
926 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 6, JUNE 2009

Sparse Bayesian Modeling With
Adaptive Kernel Learning
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Abstract—Sparse kernel methods are very efficient in solving
regression and classification problems. The sparsity and perfor-
mance of these methods depend on selecting an appropriate kernel
function, which is typically achieved using a cross-validation pro-
cedure. In this paper, we propose an incremental method for su-
pervised learning, which is similar to the relevance vector machine
(RVM) but also learns the parameters of the kernels during model
training. Specifically, we learn different parameter values for each
kernel, resulting in a very flexible model. In order to avoid over-
fitting, we use a sparsity enforcing prior that controls the effective
number of parameters of the model. We present experimental re-
sults on artificial data to demonstrate the advantages of the pro-
posed method and we provide a comparison with the typical RVM
on several commonly used regression and classification data sets.

Index Terms—Classification, kernel learning, regression, rele-
vance vector machine (RVM), sparse Bayesian learning.

I. INTRODUCTION

I N supervised learning, we are given a training set
, so that is a noisy measurement of the

output of a function when its input is . Then, we wish
to predict the output of the function at any arbitrary test
point .

In regression, the outputs are continuous and they usually
contain additive noise

(1)

Predictions are typically made by assuming a parametric form
for the function , for example, a linear model

(2)

where are the weights of the linear model
and is the basis function set. Furthermore, the
noise is typically assumed to be independent, identically
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distributed (i.i.d.), following a Gaussian distribution with zero
mean and variance

(3)

From (1) and (3), we get the likelihood of this model, which is

(4)

where and

denotes the multivariate -dimensional Gaussian distribution
over with mean and covariance matrix .

In classification, the outputs are discrete and assuming
classes they can be coded so that if belongs to class

, otherwise . Predictions can be made by assuming that
the outputs follow a multinomial distribution, whose param-
eters are given by applying a sigmoid function to a linear model
with outputs

(5)

The linear model of (2) is a very powerful model that can
approximate any function provided that appropriate (both in
number and in shape) basis functions have been selected. For
this reason, it is important to select an appropriate basis function
set. The relevance vector machine (RVM) [1], [2] assumes that
the basis function set consists of kernel functions “centered” at
each training point

(6)

where is some kernel function. Although this model
has as many parameters as training points, overfitting can be
avoided by using some regularization technique, for example,
assuming a prior distribution for the weights . The simplest
choice is to use a Gaussian distribution on the weights

, which provides good regularization and al-
lows inference at small computational cost. However, such prior
cannot capture the local properties of the data. Furthermore,
since it assumes identical variance for all weights, it cannot
yield sparse estimations, i.e., estimations in which only a few
basis functions are used. Sparsity is a desirable property that
has attracted a lot of attention lately since it is an efficient way to
control the complexity of the model and avoid overfitting. Fur-
thermore, making predictions with sparse models is very com-
putationally efficient. In order to obtain sparse estimations, the
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RVM assumes a Gaussian prior with different precision for
each weight

(7)

where . Under the Bayesian framework,
the parameters can be estimated by maximizing the marginal
likelihood , obtained by integrating out the weights .
Sparsity is achieved because most of the parameters are es-
timated to very large values, thus pruning the corresponding
basis functions by forcing their weights to become zero. Re-
cently, RVM has been used successfully in many applications,
for example, in recognition of hand motions [3], recovery of 3-D
human pose from silhouettes [4], detection of clustered micro-
classifications for mammography [5], classification of gene ex-
pression data [6], [7], detection of activations for neuroimaging
[8], real-time tracking [9], and object detection in scenes [10].
In spite of this, in order to obtain good generalization perfor-
mance, it is important to select an appropriate kernel function.

Although typically the kernel is selected using a cross-val-
idation technique, there has been work on learning the kernel
function simultaneously with model parameters. It has been
proposed in [11] that the width parameter of Gaussian kernels
can be learned by maximizing the marginal likelihood of the
model. Also, in [12]–[14], the kernel has been modeled as a
linear combination of other basis functions. In [15], feature
selection has been achieved by using a kernel function with
separate scaling factor for each feature and applying a sparsity
prior to the scaling factors. Finally, in [16], an alternative
to the Gaussian process (GP) model has been proposed that
learns a set of pseudoinputs, which are similar to the relevance
vectors (RVs), but do not necessarily coincide with points of the
training set. All these methods attempt to learn parameters of
kernels that are centered at many different locations, however,
they assume that all these kernels have the same parameters.
This might be a significant limitation if the data that we attempt
to model have different characteristics at different locations,
such as a signal with varying frequency. In the context of
GPs, such cases can be treated using nonstationary covariance
functions [17].

