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An Incremental Training Method for the
Probabilistic RBF Network
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Abstract—The probabilistic radial basis function (PRBF) net-
work constitutes a probabilistic version of the RBF network for
classification that extends the typical mixture model approach
to classification by allowing the sharing of mixture components
among all classes. The typical learning method of PRBF for a
classification task employs the expectation–maximization (EM)
algorithm and depends strongly on the initial parameter values. In
this paper, we propose a technique for incremental training of the
PRBF network for classification. The proposed algorithm starts
with a single component and incrementally adds more components
at appropriate positions in the data space. The addition of a new
component is based on criteria for detecting a region in the data
space that is crucial for the classification task. After the addition
of all components, the algorithm splits every component of the net-
work into subcomponents, each one corresponding to a different
class. Experimental results using several well-known classification
data sets indicate that the incremental method provides solutions
of superior classification performance compared to the hierar-
chical PRBF training method. We also conducted comparative
experiments with the support vector machines method and present
the obtained results along with a qualitative comparison of the
two approaches.

Index Terms—Classification, decision boundary, mixture
models, neural networks, probabilistic modeling, radial basis
function networks.

I. INTRODUCTION

ONE of the fundamental problems in machine learning
is the supervised classification. That is the task of con-

structing a classifier for previously unseen patterns, given a
training set of already classified patterns. Each pattern belongs
to one class, and the number of possible classes is known. The
statistical approach to the classification problem is to construct
a model that estimates the class conditional densities
of the data and the respective prior probabilities for each
class . Then, using Bayes’ theorem, the posterior probabilities

can be computed

(1)

In order to classify an unknown pattern , we select the class
with the highest posterior probability as suggested by
the Bayes rule.
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In the conventional statistical approach, each class density
is estimated using a separate mixture model. A mixture

model [1] is a linear combination of density functions, where
. The mixing coefficients are non-

negative and sum to unit, while the mixing components are
usually Gaussian densities. This separate mixtures approach es-
timates the density of each class independently from the others,
considering only the data of the specific class. In the case where
we assume one Gaussian component centered at each data point,
then the probabilistic model of Specht is obtained [2]. This model
assumes too many mixture components, requires no training,
and has a performance that highly depends on the heuristic
specification of the radius of the Gaussian components.

Theprobabilistic radialbasis function(PRBF)network [3]–[5]
constitutes an alternative approach for class conditional den-
sity estimation. It is an RBF-like neural network [6] adapted to
provide output values corresponding to the class conditional den-
sities . Since the network is RBF, the components (hidden
units)aresharedamongclassesandeachclassconditionaldensity
is evaluated using not only the corresponding class data points
(as in the case of separate mixtures) but also all the available
data points. In order to train the PRBF network, the expectation–
maximization (EM) algorithm for likelihood maximization can
be applied [4], [7]–[9]. In addition, it has been shown [10] that
the generalization performance is improved if after training the
components are split in a certain way, so that new subcompo-
nents are created that are not shared among classes. We refer to
this approach as the hierarchical PRBF training method.

A significant issue in PRBF training is the initialization of the
component parameters, since it affects the convergence point of
the EM. EM is a local search algorithm, and thus is guaranteed to
converge to a local maximum of the likelihood that possibly lies
away from the global maximum; see [11] for more discussion.
The influence of initialization on PRBF performance is also con-
firmed by our experimental results, provided in Section IV. A
partial solution is to do multiple restarts of the EM with dif-
ferent initializations. Another approach is the application of the
k-means algorithm (also employed in RBF network training) to
obtain sensible initial parameter values. However, the problem is
then transferred on how to initialize the k-means. Moreover, our
motivation is to tackle the initialization problem in a way that
benefits classification. This is not possible with any clustering
algorithm, since it does not take into account class information.

