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Abstract—We propose an approach to analyzing functional neu-
roimages in which 1) regions of neuronal activation are described
by a superposition of spatial kernel functions, the parameters of
which are estimated from the data and 2) the presence of acti-
vation is detected by means of a generalized likelihood ratio test
(GLRT). Kernel methods have become a staple of modern machine
learning. Herein, we show that these techniques show promise for
neuroimage analysis. In an on-off design, we model the spatial ac-
tivation pattern as a sum of an unknown number of kernel func-
tions of unknown location, amplitude, and/or size. We employ two
Bayesian methods of estimating the kernel functions. The first is
a maximum a posteriori (MAP) estimation method based on a Re-
versible-Jump Markov-chain Monte-Carlo (RJMCMC) algorithm
that searches for both the appropriate model complexity and pa-
rameter values. The second is a relevance vector machine (RVM),
a kernel machine that is known to be effective in controlling model
complexity (and thus discouraging overfitting). In each method,
after estimating the activation pattern, we test for local activation
using a GLRT. We evaluate the results using receiver operating
characteristic (ROC) curves for simulated neuroimaging data and
example results for real fMRI data. We find that, while RVM and
RJMCMC both produce good results, RVM requires far less com-
putation time, and thus appears to be the more promising of the
two approaches.

Index Terms—Functional neuroimaging, kernel methods, rel-
evance vector machine (RVM), reversible-jump Markov-chain
Monte-Carlo (RJMCMC).
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I. INTRODUCTION

THE aim of a two-state neuroimaging study, using positron
emission tomography (PET) or functional magnetic reso-

nance imaging (fMRI), is to compare two groups of images (ac-
quired in two different brain states) to identify brain regions that
exhibit changes in response to some task or drug. The result is an
activation pattern indicating the task- or drug-affected regions.
One of the most important components of a neuroimaging study
is the statistical method used to detect the activation pattern (see
reviews in [1]–[4]).

Traditionally, these statistical methods aim to classify each
pixel in the image as either activated or not. This is most com-
monly done by thresholding a statistical parametric map (SPM)
which is often a - or - statistic calculated for each pixel. The
main task then is to choose the appropriate threshold for a se-
lected significance level. A popular approach to this problem is
to apply results from random field theory [5]. In some methods,
inferences are made on a pixel-by-pixel basis using only the
properties of the null distribution and no attempts are made to
include assumptions about the activation pattern [6]. More-ad-
vanced approaches, which consider clusters of activated pixels,
have been proposed (e.g., [7]–[10]). Still, with no assumption
about the distribution under the alternative hypothesis, these
methods can yield the probability of the observed data in the
absence of activation, but cannot estimate the probability that
activation is present.

More recently, statistical methods for neuroimaging
have been developed within the Bayesian framework (e.g.,
[11]–[14]). These methods typically require a model for the
alternative hypothesis. In [15], parametric distributions were
used to model a single pixel under the two hypotheses, but no
prior spatial information was included. This work was extended
in [16] wherein a model was formulated for a small region in
the image (e.g., a 3 3 pixel window). A potential advantage
of Bayesian methods is that they make it possible to estimate
posterior probabilities, not just class labels. This comes with a
certain computational cost, because most data models are not
tractable analytically and some type of iterative procedure must
be used. Posterior probability maps have been defined for the
hierarchical linear observation model in [12] and [13] wherein
the expectation-maximization algorithm was used to estimate
the covariance of residuals at each level. A Markov random
field model was proposed in [11] in which simulated annealing
was used to find the maximum a posteriori (MAP) estimate of
the activation map.
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In this paper, we propose a Bayesian approach in which
we model the activation pattern as a sum of kernel functions.
We investigate two methods of estimating the parameters of
these kernel functions: 1) a MAP estimation method based
on a reversible-jump Markov-chain Monte-Carlo (RJMCMC)
algorithm and 2) a relevance vector machine (RVM) [17], [18].

The RJMCMC approach was proposed by our group several
years ago [19], and a similar formulation was independently
developed by Hartvig [14]. The present paper expands on our
initial work using the RJMCMC [19] and RVM methods [20],
and compares both methods to other existing techniques.

Although the algorithm that was developed by Hartvig in [14]
is based on the same principle as our RJMCMC method, the im-
plementation is not the same. The method in [14] uses different
priors from ours, and uses Gaussian-shaped kernels. In addi-
tion, the transition probabilities in [14] are different and follow
the Geyer and Moller methodology [21], whereas our method
follows more closely the methodology proposed by Green [22],
[23]. The RVM approach, to our knowledge, has not before been
applied to this problem in any way, except for our earlier work
[20].