In this paper, we propose a new methodology to automati-
cally learn the basis functions of a sparse linear model. Unlike
the existing literature, the proposed methodology assumes that
each basis function has different parameters, and in principle,
it can even have different parametric form, therefore, it is very
flexible. In order to avoid overfitting, we use a sparsity enforcing
prior that directly controls the number of effective parameters of
the model. This prior has previously been used for orthogonal
wavelet basis function sets [18], but here we extend it for ar-
bitrary basis function sets. Learning in the proposed model is
achieved using an algorithm that is similar to the incremental
RVM algorithm [19]. It starts with an empty model and at each
iteration it adds to the model an appropriate basis function, in
order to maximize the marginal likelihood of the model. In the
incremental RVM, selecting a basis function is achieved using
discrete optimization over the location of the basis functions; all
candidate basis functions are tested for addition to the model.

In contrast, the proposed methodology uses continuous opti-
mization with respect to the parameters (such as location and
scale) of the basis functions. We then employ this methodology
to learn the center (mean) and width (variance) parameters of
Gaussian kernel basis functions.

There are several advantages of the proposed methodology as
compared to traditional RVM [1].

• There is no need to select the parameters of the kernel via
cross validation, since they are selected automatically.

• Because each kernel may have different parameter values,
the model is very flexible and it can accurately solve a wide
variety of problems.

• The obtained models are typically much sparser compared
to the typical RVM.

The rest of this paper is organized as follows. In Section II, we
review sparse linear models and the RVM and we generalize the
sparsity prior of [18] for nonorthogonal basis function sets. In
Section III, we present an algorithm for learning the basis func-
tion set. In Section IV, we provide experiments on artificial data
sets that demonstrate the advantages of the proposed method
and we compare the proposed algorithm with the typical RVM
algorithm on benchmark data sets. In Section V, we discuss the
computational cost of the method and provide a probabilistic in-
terpretation of the kernel function, and finally, in Section VI, we
provide some conclusions.

II. SPARSE BAYESIAN LINEAR MODELS

A. Sparse Bayesian Regression

In this section, we will review sparse Bayesian learning
of linear models [1] under the assumptions of a Gaussian
prior with separate variance for the weights, given by (7),
and Gaussian noise with separate precision for each data
point . Assigning separate precision
for each data point is important to derive the classification
algorithm, and furthermore, it allows designing robust regres-
sion models by selecting an appropriate noise precision prior

. For example, assuming a Gamma probability density
function (pdf) for the noise precisions, corresponds to a
student’s pdf for the noise , which
achieves robustness because it has heavy tails [20]. The like-
lihood of this model is a generalization of (4) and by defining
the fixed “design” matrix , with

, it can be written as

(8)

where and .
The posterior distribution of the weights can be computed

using Bayes’ law

(9)

where is given by (7). It can be shown that the weight
posterior distribution is given by [1]

(10)
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where

(11)

(12)

and . Here, although we introduced a prior dis-
tribution on and , we do not attempt to compute the joint
posterior of the hidden variables, but we only com-
pute the weight posterior . Then, we find maximum
a posteriori (MAP) estimates for and by finding the mode

of its posterior . As-
suming uninformative priors for and , update formulas can
be obtained by maximizing the logarithm of the marginal like-
lihood [1]

(13)

where . The derivative of the marginal
likelihood with respect to is

(14)

and by setting it to zero, we obtain the following update formula
for [1]:

(15)

where .
Furthermore, since the noise is assumed i.i.d., then

with and we can also update the noise pre-
cision . The derivative of the marginal likelihood with respect
to is given by

(16)

and by setting it to zero, we obtain the following update formula
for [1]:

(17)

B. Sparse Bayesian Classification

For simplicity, we only consider binary classification and as-
sume that the outputs are coded so that .1 Then, the
multinomial likelihood in (5) simplifies to a Bernoulli likelihood

(18)

where . Using the Laplacian approxima-
tion, the classification problem can be mapped to a regression
problem with heteroscedastic noise [1].
The noise precision is given by

(19)

1Multiclass problems can be solved using the one-versus-all approach, which
builds only two class models.

and the regression targets are

(20)

where and .

