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Abstract—We present a Bayesian method for mixture model training that
simultaneously treats the feature selection and the model selection problem. The
method is based on the integration of a mixture model formulation that takes into
account the saliency of the features and a Bayesian approach to mixture learning
that can be used to estimate the number of mixture components. The proposed
learning algorithm follows the variational framework and can simultaneously
optimize over the number of components, the saliency of the features, and the
parameters of the mixture model. Experimental results using high-dimensional
artificial and real data illustrate the effectiveness of the method.

Index Terms—Mixture models, feature selection, model selection, Bayesian
approach, variational training.
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1 INTRODUCTION

MIXTURE models constitute a widely used approach for unsuper-
vised learning problems. Fitting a mixture model to the distribution
of the data can be interpreted as identifying clusters with the
mixture components. The estimation of the parameters of mixture
models with a predefined number of components is usually
achieved through likelihood maximization using the EM algorithm
or several variants [1]. Apart from the selection of the number of
components, a problem that naturally arises, especially in high-
dimensional data, deals with the detection of the salient features.
Intuitively, salient features are those that facilitate the modeling task
and produce reasonable results. Regarding mixtures with Gaussian
components, the salient features describe data with multimodal
distribution and modes that can be sufficiently represented with
Gaussian components. On the other hand, uniform or unimodal
features are irrelevant to clustering. Moreover, they may confuse
inference by increasing the complexity of the model, for examples
see [2], [3]. Notice that choosing the features and finding the number
of components are strongly dependent problems. Clearly, for
different feature subsets, we might get different estimations for
the number of clusters, see [4] for a discussion. It is common sense
that using more features may lead to more complex structures in the
data space and, consequently, more clusters. This suggests that
choosing the features and selecting the number of clusters should be
addressed simultaneously.

To address both feature and model selection, we present a
Bayesian variational framework for training a two-level mixture
model that maximizes a lower bound of the marginal likelihood.
We employ the model proposed in [3], i.e.,, a Gaussian mixture
model that incorporates a feature saliency determination process,
where each feature is useful up to a probability. So, when this
probability obtains a close to zero value the feature is effectively
removed from consideration. This approach is attractive since it
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does not require an explicit search over the possible subsets of the
features which is generally an infeasible task. According to the
Bayesian framework, we place prior distributions over the
parameters of the model and maximize the marginal likelihood
given the mixing coefficients and the feature saliencies. For
optimization, we use variational methods to derive an EM-like
algorithm [5], following the approach proposed in [6], [7].

In Section 2, we briefly present related work from the literature.
In Section 3, we describe the proposed model, the Bayesian
framework for feature and model selection, and the variational
learning for parameter estimation. Comparative experiments are
described in Section 4 and conclusions in Section 5.

2 RELATED WORK ON UNSUPERVISED FEATURE
SELECTION

The feature selection problem, although extensively studied along in
the classification framework, is only recently considered for cluster-
ing. Two major approaches have been proposed; in the wrapper
approach, a feature subset selection algorithm exists as a wrapper
around the clustering algorithm. The feature selection algorithm
conducts asearch foragood subset using the clustering algorithmasa
part of the function that evaluates the candidate feature subsets. The
second approach treats clustering and feature selection simulta-
neously, defining a proper objective function. Optimization of the
objective function yields a feature subset and the clustering solution
in the corresponding feature space. In the remainder of this section,
we describe briefly representative methods.

Dy and Brodley [4] use a wrapper approach for feature selection.
They search the space of feature subsets and evaluate each candidate
subset by first clustering using the corresponding features and then
evaluating the result using appropriate measures. To search the
feature space, they use sequential forward search starting with zero
features and, sequentially, adding one feature at a time. To identify
the best feature subset, the scatter separability and the maximum-
likelihood criteria are utilized. For data clustering, they employ
Gaussian mixture models trained using EM. To estimate the number
of components, they merge clusters one at a time and use the BIC
criterion to select the best model.