As we will explain, our approach consists of estimating the
activation pattern using either the RJMCMC or RVM method,
and then substituting the estimated pattern into a generalized
likelihood ratio test (GLRT) [24]. The GLRT is a standard de-
cision theory approach, which has been used before in various
ways in functional neuroimaging. The -test [25], [26] is it-
self a GLRT for making binary decisions from univariate data
in the presence of signal-independent Gaussian noise. In [29],
we showed that a GLRT based on kernels can perform exceed-
ingly well in neuroimaging if provided with an appropriate data
model. Different forms of GLRTs have been proposed in [27]
and [28] for analyzing complex fMRI data. We have also suc-
cessfully employed the GLRT strategy in object detection algo-
rithms [30].

In the next section, we introduce the GLRT framework
and data model. In Section III, we introduce each kernel
method, then provide details of the algorithms in Section IV. In
Section V, we describe our experimental results, and provide
conclusions in Section VI.

II. GENERALIZED LIKELIHOOD RATIO TEST

Likelihood ratio tests (LRTs) are well known to be the optimal
approach to hypothesis testing when the probability density
functions (PDFs) of the observations are completely known
under all the hypotheses [24]. For example, the Bayes-risk,
Neyman-Pearson, and minimum-probability-of-error decision
rules all have the form of a LRT, i.e.,

(1)

where is a vector containing the observed data, denotes
deciding in favour of hypothesis is a vector of parameters
of the PDF for , and is the decision threshold selected
based on the decision strategy that has been adopted (e.g., to
set a particular false-positive probability).

When the parameters of the PDFs are unknown (as in neu-
roimaging), the LRT cannot be specified exactly. In this case it

is common instead to perform a GLRT, in which the unknown
parameters are replaced with statistical estimates, i.e.,

(2)

where is an estimate of . For example, the student -test is
a univariate GLRT for the case of signal-independent Gaussian
noise when the unknown parameters are the means and (equal)
variances of the PDFs. In the -test [25], [26], these unknown
population statistics are replaced by values estimated from
the data.

We now frame the problem of detecting the activation pat-
tern in an on–off neuroimaging study as a GLRT. We assume
that two sets of images are acquired, one set representing
a “control state” and the other representing a potentially “ac-
tivated state.” The test is whether to reject the null hypothesis
that the activated state is the same as the control state. Denoting
images by vectors composed by lexicographic ordering of the
voxel values, we represent the two hypotheses as follows:

(3)

where is a vector representing the spatial coordinates in the
image, and denote the control- and activation-

state images, represents the baseline spatial pattern,

and represent the noise contributions to the control-
and activation-state images, respectively, and represents the
spatial activation pattern that we are attempting to learn from the
study.

Forming paired difference images ,
we can express the hypotheses as follows:

(4)

where is a combined-noise image. If we knew the acti-
vation pattern , we might be able to perform an LRT, and
thus obtain optimal detection performance. Of course, this is
not possible in practice. However, we can perform a GLRT by
first estimating and then substituting this estimate into the
likelihood ratio. We will see that this procedure is similar to a
standard -test, except that the method of estimating using
kernels is more sophisticated and appears to perform better.

III. ESTIMATING THE ACTIVATION PATTERN USING KERNELS

Estimation of the spatial activation pattern is the prin-
cipal goal of an on–off neuroimaging study. In this paper, we ap-
proximate this spatial pattern as a superposition of kernel func-
tions. In essence, we are estimating the spatial activation pattern
as a regression problem in the space domain.

In this paper, we study two kernel methods: the RVM and a
MAP method based on reversible jump Markov chain Monte
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Carlo (RJMCMC) estimation. In both methods, we model the
activation pattern as a superposition of kernel functions,
i.e.,

(5)

where

in which is the th kernel function, .
The parameters associated with the th kernel function are
as follows: is a kernel’s width parameter,
contains the coordinates of the kernel’s center, and is
the kernel’s weight (amplitude). For notational simplicity,
these values are concatenated to form vectors as follows:

, and
; thus, the complete parameter vector is

denoted by . In general, we do not know
a priori the locations of the kernels, nor do we know how many
there are. Therefore, these parameters must be estimated from
the data. One can assume, as we do in our RJMCMC method,
that the sizes of the kernels are unknown as well. However, this
is not essential, because it is always possible to represent larger
“blobs” as the superposition of several small ones.