C. Incremental Optimization for Sparse Bayesian Learning

Notice that the computational cost of the sparse Bayesian
learning algorithm is high for large data sets, because the com-
putation of in (12) requires operations. A more com-
putationally efficient incremental algorithm has been proposed
in [19]. It initially assumes that , for all ,
which corresponds to assuming that all basis functions have
been pruned because of the sparsity constraint. Then, at each
iteration, one basis function may be either added to the model
or reestimated or removed from the current model. When adding
a basis function to the model, the corresponding parameter
is set to the value that maximizes the marginal likelihood.

More specifically, the terms of the marginal likelihood (13)
that depend on a single parameter are [19]

(21)

where

(22)

(23)

and .
In regression, we have and usually , while in
classification, and are given by (19) and (20), respectively.

In order to simplify computations, one can define

(24)

(25)

and compute and from

(26)

(27)

Also the inversion of can be avoided by using the Woodbury
identity to write

(28)

(29)

It has been shown in [21] that has a single maximum at

if (30)

if (31)

Based on this result, the incremental algorithm proceeds itera-
tively, adding each time a basis function if and re-
moving it otherwise.

An important question that arises in the incremental RVM
algorithm is which basis function to update at each iteration.
There are several possibilities, for example, we could choose a
basis function at random, or with some additional computational
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cost, we could test several and select the one whose addition will
cause the largest increase to the marginal likelihood.

D. Adjusting Sparsity

In Bayesian modeling, the characteristics of the estimation
depend on the assumed prior distribution . Thus, the
sparsity of the weights of a sparse linear model is moti-
vated by their prior distribution .
Since is given by (7), sparsity depends on se-
lecting an appropriate distribution . The typical RVM
[1] proposed to use independent Gamma distributions

. Then, the weight prior is a
student’s distribution, which supports sparse models because
of its heavy tails. Because it is difficult to select appropriate
values for the parameters and of the Gamma distribution,
they are typically set to . These values define an
improper uninformative distribution for and correspond to

, which again has heavy tails and supports
sparse estimations.

Another approach to control the amount of sparsity is to
define a prior on that directly penalizes models with large
number of effective parameters [18]. Notice that the output of
the model at the training points
can be evaluated as , where is the
so-called smoothing matrix. The “degrees of freedom” of ,
given by the trace of the smoothing matrix , measure
the effective number of parameters of the model. This motivates
the following sparsity prior [18]:

(32)

where the sparsity parameter provides a mechanism to control
the amount of desired sparsity. When using specific values of
the sparsity parameter , some known model selection criteria
are obtained [22]

none (typical RVM)
AIC (Akaike information criterion)
BIC (Bayesian information criterion)
RIC (risk inflation criterion)

(33)
Learning using this prior is achieved by maximizing the pos-

terior . If the basis function set
is orthogonal and the noise precision is the same
for each data point , this prior reduces to

(34)

Assuming an uninformative prior for the noise ,
the use of the sparsity prior of (34) leads to the addition of a
normalization term to the marginal log-likelihood of (13)

(35)

Keeping only the terms that depend on a single parameter ,
we can write

(36)

Based on this decomposition, an incremental algorithm that
maximizes the marginal likelihood has been proposed in [18],
which is similar to the typical incremental RVM algorithm [19].
However, because of the sparsity prior, setting the derivative of
(36) to zero does not provide analytical updates [such as (30)]
for the weight precisions , but instead a numerical solution is
used to update them.

