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Shared Kernel Models for Class Conditional Density
Estimation

Michalis K. Titsias and Avristidis C. LikadMember, IEEE

Abstract—We present probabilistic models which are suitable models are employed to estimate the class conditional densities.
for class conditional density estimation and can be regarded as Throughout this paper, we will refer to that method as separate
shared kernel models where sharing means that each kernel may iyt res. Nevertheless, we argue that more general models
contribute to the estimation of the conditional densities of all f diti | densit timai be derived in t f
classes. We first propose a model that constitutes an adaptation or condriona ens_l y estumation can be erlv_e_ n erms_Q
of the classical radial basis function (RBF) network (with full shared kernel functions where the class conditional densities
sharing of kernels among classes) where the outputs representare represented by a set of kernels which may contribute to the
class conditional densities. In the opposite direction is the ap- estimation of the conditional densities of all classes. This is

proach of separate mixtures model where the density of each 5n55q0us to kernel sharing in a typical radial basis function
class is estimated using a separate mixture density (no sharing of (RBF) network

kernels among classes). We present a general model that allows ) ] ) ]
for the expression of intermediate cases where the degree of kernel  In this paper, we first propose a model which comprises a

sharing can be specified through an extra model parameter. This special case of the RBF neural network in which the basis func-
general model encompasses both above mentioned models agong gre taken to be probability densities and the second layer
special cases. In all proposed models the training process is treated_ . . . e .
as a maximum likelihood problem and expectation—-maximization weights are constrained to represent prior prObab!“_t'eS' In th'_s
(EM) algorithms have been derived for adjusting the model Way, the outputs of the RBF represent class conditional densi-
parameters. ties. This model is discussed in [1] where the basis functions
Index Terms—Classification, density estimation, expecta- Of the network are considered as a common pool of kernels
tion—maximization (EM) algorithm, mixture models, probabilistic ~ that represent all the class conditional densities. The discus-
neural networks, radial basis function (RBF) network. sion in [1] aims at showing how the activation functions and the
second layer weights of an RBF could be defined so that the out-
puts to be precisely interpreted as posterior probabilities of class
membership. In our case, as mentioned above, we consider an
ROBABILITY density estimation constitutes an unsuperRBF model whose outputs directly represent conditional density
vised method that attempts to model the underlying densfiyhctions. This interpretation of the outputs has given the oppor-
function from which a given set of unlabeled data have been gegnity to treat RBF training as a maximum likelihood problem
erated. An important application of density estimation is thatdnd derive an one-stage EM algorithm for adjusting the model
can be utilized for solving classification problems. A teChniqu@arameters_ This approach seems to be more sophisticated than
for constructing such classifiers is based on the separate egié unsupervised learning techniques typically used for finding
mation of the conditional density(z|C},) of each clas€’y [3],  the basis function parameters [1]. Because of the similarity with
which means that each density estimation is carried out consRBF network we call this model probabilistic RBF (PRBF) [11].
ering only the patterns of the corresponding class. To classifiie PRBF model is presented in Section II.
a new patterns, the conditional densities are combined with Moreover, we have further extended the PRBF model and
prior probabilitiesP(C},) through Bayes’ theorem and providedeveloped a more general one, call@RBF, that allows to

I. INTRODUCTION

the posterior probabilitie®(Cy|x) express intermediate models between PRBF and separate mix-
tures. This model is derived from PRBF by introducing a special
P(Cylx) = p(z|Cr) P(Ck) . (1) parameter (denoted by) which adds constraints to the model
Zp(xlckf)P(Ckf) parameters in order to adjust kernel sharing among classes. As
K discussed in detail in Section lll, the role of parametas to

@trol the contribution of each kernel to the density estimation

A density estimation approach that has been extensively u&%J )
in statistical pattern recognition is based ovixture density 0 e_ach class. For_th|s model we have also developed an EM al-
gonthm for the adjustment of its parameters.

modelg6], [12]. For such models efficient training procedure Section IV d trate the effecti f th
have been developed based on the expectation—maximizatiqu ection V- we demonstrate the efiectiveness ot the pro-

(EM) algorithm [2]. In classification problems separate mixturBOsed mgthods using several. data sets gnd prowde. comparative
results with other methods. Finally, Section V contains conclu-
sions and research directions for future enhancements.
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d-dimensional pattern and® is an integer in the rangd, K)
indicating the class of the pattesft. The original sefX can be
easily partitioned intd{ independent subsefs;. so that each
subset contains only the data of the corresponding class. Let
N}, denote the number of patterns of cl&s i.e., NV, = | Xx|.
Assume that we have a numberdfkernel functions, which
are probability densities, and we would like to utilize them for
estimating the conditional densities of all classes by considering
the kernels as a common pool. Thus, each class conditional den-
sity functionp(x|C},) is modeled as