Considering the problem of EM initialization and its in-
fluence on training performance, we propose an incremental
training method for the hierarchical probabilistic RBF network,
where components are sequentially added at appropriately
selected positions in the data space. The main idea is the
placement of the components near the decision boundary. For a
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Fig. 1. Probabilistic RBF network.

given classifier, the decision boundary separates the data space
in nonoverlapping regions that are assigned to different classes.
We expect that a good estimation of the class densities around
the decision boundary is sufficient to ensure good classifica-
tion performance. Recent methods that focus on the decision
boundary of the RBF classifier are described in [12] and [13].
The proposed method is deterministic, does not depend on
the initialization of the network, and can be easily combined
with model selection criteria in order to select the appro-
priate number of components. Experimental results on several
well-known data sets illustrate that the approach is superior to
the hierarchical PRBF training method (employing component
splitting) [10] and demonstrates comparable performance to
methods based on support vector machines (SVMs) [14].

It must be noted that several techniques [15]–[19] have been
proposed on incremental training of the RBF network. They
are also based on the idea of gradually adding neurons during
training. However, these methods are mainly for sequential data
(online learning) and for regression (or function approximation)
problems. It is not straightforward to adapt these methods in the
framework of the probabilistic RBF, which is a statistical ap-
proach to classification problems. It is fundamentally different
both in terms of the model used (which is a Gaussian mixture
model) and in terms of the learning task, which is classification
and not regression. Consequently, the approach we have em-
ployed is quite different.

The following section summarizes the PRBF network and the
splitting methodology. Section III describes the proposed incre-
mental method, while in Section IV, comparative experimental
results are presented using several data sets from the UCI repos-
itory [20]. Section V contains discussion and conclusions.

II. THE PROBABILISTIC RBF NETWORK

A. Model Description and Learning

Consider a classification problem with classes, where is
known and each pattern belongs to only one class. We are given
a training set , where
is a -dimensional pattern and is a label
indicating the class of pattern . The original set can be
partitioned into independent subsets , so that each subset
contains only the data of the corresponding class. Let denote
the number of patterns of class , i.e., .

Assume that we have component functions (hidden units),
which are probability density functions. In the PRBF network
(Fig. 1), all component density functions are

utilized for estimating the conditional densities of all classes by
considering the components as a common pool [3], [4]. Thus,
each class conditional density function is modeled as a
mixture model of the form

(2)

where denotes the component density , while the mixing
coefficient represents the prior probability that a pattern has
been generated from the density function of component , given
that it belongs to class . The priors take nonnegative values and
satisfy the following constraint:

(3)

Once the outputs have been computed, the class of data
point is determined using the Bayes rule, i.e., is assigned
to the class with maximum posterior computed by (1).
The required priors are , according to the maximum
likelihood solution.

It is also useful to introduce the posterior probabilities ex-
pressing our posterior belief that component generated a pat-
tern given its class . This probability is obtained using the
Bayes theorem

(4)

In the following, we assume Gaussian component densities of
the general form:

(5)

where represents the mean of component , while
represents the corresponding covariance matrix. The whole
adjustable parameter vector of the model consists of the mixing
coefficients and the component parameters (means and
covariances ), and we denote it by .

It is apparent that the PRBF model is a special case of
the RBF network, where the outputs correspond to prob-
ability density functions and the second layer weights are
constrained to represent the prior probabilities . Given an
RBF classifier with Gaussian hidden units, its th output is

. If
are nonnegative and , then is a density

function. Actually it is the class conditional density that
we estimate through PRBF. Furthermore, the separate mixtures
model can be derived as a special case of PRBF, if we assign
each component to one class and set for all classes

.
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Fig. 2. Illustration of the component splitting process. The component in the middle is located in a region with data of two classes and is split into two subcom-
ponents, each describing the data of one class. (Color version available online at http://ieeexplore.ieee.org.)