In this work, we consider the general case of nonorthogonal
basis functions and heteroscedastic noise with different noise
precision at each data point. Since

, we can write the proposed sparsity prior as

(37)

Learning is again performed by maximizing the posterior
, which leads to adding to

the marginal log-likelihood of (13) an additional term that is
obtained from (37)

(38)

Setting the derivative of with respect to to zero

(39)

We obtain the following update formula for :

(40)

In the regression case, assuming that , we can also
update by setting the derivative of with respect to to
zero

(41)

Because of the sparsity prior, we cannot solve this equation an-
alytically. However, we can easily obtain a numerical solution
that we use to update .

Regarding the incremental algorithm, keeping only the terms
of that depend on a single parameter and because

[19], we obtain

(42)

whose gradient is given by

(43)

Setting this gradient to zero, we find that is maximized
at

if

if (44)
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III. KERNEL LEARNING

A. Sparse Infinite Linear Models

Consider a linear model of the form (2). Applying a sparsity
prior on the weights of this model allows us to use very flexible
models, for example, the RVM assumes one kernel function for
each training point. We can even consider linear models with
infinite number of basis functions

(45)

which are defined by using a family of basis functions
with parameters . Then, is a function whose output is
the weight for the basis function with parameters . In this con-
text, sparsity implies that there will be only a finite number of
nonzero weights

(46)

where if , otherwise .
Thus, under the assumption of (46), the sparse infinite
linear model is equivalent to a finite linear model with
weights and kernel parameters

(47)

However, learning this model requires not only computing the
posterior distribution of the weights and estimating the weight
precisions , but also estimating the basis function parameters

. This can be achieved by modifying the RVM algorithm in
order to optimize the kernel parameters at each iteration.

B. Learning Algorithm

In this section, we propose an algorithm for learning the
model of (47). Notice that the typical RVM algorithm cannot
be applied here, since it is based on the assumption that are
fixed in advance. Instead, the proposed algorithm is based on
the incremental RVM algorithm, and therefore, it works with
only a subset of the basis functions, which are named active
basis functions. In order to explore the basis function space,
there are mechanisms to convert inactive basis functions to
active and vice versa.

Specifically, at each iteration, we select the most appropriate
basis function to add to the model as measured by the incre-
ment of the marginal likelihood. Therefore, in order to select a
basis function for addition to the model, we perform an opti-
mization of the marginal likelihood with respect to the param-
eters of the basis function. In a typical RVM, where the basis
functions are kernels, this optimization is performed with re-
spect to the locations of the kernels. Furthermore, because the
kernels are assumed to be located at the training points, this op-
timization is discrete. In contrast, an infinite linear model as-
sumes continuous parameters for the basis functions, and there-
fore, continuous optimization must be employed, which uses the

derivatives of the marginal likelihood with respect to the param-
eters of the basis functions. Furthermore, in contrast to the incre-
mental RVM algorithm, which at each iteration selects a single
basis function and it either adds it to the model or reestimates
its parameters or removes it from the model, the proposed algo-
rithm performs at each iteration all these three operations; it first
attempts to add a basis function to the model, then updates all
parameters of active basis functions, and finally, removes any
active basis functions that no longer contribute to the model.
The additional operations speed up convergence without intro-
ducing significant computational cost, since there are only few
active basis functions.

Algorithm 1: Sparse Infinite Linear Model Learning

1) Select an inactive basis function to add to the model
(convert to active) as follows:

a) consider an initial set of inactive candidate basis
functions by sampling their parameters at random;

b) optimize separately the parameters of each candidate
basis function to maximize the marginal likelihood;

c) add to the model the candidate basis function that
increases the marginal likelihood the most.

2) Optimize the parameters of all currently active basis
functions.

3) Optimize hyperparameters and noise precision .
4) Remove from the model any unnecessary active basis

functions.
5) Repeat steps 1)–4) until convergence.

The steps of the proposed learning method are summarized
in Algorithm 1 and we next discuss them in detail.

1) Select an Inactive Basis Function to Add to the Model: In
order to add a basis function to the model, we first need to select
a basis function from the set of inactive basis functions,
and then to assign a value to the precision parameter . Both
these tasks are performed by maximizing the marginal likeli-
hood

(48)

In the typical incremental RVM method, there is one basis func-
tion for each training point, thus the set of candidate basis func-
tions is discrete and finite . Therefore, se-
lecting a basis function to add to the model requires discrete
optimization

(49)

This maximization is performed by simply evaluating the
marginal likelihood for each candidate basis function

. In contrast, in the proposed method, we as-
sume that all basis functions have the same parametric form

, therefore, this optimization is
now continuous, in the joint space defined by the hyperparam-
eters and the basis function parameters

(50)

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on January 8, 2010 at 04:57 from IEEE Xplore.  Restrictions apply. 