M
p($|0k) _ Z ijp(JCU)a k=1,....K (2) Fig. 1. The architecture of the probabilistic RBF network.
j=1
X
wherep(z|j) denotes the kernel function while the mixing ! Class 1 nodes
coefficient7;;, represents the prior probability of the pattern
x having been generated from kernelgiven that it belongs Xs P(chl)
to classCy. The priors take positive values and satisfy the fol-
lowing constraint:
M
C
Zﬂjkzlv k:l,,K (3) P(Xl K)
j=1
e . , - X4
We will find it useful to introduce the posterior probabilities ex- Class K nodes

pressing our posterior belief that kernejenerated a pattern

given its clas€”;,. This probability is obtained using the Bayes’_ _ _ _
Fig. 2. The separate mixtures model as a special case of the probabilistic RBF

theorem network.
. _ ijp(xU)
PG, @) = Z (] ’ “) C(j) and the separate mixtures model is obtained by setting all
I ! the prior probabilities of a kernel equal to zero, except for the

prior corresponding to class(yj).
Obviously, the posterior probabilities sum to unity
A. Derivation of the Log-Likelihood Function

classes. In order to use Bayes' theorem (1) for unlabeled input

data first we have to specify appropriate values for both class
In the following, we assume that the kernel functions are Gaysriors and the parameter vectérIn our case, the maximum
sians of the general form likelihood procedure is proven to be directly applicable. As-
suming that all data have been independently drawn from an
underlying process, we write the likelihood function in the form

M
Z P(j|C, z) = 1. (5) Let P(Cy), k = 1, ..., K be the prior probabilities of the
j=1

P 1
p(zlj) = W

N
-exp{—%(w—uj)TEfl(w—uj)} (6) p(X]6, P(ol),...,P(oK)):Ulp(x", C)  (7)

wherey; € R? is a vector representing the center of ketfiel from which we obtain the log-likelihood function
while £, represents the correspondigigt d covariance matrix.

The whole adjustable parameter vector of the model consists of N
the priors and the kernel parameters (means and covariances)L(6, P(C1), ..., P(Ck)) = > log p(z", Cr).  (8)
and we denote it by. n=1

It is apparent that the PRBF model (Fig. 1) is a special Cagfw, using thap(x, Ci) = P(Ci)p(x|Cy) and also the fact

of the RBF network where the outputs correspond to probabilify. i+« jata sex consists ofi independent subsets Witk
density functions and the second layer weights are constrairéef ments each, the above quantity takes the form
to represent prior probabilities. Furthermore, the separate mix- ’

tures model can be derived as a special case of PRBF. This isil- L8, P(CY), ..., P(Ck))
lustrated in Fig. 2. The PRBF kernels are partitioned Hitdis- K N

K
joint groups with each group corresponding to a specific class. - Ny log P(Cr) + log p(z"|Ck).  (9)
In this sense, each kernglis associated with only one class ; (Ch) ; nzz:l ("[Ck)
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Apparently, the two terms above can be maximized separatetyssing information we introduce for each patterh a vari-
as they do not contain common parameters. Maximization of thble ™ which is aM-dimensional vector indicating the kernel

first term yields that generated™. More specifically, ifx™ was generated from
kernelj, thenz} = 1, otherwisez} = 0. The set of the un-

P(Cy) = &7 k=1,....K (10) Observed variables i = {z", n=1..., N} while the

N complete data set & = {(«", k*, z"), n=1, ..., N}. The

while the maximization of the second term is equivalent #99-likelihood function of the complete data is glven by
PRBF training. Consequently, the log-likelihood function

K N, M

suitable for the training of the PRBF network is given by = Z Z Z log 7j,p(z"™ ). (14)
K Ny k=tn=tg=t

=" log p(«"|Cy). (11) Atiterationt + 1 the expected value of thel (given z") is

k=1 n—1 equal to the posterior probabilitf (j|Cy», ™), wheret de-

notes that this probability has been computed using the current

To maximizeL(#) it is possible to employ nonlinear optimiza- arameteré . It follows that the function) takes the from

tion techniques, however, it would be desirable to show that the
iterative EM algorithmis applicable in this case. In the foIIowmgQ(9|9(t))

we describe our approach to maximization of the above like- K N, M

lihood using the EM algorithm and we show that in the case — Z Z Z p(t) (4|Cr, ™) {log 75, + log p(z™|5)}.
of Gaussian kernels each iteration of the EM algorithm is per- k=1 n—1 j=1

formed analytically. (15)

B. Applying EM for Training the PRBF Network It can be shown that the maximization @fcan be carried out

The EM algorithm [2] is defined as a very general technique analyt|ca||y Ifwe write the functio as@ = @1 + @2 where

for maximum likelihood estimation. The algorithm is applicable K Ni M
in cases where we seek maximum likelihood estimates in the Q1(6]6)) =" Y~ >~ PU(|Cy, ™) log mj.  (16)
presence of unobserved variables. Several extensions and also k=1 n=1 j=1

many applications of the EM algorithm are presented in [7],
Before presenting our EM approach for training PRBF, we wi
briefly review the basic properties of the EM algorithm. K N
As)s/umethat we havepa s%tofobserved data,gcalled incom- @2(616) Z Z Z PO (|Cr, x™) log p(x"]5) (17)
plete data, and a set of unobserved varia@legich along with k=1 n=1j=1
the observed data constitute the complete date= (X, Z). then we can maximize separately the above quantities since they
Furthermore assume thatX|6) andp(.X, Z|¢) are the prob- o not contain common parameters. In order to maxirizeve
ability densities of the incomplete and complete data, respefust take account of the constraints involving priors (3). There-