Law et al. [3] follow the second approach and define feature
saliency as a probability. They use Gaussian mixture models for
clustering and assume independent features given a mixture
component. Given a feature, observations are considered indepen-
dent of the components up to a probability and follow a common
distribution. The complement of this probability is the measure of
feature saliency. To estimate the mixture models, the MML criterion
isemployed and a component-wise version of the EM algorithm that
enforces a pruning behavior over the components of the model. As
stated in [3], the method can be viewed as a MAP approach with
improper priors on mixture weights and feature saliencies.

Carbonetto et al. [2] propose a Bayesian shrinkage model. They
use Gaussian mixture models for clustering and define conjugate
priors over all mixture parameters. Moreover, they place hyper-
priors over the parameters of the priors of means and mixing
weights. Using a shrinkage prior above the prior of the means, they
intend to discover the irrelevant features and concentrate the
corresponding estimates of the means around common values
across components. For parameter estimation, they resort to the
MAP approach.

Liu et al. [8] conduct a principal component analysis or
correspondence analysis for data reduction and then fit a Gaussian
mixture model to the data having been projected to the several
major factors resulting from the analysis. To select a subset of the
factors, they assume that a datum has its first & features follow a
mixture model and the remaining features follow a simple
Gaussian distribution. They treat £ as a random variable and
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Fig. 1. Graphical model for the generation of the observed data assuming a
Bayesian mixture density model and allowing noisy features. Symbols in circles
denote random variables; otherwise, they denote model parameters. Plates
denote repetitions and the number of repetitions for the variables in a plate is
depicted in the bottom-left corner.

propose a Bayesian formulation and Markov Chain Monte Carlo

strategies to tackle the problem.
The method we propose engages the same model as in [3] to

describe the relevance of features, but integrates model and feature
selection under a Bayesian framework. The MML approach used in
[3] is based on a statistical criterion and is obtained after several
assumptions and simplifications. Using the Bayesian framework, our
method is expected to be more robust, especially for sparse data sets.

Evidence from the experiments we conducted supports our effort.
It must be noted that our approach to feature selection assumes

a weighting of the features and the weight of each feature is the
same for all the clusters. A different approach is subspace
clustering that assumes separate feature weights for each cluster.
Thus, each cluster is differentiated from the rest in a particular
subspace, for methods following this approach, see [9], [10].

3 A BAYESIAN MIXTURE MODEL WITH FEATURE
SALIENCY

In this section, we present a Bayesian method for learning mixture
models that automatically determines the number of components
and the saliencies of the features. In Section 2.1, we define the
Bayesian mixture model with feature saliency and, in Section 2.2,
we present a variational training method for this model.

3.1 Bayesian Framework
Assume a set of data X = {z"|n =1,..., N}, where each 2" is a real
feature vector in a d-dimensional space. We wish to model these data
by training a mixture model. We further assume that each
component density of the mixture is factorized over the features
so that the features are considered to be independent given a
component. Some of the features might be irrelevant for modeling
while others may be more useful. Instead of assuming that there is a
deterministic separation between useful and noisy features, we
assume that a feature is useful up to a probability. Thus, given some
component, we assume that a feature of x is drawn from a mixture of
two univariate subcomponents, as proposed in [3]. The first
subcomponent that is different for each mixture component
generates “useful” data, while the second subcomponent that is
common to all mixture components generates “noisy” data.

In this work, the above model for feature saliency is integrated in

the Bayesian framework suggested in [7] for estimating the number
of components in mixture models. We assume that data set X has
been generated from the graphical model illustrated in Fig. 1. A
maximum number J of Gaussian components is initially supposed
and the density corresponding to the two-level mixture model
previously explained is given by:
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This graphical model implies a dependence of the observed variable
z" on the jth mixture component through the hidden variables 27,
where 27 € {0,1} and 3,2} =1. If 2" is generated from the
jth component, then the value of 2 is one; otherwise, it is zero.
The saliency of features is expressed through the hidden variables
s, where s € {0, 1}. If the value of s!" is one, then the ith feature of
2™ has been generated from the “useful” subcomponent; otherwise,
it has been generated from the “noisy” subcomponent.

