of images, while identification schemes based on
both stability and consistency were examined.

Fig. 4 illustrates the success rate of the module under three
different schemes concerning learning and identification. For
each value of the number of stored images m, the displayed
results are average values obtained as follows. For each one
of the stored images, 10 retrieval experiments were performed
by presenting distorted versions of that image as inputs to the
system. An experiment was considered successful if perfect
reconstruction of the image were achieved. For this series
of experiments we used a library containing b = 20 iconic
objects. As far as the efficiency of the different schemes
is concerned, spectral learning behaves better than Hebbian,
whereas the identification criteria based on stability and con-
sistency properties are practically of equivalent performance,
the stability criterion being slightly superior. We can observe
that the obtained results are quite satisfactory since a success
rate superior to 80% is attained under the spectral scheme
for up to 60 stored symbolic images. This rate was further
improved if iterative correction were applied to wrong output
images, as described in the previous section, yielding almost
90% for 60 stored images.

Statistics concerning correction at the global level are shown
in Fig. 5 for two different values of the size b of the ob-
ject library. In all cases, the experiments were conducted as
described above using the Hebbian learning rule and identifica-
tion based on stability. The curves represent the percentage of
error obtained at the output of the global network. The error
was measured at the level of individual nodes with respect
to the correct stored pattern that should be retrieved. We
observe that a significant part of the job is carried out during
the global correction phase. As indicated by the curves, the
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Fig. 4. Total success rate versus number of store images. (a) Solid line:
Spectral learning and stability identification. (b) Dashed line: Hebbian learning
and stability identification. () Dotted line: Hebbian learning and consistency
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Fig. 5. Level of error at the global network output versus number of stored
images.

global network exhibits a better behavior for larger values of
b. This seems reasonable because, as b increases, the number
of distinct objects in the image also increases leading to stored
patterns with a smaller degree of correlation. The error at the
output of the global network is distributed producing distortion
at the input of subnetworks. The quality of the correction
provided by each subnetwork is closely related to distortion
appearing at its input. Thus, subnetworks play an auxiliary role
and are intended to correct minor defects, the global network
providing the principal correction mechanism.

Considering the overall behavior of the system we can state
that experimental results validate the potential of the proposed
hierarchical technique. The performance of the method is
affected by capacity limitations of the network due to the
learning schemes considered. As a matter of fact, the measured
capacity is slightly inferior to typical values reported for
other associative memories [20], which is probably due to the
particular structure of stored patterns.

VI. CONCLUSION

In an attempt to investigate the suitability of neural net-
work techniques for information system applications we have
developed an approach providing an autoassociative memory
operation during pictorial information retrieval. Our approach
has been based on an extension of the random neural net-
work model including two types of nodes with symmetrical
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behavior. This symmetry seems to be well adapted to the
mechanisms involved in associative memory operation. In fact,
this network model seems to naturally fit the autoassociative
memory paradigm, and several schemes related to the learning
and recall phases can be devised.

The neural network is organized in a hierarchical manner
allowing the manipulation of patterns at both the image and
iconic object level. The user is provided with a simple yet
efficient graphical interface that allows him to interactively
perform retrieval of symbolic images using incomplete or er-
roneous information. The network performs error correction in
two phases based on stored knowledge reflecting the structure
of images at global and local levels. Experiments performed
on a prototype implementation have yielded promising results.

Our experience has shown that neural networks can con-
stitute powerful components of complex information systems
providing solutions to problems that are generally difficult
to solve by traditional techniques. Their advantages include
tolerance to errors and massive parallelism as shown in the
context of the application described in this paper. As far as as-
sociative memory operations are concerned, a major drawback
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is that their capacity is a relatively small percentage of their
size and their performance is sensitive to algebraic properties
of stored patterns. The hierarchical approach proposed here
seems particularly efficient but needs further experimentation
in order to deal with drawbacks and fully explore its potential.
A subject of further investigation concerns the search for other
learning schemes that are properly adapted to characteristics
of the random neural network. Several algorithms could be
considered for increasing capacity, ones that either stem from
techniques developed in other contexts or can be derived based
on properties of the random network. In this direction, an
essential feature of the random neural network model is that
the symmetrical weights property is not a necessary condition
for its operation, as is the case with other associative memory
paradigms.

APPENDIX
STEADY-STATE SOLUTION OF THE EXTENDED MODEL

The steady-state behavior of the system is described by the
global balance equations, which can be written as follows for
each state k& = (ky,-, kn):

k1, kn){z [AGE) + A(@)I (ki > 0) + r(i) (1 — p* (i, 9) I (ki > 0)] +
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where the indicator function I(X) takes the value O if the
logical expression X is false; otherwise, it takes the value 1.
By using (5)—(8) it can be shown that the above equations are
satisfied by the solution in (9).
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