Regarding parameter estimation for the PRBF, the EM algo-
rithm can be applied for maximization of the likelihood

(6)

EM is an iterative procedure with two steps at each iter-
ation. During the expectation step, posterior probabilities

are computed using the current estimates

of , and according to

(7)

During the maximization step, the new estimates of the compo-
nent parameters are updated according to

(8)

(9)

(10)

The EM updates eventually will converge to a local maximum
of the likelihood.

B. The Hierarchical Approach

In [10], a hierarchical mixture model method for classifica-
tion has been proposed. This training method proceeds in two
stages: in the first stage (EM-stage), a PRBF network with a
fixed number of components is trained using the EM up-
dates (7)–(10). After the completion of this stage of training,
there may be components of the network located to regions
with overlapping among classes. This happens if we have un-
derestimated the number of components. In order to increase
the generalization performance of the network, it is suggested
in [10] to split each component. So in the second stage (split-
ting stage) of the training method, every PRBF component

is split into subcomponents corresponding to the classes of
the problem. This is achieved by evaluating the posterior prob-
ability [using (4)] for each component to define if it
is responsible for patterns of more than one class. Therefore,
we compute for every pattern and check if

for more than one class . If this hap-
pens, then we remove it from the network and add a separate
component for each class. So finally every subcomponent de-
scribes only one class. Splitting a component , the resulting
subcomponent of class is a Gaussian probability density func-
tion with mean , covariance matrix , and
mixing weight . These parameters are estimated according
to

(11)

(12)

(13)

(14)

After splitting, for each class , there are components with
nonnegative mixing coefficients, and the class conditional den-
sity is

(15)

Using the above equations, the components whose region of
influence contains subregions with data of different classes are
split into class-specific subcomponents. The parameters of each
subcomponent are determined by the data of the respective class
that belong to the region of the component (i.e., they have high
posterior value). Fig. 2 provides a characteristic example illus-
trating the effect of the splitting operation. A remark that can
be made is that, from a classification point of view, a full effect
exploitation of the splitting operation is achieved if the compo-
nents of the PRBF network have been placed into regions con-
taining the decision boundary between classes (see Fig. 3). This
remark led us to the development of an incremental method for
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Fig. 3. Desirable placement of components on the decision boundary (shown
with dashed line) in the first stage of hierarchical training. A subsequent split-
ting of each component will provide a satisfactory solution to the classification
problem. (Color version available online at http://ieeexplore.ieee.org.)

placing the components of the PRBF network constructed in the
first stage (EM training).

It has been shown in [10] that the addition of the splitting
stage on the one hand guarantees the increase of the likelihood
and on the other hand leads to considerable improvement in
generalization performance compared to the PRBF network ob-
tained in the first stage. However the solution of the EM-stage
may be inferior, due to the local search performed by the EM
algorithm. Since we are interested in the interpretation of the
PRBF components as clusters of data, we would like to avoid
cases where EM has converged to a solution where one compo-
nent covers more than one cluster or one cluster is covered by
more than one component. Standard EM can be trapped in such
inferior solutions, and this depends solely on its initialization.

To deal with this problem, we propose an incremental method
for the EM-stage that overcomes the initialization problem of
EM. During the first stage, starting with one component, we
incrementally add components to the network in a deterministic
way. During the second stage we split all the components to
obtain the final PRBF network.

III. THE INCREMENTAL TRAINING METHOD

The proposed incremental training method applies to the first
stage of hierarchical training (EM-stage). As already noted, it is
reasonable to place the components in regions containing pat-
terns belonging to more than one class. This sensible placement
is expected to lead, after the splitting stage, to a network with
good classification performance.

Consider a PRBF network with components during the
first stage of training. In order to construct a network with 1
components, the procedure of component addition involves
global and local search in the parameter space to define the
parameters of the new component. During global search, the
algorithm searches among a set of candidate regions in the data

space to place the new component and selects the most appro-
priate candidate according to certain criteria. Then, during local
search, the EM algorithm is used to adjust the parameters of the
resulting network with 1 components. This procedure of
sequential component addition starts with one component and
is repeated until some stopping condition is met.