tively, parameterized ofi. It follows that fore, we introduceX’ Lagrange multipliers and the quantify/-
to be maximized takes the form
§XI6) = [ (X, Z16)dz. (12)
QU (616™) = Qu(60]8™) me—1]. (18)
The EM algorithm approaches the problem of maximizing the . ; Z ’

incomplete data log-likelihood functiab(6) = log p(X|9) in-

directly, in terms of the complete data log-likelihood functiofexpressing the derivatives ¢J{ with respect to priors ;;, we
L.(0) = log p(X, Z|6). More specifically, the EM starts from €asily obtain\, = Ny, & = 1, ..., K. Also the differenti-

an initial parameter guess and proceeds iteratively performiagion of @, with respect to the kernel parameters leads to the
alternatively two steps: th&-step in which the algorithm cal- following update equations:

culates the expected value of the complete data log-likelihood KN
function (with respect to the unobserved variables) given the Z Z PO|C, 2™z
current parameter vectéft) and the incomplete dati (t+1) _ hm1 et ’ (19)

Hi T 7K N

QI0) = B{L9)|X, 61} (13) S S PO(Cr, 27
k=1 n=1
and theA/-step, where the old parameter vedi§ is replaced K N
by 61 obtained by maximizing2(#|6*). S5 PO, ) (e — Dy — YT
- 7 7 7

In order to apply the EM algorithm to maximize (11) we (t+1) _ k=il

must first express the unobserved variables. Similarly to the K Ny
framework for mixture models [9], the problem we have to over- Z Z PO(j|Cy, z™)
come is that each pattern is not followed by a label indicating k=1 n=1

the kernel responsible for having generated it. To express this (20)
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Vi d is independent of. Apparently,>>% . P(Ci|j) = 1. The
(t+1) 1 . n . an n p pp _Ya k=1 k1] _

Tk = N, Z P (JICh, ™) k=1,.... K (21) probability P(Cy|j) can also be interpreted as expressing the
n=1 degree at which kernelrepresents data of cla&s..

wherej = 1, ..., M. Starting from an initial parameter vector, L€t uS now assume that the algorithm is at iteration 1

we first calculate the posterior probabilities and then we updatgd theZ-step has been completed. We introduce the variables

: D ands V(i =1, ..., M, k=1, ..., K), which
the parameter values using the above s (19)—(21). We perfotpa =~ @nd, (G=1....,M k=1,..., K), whichrep-

these steps alternatively until convergence. resent means and covariances matrices, respectively, as follows:
In the following, we summarize the training algorithm for the Ny
PRBF network. > POGICk, )2
1) Specify the number of kerneld and the initial parameter uj(.tk*l) - "=Al (23)
values. E
2) E-step: For each training poiriz”, k) € X com- z_:lp (G, 27)
pute the posterior probabilitiesP® (j|Cyn, =), A?;
é(ﬂz 1,..., M, from (4) using the current parameters ZP(t)(ﬂO’w 2™ (2" — N§t+1))(xn _ u§t+1))T
' . (t+1) _ n=1
3) M-step: Find the new parameter vecféit?) from (19) 2. = N,
to (21), respectively. Z PO(|Cy, ™)
4) lIterate going to Step 2) until a local maximum of the log- o
likelihood (11) is reached. (24)

When an RBF neural network is employed for classificatiofgjng these notations, we can express the EM update equations
.p.roblems, the parameters of_ basis functions are typically spees appropriate form. If we let the paramessy, denote either
ified by unsupervised techniques such as ianeans clus- the meary;, or the covariance matriX ;;,, and, similarly, the

tering algorithm or Gaussian mixture modeling with EM. Afte\barametele denote eithey; or 3;, then we can write that
the basis function parameters have been computed, the second

layer weights are optimized rapidly using supervised learning. K Nk
However, the determination of the basis functions parameters > { PO (| Cr, w")} wg(';:rl)
using unsupervised learning techniques cannot be regarded as  ,,(t+1) _ k=1 L

an efficient approach, since it does not make use of class la- ! KNk .

bels and therefore it might lead to undesirable situations. For Z Z PO (G|Cy, z)
example, after unsupervised training, it is possible for a kernel k=1n=1

n=

to represent data of several classes, even if these classes are lin- (25)
early discrimingt.ed and given that the numberpf kernels ig Iarggmg (10), (21), and (22), we finally find that
enough to sufficiently represent the data. As it is shown in the
) . L )
next section, the prpposed EM algorithm for PRI'BF'trammg gen- v (1) pe (t4+1)
erally does not adjust the kernel parameters similarly to unsu- Z ik (Ck) Wik
pervised learning methods, but there is an active competition w§t+1) = k=1 —
among classes concerning kernel allocation. : 1
ST AP
k=1
C. Adjustment of Kernel Parameters in PRBF Training B zl‘: PO (G (26)
= JPwi