TZIKAS et al.: SPARSE BAYESIAN MODELING WITH ADAPTIVE KERNEL LEARNING 931

Notice that we can analytically maximize the marginal like-
lihood with respect to [see (44)] and we maximize numer-
ically only the basis function parameters . Specifically, we
perform this continuous maximization using the quasi-Newton
BFGS method, which requires the derivative for , given by

(51)

where

(52)

(53)

with . These derivatives can
be efficiently computed in a similar manner as in (28)

(54)

(55)

where

(56)

(57)

which gives

(58)

(59)

Notice that since we use a local optimization method, we can
only attain a local maximum of the marginal likelihood, which
depends on the initialization. For this reason, we perform this
maximization several times, each time with different initializa-
tion, and then we use the parameters that correspond to the best
solution. The initialization is randomly performed by sampling
from an uninformative (uniform) distribution . In order to
speed up convergence, we can initially place a basis function
with high probability at regions where the model does not fit
the data well. For example, if the basis functions are Gaussian
kernels, we can initialize the mean of a Gaussian kernel at a
training point selected with probability proportional to the
square of the error of the model at that point

(60)

2) Optimize Active Basis Functions: Although we optimize
the parameters of each basis function at the time that we add
it to the model, it is possible that the optimal values for the
already existing parameters will change, because of the addition
of the new basis function. For this reason, after the addition of
a basis function, we optimize the parameters and of all
the active basis functions of the current model. Specifically, the
weight precision parameters are updated using (30), while the

basis function parameters are updated using an optimization
algorithm. Instead of computing separately the derivative for
each from (51), we use the following formula [1]:

(61)

where is given by

(62)

3) Optimize Hyperparameters and Noise Precision: The hy-
perparameters of the active basis functions are updated at each
iteration using (40). Similarly, in regression, the noise precision

is updated by numerically solving (41).
4) Remove Basis Functions: After updating the hyperparam-

eters of the model, it is possible that some of the active basis
functions will no longer have any contribution to the model. This
happens because of the sparsity property, which allows only few
of the basis functions to be used in the estimated model. For
this reason, we remove from the model those basis functions
that no longer contribute to the estimate, specifically those with

. Removing these basis functions is important, not
only because we avoid the additional computational cost of up-
dating their parameters, but also because we avoid possible sin-
gularities of the covariance matrices due to numerical errors in
the updates.

5) Repeat Until Convergence: We assume that the algorithm
has converged when the increment of the marginal likelihood is
negligible . Because at each iteration we con-
sider only a subset of the basis functions for addition to the
model, we assume that convergence has occurred only when the
above criterion is met for ten successive iterations.

IV. NUMERICAL EXPERIMENTS

In this section, we present results from the application of the
proposed method (denoted with aRVM) to various artificial and
real regression and classification problems. We compare our ap-
proach with 1) the typical RVM with Gaussian kernel [1], and 2)
the RVM with a smoothness prior and orthogonal wavelet basis
functions (denoted with sRVM) [18]. Notice that the sRVM ap-
proach is based on wavelet analysis requiring that the training
data points are equally spaced. Therefore, it cannot be used for
arbitrary multidimensional regression and classification prob-
lems and we test it only on 1-D artificial regression example.

More specifically, we consider Gaussian kernel functions of
the form

(63)

whose derivatives with respect to the mean and variance param-
eters are

(64)

(65)
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Fig. 1. Basis functions that aRVM uses for estimation of the Doppler signal. The dotted line shows the true signal, the dashed line shows the estimation of aRVM,
and the solid lines show the basis functions that aRVM uses (multiplied by their corresponding weight).

Of course, we can use any other type of kernel functions, as long
as we can compute the derivatives with respect to the parameters
we want to optimize. We can even examine many types of basis
functions simultaneously.