One of the main challenges in this formulation is to avoid
overfitting, i.e., a situation in which excessive small kernel
functions are used to represent the activation pattern, thus
slavishly fitting the noise. Due to their Bayesian approach,
the RVM and RJMCMC methods are both very effective in
limiting the number of kernel functions, thus leading to stable,
reproducible patterns.

In the following sections, we describe the RJMCMC and
RVM methods for estimating the parameters of the kernel
representation of the spatial activation pattern.

A. RJMCMC Approach

In the RJMCMC approach, we assume that the number of
kernel functions in the model is unknown, as are the kernels’
weights, locations, and width parameters. We estimate these
unknowns by maximizing their a posteriori probability distri-
bution, i.e.,

(6)

where is the prior distribution of
is a concatenation of the observed difference images

, where are the activation-state images and

are control-state images, and is the likelihood of
observing data given the parameters in . The pixels in each
image are rearranged into column vectors using lexicographic
ordering so that , where

, and is
the number of pixels in each image. Assuming the noise is

Gaussian and independent across observed images we write the
likelihood term as:

(7)

where is the noise covariance matrix.
In RJMCMC, is considered known; therefore, it must be

estimated separately before the estimation of . In this work, we
choose fixed priors for . Assuming that the parameters of the

kernel functions are mutually independent (both between and
within kernels), we write the prior distribution of the parameter
vector as

(8)

where is a prior on the number of kernels used to approx-
imate the activation map, is a prior for kernel locations,
and and are priors for diameter and weights, re-
spectively. We assume uniform priors on the number of kernels

over the range and a uniform prior for the loca-
tions within the set of all image pixels. As prior distributions
for widths and weights , we use truncated Gaussian distri-
butions having mean, variance, and support that are prespeci-
fied to reflect our expectation of “reasonable” estimates. Besides
enforcing our prior knowledge about the unknown parameters,
priors must also have a role as a complexity penalty term to en-
sure that we avoid overfitting.

Since we cannot maximize the posterior probability in (6) an-
alytically, we turn to an algorithm that allows us to sample from
this distribution even though the direct generation of samples
from it is not possible. For this purpose, we make use of the
MCMC methodology [31], and add a “reversible jump” feature
that permits jumps between spaces of different dimension [22],
[23], [31]. The details of the RJMCMC algorithm are given in
Section IV-A.

B. RVM Approach

In our second approach, based on RVM, we assume there
is one kernel function of a fixed, known width at every pixel
in the image, i.e., and . To
avoid overfitting, we construct priors in such a way as to enforce
sparse estimates of the unknown weights in , resulting in many
weights being estimated as zero, thereby pruning the number of
kernels appearing in the spatial pattern.

In RVM, we average all observed difference images and
rewrite the likelihood as

(9)

where and denotes the covariance ma-
trix of the noise in the average observed image .
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Direct estimation of the parameters of this model is not pos-
sible due to their large number as compared to the available data.
Thus, we use a Bayesian methodology that considers many of
these parameters as random variables, allowing us to impose
priors on them.

More specifically, we assume a Gaussian prior distribution
over the weight vector as

(10)

where is a vector of hyperparameters
determining the strength of the prior distribution on each basis
function’s weight. The hyperparameters in are also considered
to be random variables and, since they are scale parameters, they
are assigned gamma prior distributions

(11)

Typically, no prior knowledge is available for the hyperpa-
rameters, thus we make the assigned hyperpriors noninforma-
tive by choosing small values for the parameters and , (e.g.,

).
Given the Gaussian prior on the weights , it is

not immediately obvious that the suggested model will re-
sult in sparse solutions. However, by integrating over the
hyperparameters, we can compute the “true” weight prior

. This integral yields a Student-
prior, which is well known to produce sparse representations
since most of its mass is concentrated close to the origin or the
axes of definition [17], thus encouraging the estimate of to
have a large number of near-zero elements.

Performing this integration and substituting the resulting Stu-
dent- prior for into the posterior
would yield an approach that is very similar to the RJMCMC
method, except that here we know the number of unknown pa-
rameters. In principle, we could use the MCMC algorithm to
estimate these. However, in RVM, we instead exploit the hyper-
parameter structure by rewriting the parameter posterior as

(12)

where we explicitly acknowledge as an unknown to be esti-
mated. The first term on the right-hand side of (12) is known
and given by

(13)

where and are specified in (9) and (10), respec-
tively. The second term on the right-hand side of (12) cannot be
expressed analytically and it is approximated by a delta function
at its mode [17], i.e.,

(14)

where is the mode of . The details of the algorithm
for estimating are given in Section IV-B.