According to (19) and (20) the means and covariances of each k=1

kernel are updated using data from all classes. This may cal$@ above equation indicates that the parameters of kgael
confusion concerning the operation characteristics of the algterationt 4 1 constitute the expected values of the variables
rithm. At first glance, the algorithm seems to adjust the kerng][,t;rl) andzﬁfl), k=1, ..., K,withthe corresponding class
parameters estimating the distribution of all data, that is sirprobabilities given by (22). Consequently, the new parameter
ilar to unsupervised techniques. However, as it is shown nexluesw; of the kernelj obtained from an EM iteration during
by writing the (19)—(20) in a suitable form, the algorithm work$RBF training can be interpreted as the mean values of the cor-
quite differently giving emphasis to the classification problenresponding parametets;, that are obtained frot’ underlying

The posterior probability that a patterrbelongs to clas€’;, iterative procedures. Each procedure corresponds to a specific
given that it has been generated from kerhelan be expressed classCi and updates the parameters, using only data of class

as Cy. This suggests that each claSs competes to “allocate” a
kernelyj (i.e., settingw; closer tow,) and this competition is
. 71 P(Cy) expressed in terms of the valuB$Cy|j).
P(Cylj) = (22)  Inthe following we illustrate through an example how the al-
Z 730 P(Chy) gorithm operates compared to unsupervised learning. We have

1 created a simple synthetic two-dimensional data set that is a
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Fig. 3. lllustrates the data of two classes and the location of the Gaussfag. 4. Displays the data for a two-class problem and the final solution found
kernels (represented by circles where the radius is equal to standard deviatignlising separate single kernels and (b) using a PRBF network with two kernels.
after (a) training a two-kernel PRBF with the EM algorithm and (b) training & is obvious that PRBF places the kernels in more sensible locations in the data
two-kernel mixture model with EM. space.

mixture of three Gaussian kernels. Two of the Gaussians corfi§re same holds when comparing PRBF with the separate mix-
spond to the first class and the third to the second class (Fig.@}es approach. There exist cases where PRBF provides results
We applied the EM algorithm for training PRBF (supervisedimilar to separate mixtures. For example, such a case is the syn-
training) and also the EM for density estimation ignoring claggetic data set illustrated in Fig. 3. If we utilize a separate single
labels (unsupervised training). In both experiments, two kernglsinel for estimating the conditional density of each class, we
were used with common parameter initialization. As Fig. 3 iRgj|| obtain almost the same representation with that obtained
dicates, the EM algorithm for training PRBF places one of thgom PRBF with two kernels. Nevertheless, in the following we
kernels in a sensitive way so as to represent all data of the figg§cuss two cases where in the first one the PRBF represents
class, while the unsupervised training places the kernels so ag@ data more parsimoniously than separate mixtures, while in
approximate the density of all data. A serious implication of th@e second the separate mixtures technique provides better rep-
above remark is that the PRBF model is expected to have sup&sentation of data than PRBF. We assume that both PRBF and
rior generalization performance compared with an RBF netwogkparate mixtures utilize two kernels.

trained using a two-stage procedure where in the first-stage sum the first example, assume that we have a two-class problem

pervised learning is applied. and the data set is displayed in Fig. 4. The data are arranged
, ) in two distinct regions, where in each region there exist many
D. Comparison between PRBF and Separate Mixtures patterns of one class and few patterns of the opposite class. If

As stated previously, the training of the PRBF model folwe separately model each class conditional density by a single
lows different principles compared to unsupervised learninGaussian kernel, then [as shown in Fig. 4(a)] we do not obtain a



992 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

does not manage to find a solution similar to that of Fig. 3 be-
cause the two regions of the second class are widely separated.
This example shows that there exist cases where it is desirable
to have a separate set of kernels devoted to represent data of
each class. Finally, a general remark which can be drawn from
the previous examples is that by combining properties of shared
kernel models with those of separate mixtures, we can develop
more general and efficient models for class conditional density
estimation.

T I1l. | NTERMEDIATE MODELS BETWEEN PRBFAND SEPARATE

MIXTURES
-2k
As pointed out in Section Il, the separate mixtures model can

be considered as a constrained special case of the PRBF model.
© In the same way, the EM updates used for separate mixtures
training can be obtained from the EM updates for training PRBF
simply by setting some prior probabilities to zero.

We have also shown in the previous section that, depending
on the data, the PRBF model may or may not provide better
results compared to separate mixtures. From this point of view,
it would be very interesting if we could express intermediate
models between PRBF and separate mixtures for conditional
density estimation. In this spirit, we have devised NRRBF
model described next.

The APRBF model is actually a PRBF model, i.e., once a
APRBF model has been trained for a specific value\aten
in normal operation it is used as a regular PRBF model. The
main difference lies in the training process where the parameter
A plays an important role.