Given the sets of hidden variables Z = {7} and S = {s}'}, the
data is assumed to be independently drawn from a Gaussian
distribution

N J d
])(X|Z, s T, Sa 2h 'Y) = H H |:HN('I1”7 Hjis Tji)S‘
n=1 j=1 [i=1

3)
n 1-s7 z’/’
x N (z}5e5,7:) ] .

The sets p = {p;;} and T = {r;;} accumulate the means and the
inverse variances (precisions) of the “useful” subcomponents.
Correspondingly, ¢ = {¢;} and v = {;} are the sets of parameters
for the “noisy” subcomponent. The distribution of the hidden
variables Z given the mixing probabilities 7 = {x;} and of the
hidden variables S given the probabilities w = {w;} (feature
saliencies) are given by

N J
p(Z|r) = H 117 (4)

N
p(Slw) = H w' (1 — w) (5)

The likelihood of the observed data given the parameters is
obtained by marginalizing out the hidden variables Z and S from
p(X? Z’ S‘Tr7 /"L7 T7 /I‘U? 87 ’Y)

N J d
p(X|m, 1, T w,e,7) = HZ%H‘P@?) (6)

n=lj=1 =1

This is the usual quantity that the maximum-likelihood framework
maximizes over the parameters. However, this objective function
cannot be used for selecting the number of components. Thus, it is
not useful, in our case, since we wish to estimate the number of
components. In [3], this problem is addressed by applying the
MML criterion and a component-wise version of the EM algorithm
that enforces a pruning behavior over the components of the model.
In our method, a Bayesian approach for model selection is adopted
[7]. In particular, we introduce Gaussian and Gamma priors for
and T, respectively,

J

r'[

j=1 i
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and integrate them out to obtain the marginal likelihood. The
hyperparameters m, ¢, o, and 3 control the prior distributions and
are fixed at values that form broad and uninformative priors. More
specifically, m is set to the mean of all data, whilec = a = 8 = 10715,
which is a very small number near the machine precision. The
method does not exhibit sensitivity for hyperparameter values on
this near zero scale. Notice that a prior has not been imposed on the
mixing weights and the feature saliencies which are considered as
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model parameters. Setting some mixing weights equal to zero
allows for elimination of the corresponding components from the
model. The learning approach we followed for the proposed model
is described next.

3.2 Variational Learning
To simplify notation, we define § = {Z, 1, T, S} the set of random
variables and ¢ = {7, w,¢,7} the set of parameters. The learning
method we propose estimates the parameters ¥ of the model
through maximization of the marginal likelihood p(X|d):

p(X|Y9) = / (X,019)dpdT, 9)
with respect to the mixing probabiliﬁes w, feature saliencies w and
the parameters of the noise component. Note that, by assuming
suitable prior distributions on the component parameters and
marginalizing them out, we expect to smooth the likelihood
surface (6) and obtain a marginal likelihood that is more robust to
over fitting. This methodology was proposed in [7] to optimize
over the mixing probabilities 7 and infer the number of

components in a typical mixture model with remarkable results.
Since the integration in (9) is intractable, the wvariational

approach is employed, which suggests the maximization of a
lower bound £ of the logarithm of the marginal likelihood:

/Q

< logp(X|19).

p p(X, 0]9)

Q(O) dpdT

L[Q, 9] = (10)

(11)

The bound £ is a functional of an arbitrary distribution Q(6) that
approximates the posterior distribution p(6|X,d). In order to
maximize £, an iterative procedure is adopted that consists of two
steps at each iteration: first, maximization of the bound with

respect to @@ and, subsequently, with respect to 9.
According to the mean field approximation, we do not assume any

specific form for @, except that it is constrained to be a product of the
form Q(0) = Qz(2)Qu(1)Q7r(T)Qs(S). Maximizing L with respect
to the functional form of Q 7, Q,, @7, and Qg, the standard variational
approach provides the following general form of the solutions:

exp(P(X, 9‘79))1»#1'

QO = T (P, 819))

(12)
L;H

where (-),; denotes an expectation with respect to the distribu-
tions Q(6) for all k # 4. For our Bayesian model, (12) yields:

N J
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The variational parameters r;,,m%, ¢j;, o, B, and p;, emerge from
the maximization and determine the densities involved in Q. The
variational parameters themselves are defined using the expected
values of z_;”, Wii, Tji, s7, and functions of them. Using the functional
forms of Qz, Q,, Qr, and Qg, we can derive the corresponding
expectations and use them in the definitions of the variational
parameters. After some algebra, the following equations are
obtained:
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where ¥(z) = dlogI'(z)/dz. The maximization of £ with respect to
@ aims to find a tight bound of the log marginal likelihood.
Although an exact maximization of £ with respect to the variational
parameters is impossible, as they are coupled together in a nonlinear
way, we can still improve the bound by iteratively updating the
parameters using (17) to (24). An analogous approach is taken in [7].

After the maximization of £ with respect to @, the second step
of the method requires maximization of £ with respect to 7;, w;, €;,
and v;. Setting the derivative of £ with respect to the parameters
equal to zero, we get the following update rules:

5
— AT Tjns (26)
N n=1
59
Wi = - Pin (27)
N n=1
N n
g = —an\vl PinZ; 5 (28)
Zn:l Pin
1 _ Zi}le Pm(f? — 8i)2 29
RS (29)
Vi anl Pin

The above two-step procedure is repeated until convergence.
Convergence can be monitored through inspection of the variational
bound. The above algorithm has the property that it does not allow
for Gaussians with similar parameters to fit the same cluster.
Consequently, one of them dominates and the others are removed.
Starting with a large number of components, the competition among
components finally yields a model where the redundant compo-
nents have been eliminated. Simultaneously, the update of the
parameters w; enables the determination of the feature saliencies.

4 EXPERIMENTAL RESULTS

We compared our method (varFnMS) with the method of Law et al.
[3] (FnMs) for clustering high-dimensional artificial and real data.
We also conducted the same experiments using the method in [7]
(varMS). The first series of experiments was for clustering artificially
generated shapes. More specifically, we created 9 x 9 gray-scale
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Fig. 2. (a) A sample of the artificially created images. (b) Saliencies are illustrated on the top row using varFnMS and in the bottom row using FnMS. From left to right,

results with data sets having 180, 240, and 300 images, respectively, are provided.

7 7

images, each one illustrating the shape of the character “a” or “c.
The shape in each image has been placed in one of three different
positions so that 41 pixels across the image border were always
background. The intensities of the background pixels were drawn
from a Gaussian NV'(0.4,12 - 107%) and the foreground pixels from a
Gaussian NV(0.85,0.4 - 107%), then all intensities were normalized in
[0,1]. Fig. 2a illustrates some of the images used. It is clear that six
clusters exist and at least the 41 pixels are irrelevant. We applied the
three methods on data sets with various numbers of images. The
same number of images per cluster was used in each run. For each
data set, we run 10 trials initially using 30 components. For data sets
with 180, 240, and 300 images, our method identified correctly the
six clusters 4, 10, and 10 times, respectively. The FnMS method
identified the six clusters 0, 5, and 10 times, respectively, strongly
affected from the reduction in the size of the data set. Fig. 2b
provides a visual illustration of the expected saliencies estimated by
varFnMS and FnMS. The varMS method with 30 initial components
never identified the correct number of components, providing on
average 12 components for all three data sets.

For experiments with real data we used the “multiple feature
database” used in [11], which is available from the UCI repository
[12]. It consists of features of handwritten numerals (“0”-“9”)
extracted from a collection of Dutch utility maps. From each class,
200 patterns have been digitized to produce a total of 2,000 images.
Digits are represented in terms of various feature sets. We used three

TABLE 1
Expected Error and Number of Components Using
varFnMS, varMS, and FnMS, with 30 Initial Components

Zernike Fourier

Profile
0.39(0.07) 0.35(0.06) 0.13(0.01)

varFnMS error

comp.| 26.8(6.4) 24.6(7.2) 26.3(3.7)
varMS  error [0.37(0.02) 0.34(0.02) 0.14(0.01)
comp.| 29.5(0.5) 27.5(1.2) 27.6(1.5)
FnMS  error |0.53(0.02) 0.50 (0.07) 0.77(0.04)

comp.| 10.7(1.2)  6.1(0.9)
In parentheses, the corresponding standard deviations.