In our implementation, we use the quasi-Newton BFGS
method to perform the necessary optimizations. Specifically, in
order to select a basis function to add to the model, we perform
100 runs of the BFGS, each time starting from a different
initialization, and each of these runs lasts no more than ten
BFGS iterations. Then, we only keep the best solution and
consider adding the corresponding basis function to the current
model. When updating the parameters of all the active basis
functions, we stop after 100 BFGS iterations.

A. Experiments on Artificial Data

1) Regression: In the first experiment, we generated
points from the well-known “Doppler” function [18]

(66)

with and added white Gaussian noise of variance
.

First we applied the proposed aRVM method setting
, in order to demonstrate how the proposed method

learns the kernels. Fig. 1 presents plots of the true and estimated
signal and also the kernels that contribute to this estimation. No-
tice that kernels with large width are used for the right part of
the estimation, where the Doppler function is relatively smooth,
while kernels with small width are used for the left part of the
estimation, where the Doppler function varies rapidly.

We also applied the three compared methods and evaluated
the estimated model on the 128 training points. In order to mea-
sure the quality of the estimates, we compute the mean square
error , where is the estimated
value of the function at input and is the number of data
points. For aRVM and sRVM, we set the sparsity parameter to

, and and for the kernel
width of RVM, we test several values and select to illustrate the
cases , and . The second of these cases

is the value that produced the smallest MSE among all
tested values of . The results are shown in Fig. 2. Notice that
as the smoothness parameter increases, the estimated aRVM
model contains less basis functions, thus it exhibits robustness
to noise. The same happens with the sRVM and also when in-
creasing the width of the kernel in the typical RVM. Also notice
that when using the typical RVM with a small kernel size [shown
in Fig. 2(b)], noisy estimates are obtained, while when using a
large kernel [shown in Fig. 2(h)], large fluctuations of the func-
tion (high frequencies) cannot be adequately estimated. Instead,
the adaptive RVM and the sRVM [shown in Fig. 2(d) and (f)]
can successfully estimate functions that exhibit smoothness in
some regions and large fluctuations in other regions. However,
the sRVM gives worse solutions in terms of MSE than aRVM,
because Gaussian basis functions appear to be more appropriate
than wavelets for modeling the “Doppler” signal.

In the next experiment, we compare the performance of
aRVM, RVM, and sRVM for several noise levels, using again
the “Doppler” function of (66). For aRVM and sRVM, we set
the sparsity parameter to , and for RVM, we
selected to illustrate the cases , and
for the width of the kernel. Notice that is the optimal
value for the width of the kernel when SNR . In Fig. 3,
we provide the MSE of the estimate of each method for various
signal-to-noise ratios (SNRs). Here, we observe that the RVM
model with a specific kernel width provides good performance
only for a small SNR range. Instead, aRVM and sRVM pro-
vide effective models for any SNR value, but aRVM provides
consistently better performance than sRVM.

2) Classification: In this section, we compare the typical
RVM and adaptive RVM (aRVM) methods on classification
problems (sRVM has been proposed only for regression prob-
lems). We generated two-class, 2-D, artificial data by obtaining
50 samples from each of the following Gaussian mixture
distributions:

(67)

(68)
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Fig. 2. Regression example with Doppler signal. Estimates obtained (a), (d), and (g) with aRVM; (b), (e), and (h) with RVM; and (c), (f), and (i) with sRVM. The
dashed line shows the true signal, the dots are the noisy observations, and the solid line shows the estimate. Under each figure, the values of the kernel width � or
sparsity parameter �, the test mean square error (MSE) of the model, and the number of RVs are shown. (a) � � �� MSE � ������� and RV � ��; (b) � � ����
MSE � ������� and RV � ��; (c) � � �� MSE � ������� and RV � ��; (d) � � 	
��	�

�	�
� MSE � ������� and RV � ��; (e) � � �� MSE � �������
and RV � ��; (f) � � 	
��	�

�	�
� MSE � ������� and RV � ��; (g) � � 
��	�
� MSE � ������� and RV � �; (h) � � �� MSE � ������� and RV � ��;
and (i) � � 
��	�
� MSE � ������� and RV� �.