In the APRBF model there is an additional parametdgas-
suming values in [0, 1]), which is incorporated in the training
process to control the degree of sharing of each kernel. More

10

=2}

-4 = ° 2 4 6 8 10 specifically, for a problem withk classes, thé/ kernels of a
(b) PRBF model are partitioned int& disjoint groupsZy, k& =
1, ..., K, so that the grouf} corresponds to class; and
Fig. 5. Displays the data for a two-class problem and the final solution foudd’| + --- + |Tx| = M. We wish that the kernels of group

(a) using two separate single kernels and_ (b) using a PRBF ngtwork with m would fully contribute to the density estimation of clasg,
kernels. In this case the single kernels give better representation of data thgn. . .
PRBE. while they would contribute less (depending on the valug)of

to the density estimation of the other classes. To express this

) N _ _ preference we introduce the following function:
good representation of the actual densities. Obviously, this is

due to the fact that a single kernel is not adequate to model  px(z|Cy) = Z miep(x|g) + A Z mikp(a|)

the density of each class. On the other hand, the PRBF model FETx J¢T

with two kernels adjusts the kernel parameters so that the con- k=1,.... K 27)

ditional densities are adequately modeled [Fig. 4(b)] and asso-

ciates each kernel with both classes by appropriately adjustiffgere the expression ¢ 7. denotes all kernels of the set

the prior values. Note that in order to obtain the same repieh 2« Zi- Itis important to note that the priors;,. satisfy the

sentation using separate mixtures we need four kernels, thaggstraints (3), except for the case wheis zero, where by def-

two kernels for each mixture model. The above example implid¥tion it holds that

that in cases where the data of different classes are highly over- Z o =1

lapped, the PRBF may utilize the kernels more efficiently than k=5

the separate mixtures approach.
The data of the second example are displayed in Fig. 5 wh&bviously, the functiorp, (z|Cy) is not a probability density,

we can observe that the first class data arise from one kerr(elncezchk Tk + A Emn ;5 < 1), except for the cases

while the second class data arise from two distinct kernels. Aden) is one or zero. This function is only defined for training

shown in Fig. 5(a), the single kernel functions provided by a separposes and must be distinguished from the class conditional

arate mixtures model represent the data more adequately coensity p(x|Cy, A) provided as output of thaPRBF model

pared to the PRBF solution. As illustrated in Fig. 5(b), PRBERfter training). The functiop(x|Cy, A) is computed in the

k=1,..., K. (28)
JCTh
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usual PRBF way (2), i.e., the paramekes not involved in the distribution) [5], [7], but are embedded in a novel way into the
normal operation of the model. The parametas included in functional form of the original likelihood.
the definition ofp(z|C%, A) justto denote its involvementisthe The same EM framework presented in Section II-B can also
training procedure. be applied in this case. The log-likelihood function of the com-
The role of\ is to specify ara priori (user defined) preferenceplete data is
that the model would be close to PRBF or to separate mixtures.
Letting A obtain values from one to zero, we move from the case K N
of full sharlng of kernels among cl_asses (PRBF) to th_e_ case _of (0N = Z Z Z 2" log mp(a™|j)
no sharing of kernels (separate mixtures). More specifically, if ket n=1 | jeT,
A is closer to zero, the kernels of grolp will be used more
for representing the conditional density of the clégsand less
for representing the densities of the other classes. In the oppo-
site case, when is closer to one, the kernels @f, have more
freedom to contribute to the estimation of all conditional densiy,q the functior) to be maximized in thé/-step is written as
ties. In other words, through the specification'\gft is possible follows:
to imposea priori constraints to the grouped kernels, which ex-
press how much each group is available to contribute to the con- K N
ditional density estimations of the other classes. In this sens Q) o
can be considered as a special type of hyperparameter, sm(%:?e |49 A Z Z Z Fx1C
controls the adjustment of the rest of parameters.
Based on functions (27), we can introduce the posterior prob-

+ > 2 log Amp(a[5) p (32)

Ty

x™) log mxp(a™|7)
k=1 n=1 | jeT

®) . n - N\ n;
ability of a patternz: of classC;, having been generated from + Z P\ (O, &™) log Amjip(a”|7)
kernel; as follows: JET

K N
mp(aly) . 33 S POl ) ok mpla )
m:hg"(x)v if j € Ti k=1 n=1 | j=1
Py(j|Ch, z) = p(zl) (29)
k . .
m = Muji(x), if j ¢ Ty +log A S PG, ™)
j¢TA
which satisfy K DN ( )
= Z Z ZP (4|Ck, «™) log mjrp(z"|j)
M k=1 n=1
Z Pr(j|Ck, z) = Z hjr(z) + A Z hjr(z) = 1. (30) KD
gt j. T, +1log A Z S 3 POGIGH ). (@9)
=1 n=1 j¢1,

The introduced notatioh; serves as a means of making the

above definition and also the EM algorithm presented belolie second term of (33) does not contain any adjustable param-
more easily understandable. It is apparent that the postedgr since\ is fixed parameter and therefore can be discarded.
values are in general higher for the kernels of gragpather Using (29) theM -step requires the maximization of the func-
than for the rest of kernels since in the latter case the posteritgs

are not penalized by the parameter

N
Ny

K
t .
A. EM Algorithm forAPRBF QBIOM, X) Z Z Z h() ") log mjp(a”|)
The training of the\PRBF model can be formulated as a max- =1 n=t e

imization problem of the following function: .
+A 37 B @) log map(alj) p - (34)