A. Component Addition

In this section, we present the procedure we have developed to
specify the parameters of the new component. Assuming a net-
work with components and parameter vector , the condi-
tional density of each class is . In the case where
a new component is added with density ,
each new class conditional density is defined as
a mixture of the current model and the new com-
ponent

(16)

where are the mixing weights for the new
component and . This is analogous with the in-
cremental training procedure called Greedy-EM proposed in
[21] for unsupervised probability density estimation. Using the
above combination formula, the resulting network is again a
PRBF network. The log-likelihood of the model with

1 components is

(17)
Let PRBF denote the PRBF model after components
have been added and PRBFsplit denote the resulting model
after splitting the components of PRBF . The incremental
training algorithm can be outlined as follows.

1) Set M := 1. Compute the one-component model
PRBF(1) as follows:

�1 =
1

jXj

K

k=1 x2X

x (18)

�1 =
1

jXj

K

k=1 x2X

(x� �1)(x� �1)
T (19)

�1k =1; k = 1; . . . ; K: (20)

2) Find the parameters of the new component
density fM+1(x) and the corresponding
mixing weights �k, considering p(xjk; �M)
fixed. In the case where a new component
cannot be added terminate the incremental
procedure and go to step 7).

3) Initialize the model with M + 1 components
using (16).

4) Apply the EM update equations to the model
with M+1 components until convergence to
obtain the PRBF(M+1) model.

5) Set M := M + 1.
6) If M � Mmax, go to step 2).
7) Compute the PRBFsplit(M) model, using

(11)to (15).
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Fig. 4. Successive partitioning of an artificial dataset overlapping partitions using the kd-tree method. All 14 partitions illustrated in the three graphs are considered
to specify candidate parameter vectors. (Color version available online at http://ieeexplore.ieee.org.)

Steps 1)–6) constitute the PRBF construction phase, while
Step 7) corresponds to the splitting phase where the PRBFsplit
model is determined. It is also apparent that the incremental
procedure terminates either in Step 2) (in the case where it not
possible to identify an appropriate region in the data space to
place the new component) or in Step 6) when a prespecified
maximum number of PRBF components has been added.

B. Where to Place the New Component?

The crucial task during component addition takes place at
Step 2), where the parameters of the new component are de-
termined through a search procedure among a set of candidate
solutions. We can summarize this procedure in three steps.

a) Define a set of candidate components using
a data partitioning technique.

b) Adjust the parameters of the candidate
components.

c) Use a selection criterion to choose the
candidate component that will be added.

Since it is not possible to directly specify a single good com-
ponent to add, we define a set of candidate initial component
parameters and further adjust the parameters using partial EM.
The best parameter values obtained according to a
specific criterion are considered as the final component param-
eters used in Step 3) of the method.

Let be the current number of PRBF components. In order
to determine the candidate initial component parameters, we
partition the data set into subsets

, one for each component based on the posterior
probabilities . The posteriors are computed marginal-
izing class labels

(21)

with being the prior probability of class . For
each of the sets , a subset of candidate components is
created by partitioning its data using the kd-tree approach. A
kd-tree [22] defines a recursive partitioning of the data space
into disjoint subspaces. It is a binary tree, where the data asso-
ciated with any nonterminal node are partitioned using a cutting

hyperplane to specify the successors nodes. To partition the data
points of a node, we have followed the approach used in [23]:
the cutting hyperplane is defined to be perpendicular to the di-
rection of the principal component of the data corresponding to
the node. Fig. 4 illustrates the partitioning stages for an artificial
data set. The procedure of recursive partitioning is applied until
level four (tree depth), and we consider all tree nodes (not only
leaf nodes) to define overlapping subsets of (i.e., 14 subsets
for each component ). The statistics (sample mean and covari-
ance) of each of the 14 subsets constitute candidate initial pa-
rameter values for the component 1. The values of are
set equal to 2 for the subsets derived from partitioning the
subset .