Fig. 3. Comparison of the performance of aRVM, typical RVM, and sRVM for
several noise values.

with , and
. It can be observed that each class consists of two

Gaussian clusters, one with large variance and another with
small variance. We then trained RVM and aRVM classifiers and
evaluated them by computing the percentage of misclassified
examples over 10 000 test points drawn from the mixture
distributions of (67) and (68). For aRVM, we set the sparsity
parameter to , and , and for
RVM, we test several values for the kernel width and select the
values , and , the second of which

is the value that minimizes the misclassified test
examples. Notice in Fig. 4 that when using the typical RVM
with a small kernel there is severe noise in the estimation of
the decision boundary between the clusters with large variance.
Instead, when using a large kernel, the model fails to estimate
the decision boundary near the clusters with small variance.
On the other hand, when using aRVM, both clusters can be
estimated well, because kernels of different width are used.
Although the ability to use very small kernels may lead to
overfitting, this is avoided by selecting appropriate parameter
value for the sparsity controlling prior [Fig. 4(c)].
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Fig. 4. Classification example on artificial Gaussian clusters. Estimates obtained with (a), (c), and (e) aRVM; and (b), (d), and (f) RVM. Circles and crosses
correspond to the data points of the two classes, the solid line shows the decision boundary, and the dotted line shows the curves where the decision probability is
0.75. Under each figure, the values of the kernel width � (for RVM) or sparsity parameter � (for aRVM), the misclassification error ���, and the number of RVs
are shown. (a) � � �� � � 16.71%, and RV� �; (b) � � ���� � � 19.24%, and RV � ��; (c) � � 	
������� � � 15.10%, and RV � �; (d) � � ���� � �
19.91%, and RV � �
; (e) � � 	
����� � � 15.24%, and RV � �; and (f) � � ��
� � � 23.74%, and RV � ��.

B. Experiments on Real Data Sets

In this section, we compare the performance of the proposed
method (aRVM) with the typical RVM method on several re-
gression and classification data sets.2 In what follows, we de-

2Computer Hardware, Concrete, and Pima data sets were obtained from
the University of California at Irvine (UCI) Machine Learning Repos-
itory at http://archive.ics.uci.edu/ml/, the Boston Housing data set was
obtained from http://lib.stat.cmu.edu/datasets/boston, and the Banana, Titanic,
Image, and Breast Cancer data sets were obtained from http://ida.first.fraun-
hofer.de/projects/bench/.

scribe the experimental setup that we followed. For each data
set, in order to estimate the generalization error of each method,
we perform tenfold cross validation, i.e., we perform ten ex-
periments using each time one fold as a test set and the re-
maining nine folds for training. In each experiment, we test
several values for the parameters of the models, specifically,

for the width of RVM and
, and for the sparsity parameter of

aRVM. For each parameter value, we train nine models, using
one of the nine folds as validation set and the remaining eight
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TABLE I
COMPARISON OF ARVM AND RVM ON REGRESSION

TABLE II
COMPARISON OF ARVM AND RVM ON CLASSIFICATION

folds as training set. The parameter value providing the best av-
erage performance over the nine runs is selected and the cor-
responding model is subsequently evaluated by measuring the
error on the test fold. In regression, the error is the mean square
error MSE , where is the value given
by the test set, is the predicted value, and is the number
of test examples. In classification, the error is the percentage of
misclassified examples in the test set.

The results in Tables I and II show the cross-validation error
and the number of RVs (averaged over ten folds) that were ob-
tained by applying the RVM and aRVM methods on several re-
gression and classification data sets. We can observe that in both
regression and classification problems, the solutions obtained
with aRVM use much less RVs than the solutions obtained with
the typical RVM. Furthermore, in regression, the aRVM method
provides more accurate estimates compared to the typical RVM.
In the classification data sets, the accuracy of the two methods
is generally comparable but the aRVM solution is considerably
sparser.

V. DISCUSSION

A. Computational Cost

The computational cost of each iteration of the typical RVM
algorithm is dominated by the inversion of the matrix of
(12), which is , where is the number of training points,
assuming that we use one basis function at each training point. In
the incremental RVM algorithm, the size of the matrix is

, where is the number of basis functions that are used in the
estimated model and which is much smaller because the model
is sparse. The computational cost of the incremental algorithm
is dominated by the cost of selecting which basis function to add
at each iteration, which is .