K N JE Ty
L(B]\) = log kl—[l 711_[1 A" |CR) Maximizing (34) is straightforward and it can be carried out
K N in a similar way to that presented in Section II-B. Finally, the
_ Z Z log pa(a”|Ch) (31) following update equations are obtained:
k=1 n=1
subject to the constraints (3) concerning the priors. The Zh(t) Vo +)\Z Zhg?,
above function can be regarded agenalized formof the (t+1) _ k' £k n=1
corresponding likelihood defined by (11). However, it must  #i (35)
be noted that the penalties or parameter constraints are not Z h(') ™) + A Z Z h(')

expressed through the introduction of an additive term (a prior K2k n=1
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N Ny estimations of the class conditional densitig&:|Cy, \;)
t n n t n n .« . ? K
Z h’]('k?(x Jw™ + A Z Zhﬁk)(w Jw through training theAPRBF model (for each valug;). Then
s+l _ =t KAk n=1 36) the conditional density(z|Cy ) for a new pattern:¥+1 can be
’ N Nus computed as the following average:
t t
Zhgk)(a:") + A Z Zhﬁ,g,(x") :
n=1 K £k n=1 r 1 r
LM p(a T Cy) = 7 > pEN Ok, ). (38)
DI CCONN P =
(t41) " 37 In the next section, it is shown that performing averaging using
T = y N (37) few ); values leads in some cases to significantimprovement of
A / (,t), n if &' #£k eneralization performance.
e ; (), if k£ g p
) . IV. EXPERIMENTAL RESULTS
wherej € T, k = 1, ..., K andw™ abbreviates the expres-

sion (2" — u§t+1))(xn _ u§t+1))T_ The above equations actu- 10 assess the classification performance of the proposed

ally differ from the corresponding of Section II-B only in theShared kernel models, we have conducted a series of exper-
definition of the posterior probabilities which now are given bjments on five well-known classification data sets. We have
(29). An interesting issue is that the penalty mechanism (refiPlemented and tested th@RBF network for various choices
ized through\) affects only theE-step of the algorithm. This Of the paramete. The form of kernel functions we used in
differs in principle from the case of other penalized EM prc@!l €xperiments is that of spherical Gaussians, (£g.= o71)
cedures where the penalties (expressed through a separate ggfped as

distribution) affect thé// -step, while the calculation of the func- 1 llz — ;]2

tion Q remains unchanged [5]. p(zlj) = exp {— 5 } (39)
Finally, the EM algorithm for training PRBF is summarized (2mo3) 205

as follows. . _ .
1) Specify the number of kerneld and the initial parameter Furthermore to illustrate the idea of averaging over the pa-

rameter\, we also implemented the modular approach, where
simple averaging is performed as described in equation (38).
In addition, for typical comparison purposes, we have used
the implementation of two-stage training for classical RBF
networks available in the Netlab toolbox [8]. According to this
implementation, in the first stage the basis functions parameters
- are determined by fitting a Gaussian mixture model using
4) M-step: Find th_e new parameter vecgft*) from (35) EM, while in the second stage the basis functions are kept
to (37), re_spectwely. . . fixed and the second-layer weights are computed by solving a
5) Iltergte going to. Step 2) until a local maximum of the IogI’inear system. However, it must be stressed that our purpose is
) I|k§I|hood (31)is reaf:hed. mainly to test the\PRBF network as tool for class conditional
It is straightforward to verify that fod = 0 the above algo- Gayssian mixture modeling and not to perform comparisons
rithm reduces td( independent EM procedures associated witlyii classification models that are based on function approxi-
the separate mixtures case, where the conditional density of fh&tion (as is the RBF model).
classC), is modeled by a mixture containing the kernels of group |, oyr experiments we have considered five well-known data
T}. Also in this case the special constraints concerning priagis- three from the ESPRIT Basic Research Project ELENA
(28) are explicitly satisfied due to (30) and_(37). In the opposiﬁalo_ 6891) [4] (Clouds, Satimage, and Phoneme data sets) and
extreme case where= 1, the update equations reduce to thosgyq from the UCI repository [13] (Pima Indians and lonosphere

values.

2) Setthe parameterto a fixed value and specify the group
of kernelsT, k=1, ..., K.

3) E-step: For each training poift™, k) € X compute
the quantitiesh](% (™), j =1, ..., M, from (29) using
the current parameter values.

corresponding to PRBF (Section II-B). data sets). To assess the performance of the models for each
. problem we have selected the five-fold cross-validation method.
B. Averaging Oven For each problem the original set was divided into five inde-

From the previous presentation, it is obvious that the emplogendent parts (holdouts), where each holdout was created using
ment of theAPRBF model requires the specification of the paandomly selected patterns from the original set. Moreover, care
rameterA. Nevertheless, it is not clear how we can find an opwas taken so that each part maintained the original proportions
timal value for this parameter. Therefore, we have implementachong the data of different classes (i.e., the class priors). Using
an alternative scheme that is based on a multinet approach thase holdouts, five pairs of training and test sets were con-
combines the decisions of several models [10]. More specifitructed by keeping one of them for testing and joining the other
cally, we train severaAPRBF networks for differenk values. four to form a training set. For each problem the results re-
To classify a new pattern we combine for each class (througbrted in the tables correspond to the average test error for the
averaging) the density estimatiop&:|Cy, A\) provided by the five pairs of training and test sets. We present results for sev-
several models. eral numbers of kernel functions which in all cases are multi-