2.3(0.7)

TABLE 2
Expected Error and Number of Components Using
varFnMS, varMS, and FnMS, with 50 Initial Components

Zernike Fourier Profile
varFnMS error | 0.37(0.03) 0.32(0.02) 0.12(0.01)
comp.| 28.1(2.3) 25.0(1.6) 29.6(2.4)
varMS  error | 0.35(0.02) 0.31(0.02) 0.11(0.01)
comp.| 44.6(19) 37.6(29) 41.3(2.1)
FnMS  error |0.53 (0.01) 0.52(0.03) 0.76 (0.04)
comp.| 10.8(1.1) 5.7(0.7) 2.3(0.4)

In parentheses, the corresponding standard deviations.

data sets, the first describing the digits using Zernike moments
(47 features), the second using Fourier coefficients (76 features), and
the third profile correlations (216 features). The clustering perfor-
mance was evaluated on test data using the “classification” error. To
compute the “classification” error given a clustering of the training
data, we assign to each cluster the class of the majority of its data.
Then, we classify each test pattern to the class of the cluster it has
been assigned and compute the classification error given ground
truth. To estimate the expected classification error and the number
of components we carried out 20 trials, splitting the data in half to
create the train and test sets preserving class ratio. The results
are aggregated in Tables 1 and 2, initially using 30 and 50 compo-
nents, respectively.

Our method always gives better error, but uses more compo-
nents compared to FnMS. Both methods converge to a similar
number of components independently of the initial number, thus
their clustering solutions are different but consistent. On the other
hand, varMS is affected from the initial number of components and

i ﬁ : h‘lu
il )

N |
10 )]

(b)

O.JF : ]

Fig. 3. Saliencies of Zernike features using (a) varFnMS and (b) FnMS.
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Fig. 4. Saliencies of Fourier features using (a) varFnMS and (b) FnMS.

tends to keep most of them. The same behavior was also noticed for
experiments with 60 initial components. Also of interest is that, for
varFnMS, as the number of features in the data set increases, the
number of components varies slightly, but the error drops
significantly. Apparently, the method exploits a larger number of
features to improve its solution and is not affected from the sparsity
of data. Regarding the estimated saliency of features, we present
error-bar plots in Figs. 3, 4, and 5 for models initialized with
30 components. Note that, in Fig. 4, the Fourier coefficients tend to
be irrelevant to clustering as we approach the middle band and, in
Fig. 6, the expected saliency using varFnMS has a local minimum
every 12 features. As a general comment, the FnMS method
provides smaller values for the saliencies, while varFnMS is more
conservative.

5 CONCLUSIONS

We have presented a variational Bayesian approach for mixture
learning that can automatically determine the number of compo-
nents and the saliency of features. Our experiments show that this
algorithm outperforms the MML-based approach [3] in the presence
of sparse data and this illustrates the importance of the Bayesian
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(b)

Fig. 5. Saliencies of profile correlation features using (a) varFnMS and (b) FnMS.

framework we adopted. As expected, the MML criterion used in [3]
requires more data to fully exploit the underlying model of feature
saliency. Also, our approach exhibits more consistent behavior than
the method in [7], regarding the number of components used. This is
to be expected as the later approach does not use feature selection
and in high dimensions this hinders model selection.

The main restriction of the proposed method is that the features
are assumed to be conditionally independent given the compo-
nent. We plan to elaborate further on this issue and generalize our
method so that the full covariances of the useful features can be
used and simultaneously the feature saliencies can be estimated.
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Fig. 6. Expected saliency of profile correlation features, using varFnMS (top) and FnMS (bottom). Each column corresponds to a feature and the intensities are scaled so
that black corresponds to the minimum expected saliency and white to the maximum.
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