In order to further adjust the mean, the covariance, and the
mixing weights of each candidate component, we apply partial
EM updates, where only the parameters of the new component
are updated. This constrained local optimization is fast (usually
a couple of iterations are sufficient), and the resulting compo-
nent lies near the decision boundary. Let denote the param-
eter vector of PRBF that is considered fixed during partial
EM. In the expectation step of partial EM, we compute the pos-
terior probabilities using the cur-
rent estimates of and , according to

(22)

During the maximization step, the component parameters are
updated as

(23)

(24)

(25)

After applying partial EM steps for each candidate component,
we obtain the final set of candidate initial parameter vectors

for component 1. One of these vectors will be
selected using the following procedure.
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Fig. 5. Illustration of the incremental procedure for adding the first two PRBF components. The components of the network are drawn with solid lines and the
candidate components are presented using dotted lines. (Color version available online at http://ieeexplore.ieee.org.)

We have already mentioned that we wish the new component
to be placed at regions in the data space containing examples
of more than one class. A way to quantify the degree to which
a candidate component satisfies this property is to compute the
change of the log-likelihood for class caused by the addition
of the candidate new component with density
according to (16). So we define the change for class as

(26)

where . Based on the values , we search
among the candidate components to determine those whose
addition causes an increase in the log-likelihood for at least two
classes. Such candidates lie in a region containing data of more
than one class, consequently on the decision boundary. In order
to find the best candidate, we retain the components that increase
the log-likelihood of at least two classes and discard the rest. For
each retained component , we add the positive terms to
compute the total increase of the log-likelihood . The can-
didate whose value is maximum is added to the current
model PRBF if this maximum value is higher than a pre-
specified threshold (set equal to 0.01 in all experiments). Oth-
erwise, we consider that the attempt to add a new component
is unsuccessful and terminate the first stage of training with a
PRBF model with components. This threshold value refers
to the increase in likelihood after a new component is added.
Eventually, after the addition of many components, the increase

tends to zero and the addition stops. We set this threshold em-
pirically, to decide when the increase of likelihood is negligible
and avoid redundant component additions. After experimenta-
tion with several data sets we concluded that changes of the like-
lihood smaller than this scale do not affect classification perfor-
mance and also do not lead to premature termination of network
growing.

Fig. 5 graphically illustrates the procedure of component ad-
dition. The top left graph is the model with one component [Step
1)]. The top right graph displays the single component and six
of the 14 candidate components after [Step 2b)]. The best candi-
date selected in [Step 2c)] is depicted in the bottom left graph.
Finally the bottom right graph is the model with two compo-
nents PRBF(2), after application of the EM [Step 4)].

It must be noted that, due to the EM update equations [Step
4)], it is possible for an added component to move away from
the decision boundary where it has initially been placed. This
may happen in the case where there exists a region in the data
space containing data of a single class that is not adequately cov-
ered by any of the existing components. However, this does not
constitute a problem for our method since the next component
to be added is very likely to be placed and remain at the initial
position of the previous component.

Finally, a very desirable feature of the proposed incremental
method is that for training a network with components
PRBF , the method builds all the intermediate models

PRBF with components. Since for each
, the PRBFsplit model is constructed di-

rectly from PRBF , any model selection procedure to search
for the best PRBFsplit model can be implemented very
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TABLE I
CHARACTERISTICS OF THE DATA SETS

efficiently, compared to the conventional PRBF method where a
separate EM run is needed for every value of to
construct PRBF (in fact many runs for every are needed
due to the EM initialization problem). An analogous drawback
also holds with the SVM method where several runs with
different values of SVM “hyperparameters” (e.g., width of the
RBF kernels) are necessary to determine the “hyperparameter”
values that lead to the SVM model with the best performance.