More specifically, we choose a set of valugs;, ¢ = ples of the number of classes. We adopted this convention, be-
1, ..., L} for the parametei and obtain the correspondingcause we would like the groups used X¥§RBF to contain an
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TABLE |
RESULTS ON THECLOUDS DATA SET

Number of kernels

8 10 12 14 16
Algorithm err std err std err std err std err std
RBF 235 | 069 | 232 |0.58 | 2294 | 0.71 | 22.04 | 0.83 | 21.95 | 0.81
A=0 11.84 | 0.8 11.16 | 0.64 | 10.74 | 0.69 | 10.66 | 0.74 | 10.56 | 0.78
A=0.25 1192 | 0.83 | 11.18 | 0.73 | 10.84 | 0.9 | 10.76 | 0.77 | 10.68 | 0.81
A=05 11.26 | 0.83 | 10.94 | 0.67 | 10.76 | 0.87 | 10.68 | 0.87 | 10.6 0.9
A=0.75 11.32 1 0.92 | 11.14 | 0.52 | 10.66 | 0.74 | 10.72 | 0.89 10.6 | 0.86
A=1 11.26 | 0.75 | 10.72 | 0.78 | 10.68 | 0.86 | 10.52 | 0.75 | 10.54 | 0.85
Averaging | 11.48 | 0.9 109 | 063 | 10.72 [ 0.78 | 10.66 | 0.84 | 10.64 | 0.83

TABLE I
RESULTS ON THEIONOSPHEREDATA SET

Number of kernels

4 6 8 10 12
Algorithm | err std err std err std err std err std
RBF 18.24 |1 6.22 | 13.83 | 4.0 | 11.83 | 3.52 | 9.97 | 3.1 9.69 | 2.9
A=0 14.53 | 4.75 | 18.78 [ 6.25 | 12.24 | 3.67 | 11.4 | 3.85 | 9.97 | 2.22
A=0.25 19.93 | 3.07 | 15.98 | 6.11 | 1455 | 5.97 | 12.25 | 1.75 | 9.69 | 4.47
A=05 21.07 | 4.15 | 13.41 | 4.13 | 12.83 | 5.36 | 14.8 | 2.08 | 10.55 | 3.7
A=0.75 21.36 | 4.67 | 13.13 | 4.66 | 12.83 | 6.71 | 14.52 | 2.23 | 8.27 | 4.9
A=1 22.79 | 4.23 | 12.27 | 4.22 | 12.55 | 4.3 | 13.09 | 3.49 9.4 4.66
Averaging | 13.71 | 3.45 | 12.57 | 3.18 | 9.71 | 245 | 9.71 | 245 | 8.85 | 3.17

TABLE Il
RESULTS ON THEPIMA INDIANS DATA SET

Number of kernels

6 8 10 12 14
Algorithm err std err std err std err std err std
RBF 25.52 | 3.38 | 24.0 | 3.6 | 23.9 | 2.87 | 23.52 | 2.80 | 23.26 | 2.56
A=0 27.05 | 3.75 | 264 | 4.18 | 26.92 | 2.38 | 26.14 | 2.51 | 25.88 | 3.57
A=025 |25.48 | 3.68 | 26.27 | 3.99 | 27.05 | 2.43 | 25.09 | 2.91 | 25.75 | 3.1
A=05 2745 | 4.45 ) 26.01 | 3.13 | 26.01 | 2.62 | 25.75 | 2.66 | 23.22 | 3.64
A=0.75 28.62 | 3.88 | 26.53 | 1.87 | 26.14 | 1.89 | 27.45 | 2.51 | 25.62 | 3.29
A=1 30.32 | 2.63 | 29.15 ] 3.02 | 2797 | 2.2 [ 29.93 | 2.12 | 26.53 | 4.42
Averaging | 26.27 | 3.9 | 24.7 | 318 | 247 | 2.9 | 2431 | 2.12 | 24.18 | 3.6