IV. ALGORITHMS

A. RJMCMC Algorithm

In this section, we describe our implementation of the
RJMCMC algorithm for estimating the vector of model param-
eters by maximizing its a posteriori probability distribution
in (6). Since we cannot maximize it analytically, we use a
stochastic algorithm to draw samples from the posterior, then
use these samples to estimate the mode (and thus the MAP
estimate).

For convenience, we find the MAP solution by maximizing
the natural logarithm of the likelihood, i.e.,

(15)

By solving this optimization problem, we search for an acti-
vation map common to all difference images. Our first choice
for a kernel was a Gaussian function since it is a well-known fact
that combinations of isotropic Gaussian functions can model
arbitrarily shaped activations [41]. Unfortunately, this did not
work very well and we decided to use a blurred pillbox function

(16)

where

(17)

In (16), denotes convolution, and is the imaging system point
spread function which can be assumed known or estimated from
data. The parameters and will be estimated by RJMCMC.
The imaging point spread function is a Gaussian whose width
we estimated separately in the previous study [35] and is equal
to 6.2 mm.

We estimate the noise covariance matrix based on esti-
mates of the variance of the noise at each pixel and an estimate
of the noise autocorrelation function. The details are given in
the Appendix.

The RJMCMC method is an iterative algorithm for generating
samples of random vectors of unknown length from a possibly
complicated multivariate probability distribution. We will use
this algorithm to generate samples of parameter vector from
its posterior for the purpose of maximizing it.

The algorithm proceeds by randomly choosing one of the fol-
lowing operations at each iteration: 1) creation of a new kernel
(“birth”), 2) deletion of a kernel (“death”), 3) merger of two
kernels into one (“merge”), 4) splitting of a kernel into two
(“split”), or 5) improvement of the parameter estimates without
changing the parameter vector length (“update”). At each itera-
tion of RJMCMC, a new parameter sample vector is proposed.
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The acceptance ratio that governs the probability of acceptance
of a proposed sample at iteration is

(18)

where is the so-called target distribution from which we wish
to sample. In our application, this is the posterior distribution.
Therefore, the target ratio is composed of likelihood-ratio and
prior-ratio terms as follows:

(19)

where is the value of the parameter vector at iteration . In
(18), is the probability that will be pro-
posed by selecting a certain step given the current state of the
chain and the observations . Finally, denotes the in-
verse of a step, e.g., . The proposal ratio in
(18) is given by

(20)

where is the proposal distribution from
which new parameters are sampled and is the
probability that, out of the five possible steps, a particular one
will be chosen given the current state of the chain.

All steps are equi-probable with the following exceptions: 1)
if the current number of kernels in is zero, only a birth step
is possible, 2) if the current number of kernels in is one, a
merge step is not possible, or 3) if the current number of kernels
in is equal to some predefined maximum number, then birth
and split steps are not possible.

Any choice of the proposal distribution will produce sam-
ples from the desired target distribution, but the convergence
time of the chain will not be the same for every choice. To create
a new kernel in the birth step, we sampled the location, diameter
and amplitude parameters independently, i.e.,

(21)

where are parameters describing a new
kernel. The location parameter was sampled from the dis-
tribution that is proportional to the blurred current residual
similarly to the method proposed in [23]

(22)

where is a row of the 2-D blurring matrix corresponding
to the pixel at location is an indicator function equal to

zero if location is already a center of a kernel defined by or
if the value of blurred residual at is smaller then the 75% of the
maximum blurred average residual value. This last condition is
introduced to speed the convergence of the chain by sampling
only from locations with high residual.

The diameter and amplitude were sampled from proposal
distributions equal to their prior distributions. In the death step,
each kernel had an equal chance to be proposed for deletion

(23)

where is a parameter vector of a kernel to delete, are the
other parameters not to be changed, and is the number of
kernels at iteration . For both birth and death steps, the deter-
minant of the Jacobian is equal to one.