IV. EXPERIMENTAL RESULTS

The proposed incremental hierarchical training method for
the PRBF network (denoted as incremental PRBFsplit) has been
compared with the standard hierarchical PRBF method [10] (de-
noted as PRBFsplit) and with SVM. We used the OSU SVM
Classifier Matlab Toolbox version 3.0 [24]. The core part of
this toolbox is based on LIBSVM version 2.33 [25]. We con-
sidered several benchmark data sets from the UCI repository
[20], namely, Bupa Liver Disorder (BLD), Pima Indian Diabetes
(PID), Iris, Vehicles (Veh), Glass, Waveform (Wave), Wine, and
Thyroid (Thyr). The number of patterns, the number of features,
and the number of classes for each dataset are summarized in
Table I.

For each data set, in order to obtain an estimate of the general-
ization error, ten-fold cross-validation was used, i.e., ten exper-
iments were conducted, with one of the folds used for testing
and the remaining nine folds for training. In each experiment,
nine networks were constructed for different values of and
covariance type (discussed later), using one of the nine folds
as a validation set and the remaining eight folds for the incre-
mental training process (training set). The combination of
and covariance type that provided the best average classification
performance on the nine runs was selected, and subsequently
evaluated using the data of the test fold. Exactly the same vali-
dation procedure and folds were also used for adjusting the hy-
perparameters in the SVM approach and for model selection in
standard PRBFsplit method. We employed an SVM model with
RBF kernels . For multiclass prob-
lems, the 1 versus 1 scheme [26] was used to reduce them to bi-
nary-class problems. The hyperparameters to be adjusted were
the inverse width of the kernel and the cost of constraint
violation. For each experiment, in order to determine the value
of , we initialized and searched through the set

to find the value of that minimizes
classification error on the validation set. Fixing to this op-
timal value, we searched again for the best value of in the set

. Obviously this method does not search
for all possible combinations of but it was selected in
order to maintain reasonable execution times. We have also ex-
perimented with the exhaustive search method, over a grid in the

TABLE II
MEAN ERROR (%) AND THE STANDARD DEVIATION (IN PARENTHESES) OF THE

THREE METHODS USING TEN-FOLD CROSS-VALIDATION

space of . The classification performance was almost the
same, while the execution time was 10–70 times higher.

An important issue affecting the performance of the PRBF
network concerns the specification of the covariance type. We
used three parametrizations of the covariance matrix: a sym-
metric positive definite matrix (called ), a positive diagonal
matrix (called ), and a positive diagonal matrix with
all diagonal elements equal (called ). The type of
covariance affects the number of parameters of the model and
the shape of the components; thus we have to compromise. A
full covariance allows arbitrary component shapes but may in-
crease unnecessarily model complexity and lead to overfitting.
Moreover, for small data sets with a lot of features, the use of
full parametrization could lead to singular covariances. To deal
with this issue, for every fold we have performed three runs
of the proposed method, each of them with the corresponding
type of covariance. In this way the sequences of models PRBFs-
plit , PRBFsplit , and PRBFsplit were
constructed, and we selected the model giving the best perfor-
mance in the validation set. It is apparent that for different
folds, the selected model could differ in the number of compo-
nents and the covariance type. Concerning the standard PRBF-
split method, for each value of and co-
variance type, five runs of EM were conducted with different
initializations. The model with the maximum likelihood value
was selected as the network PRBF that was subsequently
split. Regarding the maximum number of components
it was set equal to 30 in all experiments. In most cases the pro-
posed training algorithm terminated earlier due to the inability
to identify additional significant components to be added to the
model.