equal number of kernels, since we assumed no prior informa-The Satimage data set [4] contains 6435 36-dimensional
tion concerning the complexity of the data of each class. Tipatterns belonging to six classes. The ELENA database
kernels of grouf} were initialized using training patterns ofprovides also a five-dimensional description of this data set
the corresponding class;, and all models were tested undewhich was obtained using discriminant factorial analysis.
the same parameter initialization. Moreover, the bold numberhis five-dimensional data set is used in our experiments.
in each table indicate the model that provided best average geerformance results concerning average generalization error
formance for a specific number of kernels. and its standard deviation from the five-fold cross-validation
The Clouds data set [4] consists of 5000 two-dimensional paxperiment are displayed in Table IV. Table V displays the
terns of two classes with equal class proportions. Performarc@responding performance results for the Phoneme data set
results concerning the average generalization error and its st@i-which contains 5404 five-dimensional patterns belonging
dard deviation from the five-fold cross-validation experimertb two classes.
are displayed in Table I. As Table | indicates, the RBF network From the presented experimental results, it is clear that the
provides high generalization error, due to the improper way wikPRBF network is more effective than the classical RBF net-
which unsupervised learning for hidden layer places the kernalsrk (except for the case of the Pima Indians dataset). More-
in the data space. On the other hand, the PRBFE(1) gives over, there is no clear conclusion that can be drawn concerning
the best generalization performance for almost all numbersthe performance of the PRBR & 1) and the separate mixtures
kernels. model & = 0). An important conclusion is that in many cases
The lonosphere data set [13] contains 351 34-dimensiofedtter performance results are obtained for intermediate values
patterns belonging to two classes. Performance results are sofmx and, also, that the multinet approach, although more com-
marized in Table Il. Table Il displays the corresponding perfoputationally expensive, constitutes a technique that on average
mance results for the Pima Indians data set [13] which contaip®vides the best performance results.
768 eight-dimensional patterns belonging to two classes.
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TABLE IV
RESULTS ON THEPHONEME
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DATA SET

Number of kernels
8 10 12 14 16
Algorithm err std err std err std err std err std
RBF 24.5 | 0.94 | 2457 | 0.39 | 24.00 | 0.88 | 24.12 | 0.61 | 24.08 | 0.65
A=0 21.27 | 1.04 | 20.59 | 0.51 | 20.20 | 1.45 | 20.53 | 0.83 | 20.24 | 0.67
A=025 | 22.38 | 1.12 | 20.81 | 0.56 | 19.85 | 1.16 | 19.94 | 0.41 | 20.03 | 1.03
A=05 21.75 | 0.75 | 21.03 | 0.36 | 20.74 | 0.55 21 0.94 | 20.64 | 0.87
A=0.75 | 21.57 | 0.88 | 21.53 | 0.49 | 22.06 | 0.44 | 21.42 | 0.86 | 21.27 | 0.7
A=1 21.51 [ 0.87 | 2146 | 0.5 | 21.62 | 0.63 | 21.53 | 0.67 | 21.42 | 0.73
Averaging | 20.94 | 0.88 | 20.44 | 0.73 | 20.33 [ 0.98 | 20.64 | 0.92 | 20.35 | 0.93
TABLE V
RESULTS ON THESATIMAGE DATA SET
Number of kernels
12 18 24 30 36
Algorithm | err std err std err std err std err std
RBF 16.51 [ 0.48 | 15.85 | 0.83 | 14.07 | 0.63 | 14.28 | 0.71 | 14.15 | 04
A=0 15.14 { 0.5 | 14.89 | 0.61 | 13.97 { 0.36 | 1345 | 0.76 | 13.56 | 0.3
A=025 | 1587 [ 0.84 | 149 | 0.85 14 0.64 | 12.95 | 0.83 | 12.74 | 0.73
A=0.5 1590 | 0.8 | 15.14 | 1.09 | 14.12 | 0.78 | 13.28 | 0.59 | 12.99 | 047
A=0.75 |16.29 | 0.5 | 1562 | 0.55 | 15.17 [ 0.48 | 14.42 | 0.88 | 14.34 | 0.78
A=1 15.87 | 0.75 | 15.65 | 0.93 | 15.15 1 14.70 | 0.65 | 14.28 | 0.49
Averaging | 14.4 | 0.3 | 14.04 | 0.41 | 13.56 | 0.5 | 12.71 [ 0.46 | 12.28 | 0.38
V. CONCLUSION AND FUTURE RESEARCH ACKNOWLEDGMENT

We have presented probabilistic models for class conditional
density estimation, that are based on the idea of kernel shar{'ﬂ
among the classes, which is in direct analogy with the classica
RBF network. In this spirit we have presented the PRBF network
and developed an EM algorithm for fast and effective PRBF
training.

Moreover, we further extended the above idea and proposed
a more general model (thePRBF network) which allows for  [1]
controlling the degree of sharing of grouped kernels among the

. ; e 2]
classes. This general model constitutes a unifying framework[
for treating mixture models for classification and encompasses
as special cases both the PRBF network ffoe 1) and the  [3I
traditional separate mixtures approach (foe 0). We also de- 4]
veloped an EM algorithm for efficient training of thePRBF
network. Since the performance of the model depends drastilS]
cally on the value of\ (which is problem dependent and must 6]
be specified by the user), we also proposed a multinet approacL
where several models are constructed for different values of [7]
and the network outputs are combined to classify a new patterng,

Current and future research is focused on two directions. The
first is the development of a more flexible model that will allow [©]
for the separate specification of the degheg with which the [10]
kernelj is allowed to contribute to the conditional density es-
timation of clas<C.. Besides, it is of significant importance to [11]
develop training algorithms that will automatically adjust the[lz]
value of\. The second research direction is related to the devel-
opment of algorithms that dynamically adjust the number of ker13]
nels. Specifying the number of basis functions is an importan 4,
open research issue in RBF training and mixture modeling, and
our aim is to check the adaptation and applicability of the sev-
eral techniques proposed so far in the framework of the PRBES]
network [14], [15].

The authors would like to thank the anonymous referees for
ir useful suggestions.
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