In the proposed aRVM algorithm selection of which basis
function to add is achieved using a quasi-Newton optimiza-
tion method, which is in general more computational expensive
as compared to the incremental RVM basis function selection
mechanism. However, generally, aRVM requires significantly

less iterations, because it adds less basis functions than the in-
cremental RVM. Furthermore, aRVM does not require the addi-
tional computational cost of performing cross validation to se-
lect the kernel width. The smoothness parameter can be set to

, which corresponds to the BIC model selection
criterion and which has been observed to give very good results
in most problems (this value was also suggested in [18]). Even
if we choose to use cross validation to select the smoothness
parameter , we typically need to consider only few values, in
contrast to the RVM where selecting the width of the kernel is
a much more tedious task.

B. Probabilistic Kernel Interpretation

A GP [17] models an unknown function by assuming
that the joint distribution of any subset of

values of this function is Gaussian. Usually the mean
of this Gaussian distribution is assumed zero and the GP is de-
fined by the covariance function , which computes the
covariance of the outputs of the function at two arbitrary
points and .

As noted in [1], the marginal distribution of the observations
in a sparse linear model is a Gaussian distribution given by

[see (13)], therefore the sparse linear
model is a special case of GP, with covariance function given
by

(69)

This covariance function depends directly on the basis functions
. Furthermore, assume that the generative model of

the inputs is a mixture model

(70)

with the generative distributions proportional to the
kernel functions

(71)

and . Then, the covariance function of
(69) is proportional to the probability to generate two inputs
and from the same component of the mixture model

(72)

Such probabilistic interpretation of the kernel function has
been used to construct kernels in [23]. Here, it provides useful
intuition on the advantages of learning the basis functions. Typ-
ically, in order to fit a mixture model to some training set, we
learn the mixing coefficients and also parameters of the mixing
distributions. However, the typical RVM learns only the mixing
coefficients. For this reason, it heavily depends on a good choice
of the mixing distributions—they are usually Gaussian kernels
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but their variance is unknown. Furthermore, due to computa-
tional costs, we cannot consider very large numbers of basis
functions, and therefore, typically all the basis functions have
common width parameters. In contrast, aRVM which learns pa-
rameters of the basis functions can approximate more ac-
curately, because it is a much more flexible model. Therefore,
it is important to use the sparsity prior [18] in order to avoid
overfitting.

VI. CONCLUSION

We have presented a learning methodology according to
which the parameters of the basis functions of sparse linear
models can be determined automatically. More specifically, we
assume that the basis functions of this model are kernels and,
unlike most kernel methods, for each kernel we learn distinct
values for a set of parameters (i.e., location, scale). Because
many parameters are adjusted, the proposed model is very
flexible. Therefore, to avoid overfitting, we use a sparsity prior
that controls the effective number of parameters of the model,
in order to encourage very sparse solutions.

The proposed approach has several advantages. First, it auto-
matically learns the parameters of the kernel, therefore there is
no need to select them using cross validation. Also, because each
kernel may have different parameter values, the model is very
flexible and it can solve difficult problems more efficiently than
the typical RVM. This was demonstrated in Section IV where
we considered regression of a function with varying frequen-
cies and classification of data drawn from a mixture of distribu-
tions with very different characteristics. Furthermore, because
of the sparsity prior that we use, the obtained models are typi-
cally much sparser than the models obtained using the typical
RVM.

In this paper, we have assumed that the basis functions are
isotropic Gaussian kernels and we learned the location and their
width parameters. However, the proposed methodology can be
also used for selecting other types of bases. For example, in
some problems, it might be advantageous to use anisotropic
kernel functions. This approach would assign a separate vari-
ance parameter for each feature dimension and each kernel, pro-
viding a mechanism to estimate the significance of each fea-
ture separately for each kernel. Furthermore, it is possible to si-
multaneously use several types of kernel functions. Then, when
adding a basis function to the model, we would have to consider
all types of kernel functions and maximize separately the mar-
ginal likelihood for each kernel type. Then, we could add to the
model the kernel that provides the largest increase to the mar-
ginal likelihood.
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