Table II provides the obtained mean value and standard devi-
ation of the generalization error for the three methods, that is,
the average percent of misclassified patterns for all the cross-
validation test sets. It must be noted that for each data set, ex-
actly the same division in folds was used for training with the
three methods. It is clear that the incremental method is supe-
rior to the standard PRBFsplit method. With respect to SVM,
the performance results are comparable. In some data sets the
proposed method provides better results, while in some others
the SVM appears to be slightly superior. It does not seem to be
possible to draw reliable conclusions regarding the superiority
of one method over the other in terms of generalization error.
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TABLE III
AVERAGE EXECUTION TIME (IN SECONDS) AND NUMBER OF

COMPONENTS/VECTORS FOR INCREMENTAL PRBFsplit AND SVM USING

TEN-FOLD CROSS-VALIDATION

Table III provides comparative experimental results for our
method and SVM. The results concern execution speed and the
number of allocated components or support vectors. In terms
of the number of components, our method uses a significantly
smaller number compared to the SVM support vectors. As dis-
cussed in the next section, this is due to the fact that our method
is region-based, i.e., the model is described by a relatively small
number of wide regions (specified by the regions of influence
of the Gaussian components). In terms of execution speed, the
comparison highly depends on how many SVM training runs are
conducted to search for appropriate values of the SVM hyper-
parameters . The SVM execution times refer to the case
where local search is performed to adjust these SVM hyperpa-
rameters, and the results are comparable to our method. As al-
ready noted, in the case where exhaustive search is performed
for the SVM hyperparameters, the execution times are 10–70
times higher. Execution times refers to Matlab implementations
of both our method and the SVM method (in the latter case the
Ohio State University SVM Classifier toolbox has been used)
on the same PC platform. A qualitative comparison of the two
approaches is presented in the next section.

V. DISCUSSION AND CONCLUSION

We have proposed an incremental training method for the
probabilistic RBF network that overcomes the initialization
problem of the standard EM algorithm and provides net-
works with superior generalization performance. The proposed
approach is based on the sensible placement of new network
components in regions that are of interest from the classification
point of view, i.e., regions containing data of several classes
(decision boundaries). These components are then split into
class-specific subcomponents providing a refined estimation of
class densities in the regions of interest. Experimental results
indicate that the method constitutes a competitive and much
faster alternative to the SVM approach that deserves to be
examined when building a classification system.

The proposed incremental hierarchical training method ex-
hibits several interesting differences compared to SVM. First, it
is a statistical approach respecting the generative paradigm as
opposed to the discriminative paradigm supported by SVM and
typical feedforward neural models (MLP and RBF). Moreover,
the following differences can be mentioned.

• It is an inherently multiclass method, while typical SVMs
are basically two-class classification methods and multi-
class extensions require significant further elaboration.

• The PRBF network performs classifications based on class
conditional probabilities ; therefore it is straight-
forward to compute uncertainty about the decisions made
or to exploit these probabilities in a probabilistic deci-
sion-making framework.

• The PRBF method can naturally provide class ranking
based on the corresponding class conditional probabilities.

• The PRBF approach relies its classification decisions on
an estimation of the density of each class in the region of
the input pattern; therefore the decisions made are intu-
itively more easily interpreted. On the other hand, the SVM
method draws decision boundaries in the kernel space;
therefore its classification decisions are more difficult to
be interpreted.

• The PRBF model is described by a relatively small number
of regions (specified by the regions of influence of the
Gaussian components), i.e., it is a region-based method.
On the other hand, the SVM model is described by a much
higher number of points (support vectors), i.e., it is a point-
based method. This explains the fact that the number of
PRBF components is significantly smaller compared to
support vectors as shown in Table III.

• In the incremental PRBF method, it is much easier and
faster to perform model selection, since all models are con-
structed in a single run.

• Since it is a density-based approach, the PRBF model is
expected to exhibit worse performance in problems with
very small number of examples and very high number of
features, as happens for examples in many bioinformatics
classification problems (e.g., classification of gene expres-
sion data).

• The SVM approach does not exhibit numerical difficulties
(e.g., singular covariance matrices) that are sometimes en-
countered in training with Gaussian components.

We believe that there is room for further investigation mainly
on the issue of determining the set of candidate components to
be added at each step. Also, we are going to examine the use
of probabilistic principal component analyzers [27] instead of
Gaussian mixture components.
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