If a split step is chosen, we select one of the current kernels
for splitting. We calculate the parameters of the new kernels in
the following way:

(24)

where are the parameters of the kernel selected
to be split, and are the parameters of
two resulting kernels, are random numbers sam-
pled independently from the uniform distribution , and is
a predefined coefficient. We chose in all our experiments.
In the merge step two kernels to be merged are selected, and the
parameters of the resulting kernel are calculated as follows:

(25)

where and are parameters of the
two kernels selected to be merged and are the
parameters of the resulting kernel.

Unlike birth and death steps, split and merge steps require
calculation of the Jacobian to maintain the equilibrium in prob-
ability during these transitions. For the split step, the determi-
nant of the Jacobian is equal to

(26)

and the inverse of (26) is used in the merge step

(27)

The update step makes no change in the parameter-space di-
mensionality. Its purpose is to improve the current estimate of
the parameters. The parameters are updated one by one, dividing
the update step in a number of substeps equal to the total current
number of parameters to update, which is . At each of these



1618 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 12, DECEMBER 2007

substeps an update is proposed for only one parameter and the
change is accepted or not according to the acceptance ratio

(28)

where is the part of that is kept constant while element
is being updated, is the proposed value for and is sampled
from . To update a location, we sampled again from
the distribution proportional to the residual but we restricted the
possible choices only to the neighborhood of the current value

(29)

where is the indicator function equal to one if location
is in the neighborhood of the location being updated,

is the parameter defining the neighborhood, and is the index
of the kernel for which the parameters are being updated. The
proposed value for the update of the diameter and amplitude
were sampled from their respective prior distributions centered
around the current value of the parameter being updated.

At each step of the RJMCMC algorithm, one sample of is
generated. We allow the algorithm to run long enough for the
sample distribution to converge to the target posterior distribu-
tion. We then choose the sample that has the maximum poste-
rior probability. To determine the number of iterations, we ex-
perimented with different chain lengths and determined that the
maximum almost always occurs within the first 3000 iterations.
Since we run the algorithm for 50 times to estimate the receiver
operating characteristic (ROC) curve we are also limited by the
computational time needed to run longer chains. Therefore we
fixed the chain length to 3000 iterations.

B. RVM Algorithm

In the RVM approach, we use Gaussian kernel functions of
the form

(30)

We place one kernel at each pixel, thus the kernel locations
in are known. All the kernels are assumed to have the same
width.

We start by looking at the terms that constitute the parameter
posterior

(31)

As shown earlier the first term is known

(32)

in which

(33)

where is the so-called “design matrix” of dimensions
and with

defined in (30), and .
To approximate the second term, we estimate as

(34)

where is known as the marginal, or type-II, likelihood
[32] and is computed by marginalizing over the weights ac-
cording to

(35)

yielding

(36)

Unfortunately, cannot be computed analytically, so we
use an iterative formula for its re-estimation. We perform the
following minimization which is equivalent to the maximization
in (34):

(37)

leading to the following iterative update equation [17]

(38)

where is the th element of the posterior mean weight and
is the th diagonal element of the posterior weight covari-

ance. Both and are evaluated from (33) using the current
estimate for .

A drawback of the above optimization method is the com-
plexity of computing matrix if the number of basis functions
is large. Some of these computations can be avoided by pruning
basis functions having amplitude that is estimated to be zero.
However, initially there are basis functions, and computation
of is time-consuming.

One can bypass this difficulty by initially assuming only one
basis function, and then adding or deleting basis functions at
each iteration [34]. It has been shown that this algorithm in-
creases the marginal likelihood at each step. This is a very ef-
fective way to implement RVM because all quantities can be
computed incrementally using their value from the previous it-
eration and a small update which is computed very efficiently.

Once we estimate , we find the signal estimates from (5)
using the maximum posterior estimates of . According to (36),
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TABLE I
SUMMARY OF RJMCMC AND RVM ALGORITHM STEPS

TABLE II
PARAMETERS OF THE PHANTOM

the maximum posterior estimate of is given by (33) and
evaluated using .

C. Summary of the RJMCMC and RVM Algorithm Steps

Table I summarizes the steps of the RJMCMC and RVM al-
gorithms as we have implemented them.

V. EXPERIMENTAL RESULTS

A. Synthetic Data

To evaluate the performance of the proposed methods and
compare them with existing techniques, we developed a simple
brain phantom. The values of the parameters used to con-
struct the phantom, given in Table II, are based on a positron
emission tomography (PET) neuroimaging study performed at
the VA Medical Center, Minneapolis, MN [35]. Though the
phantom parameters were deduced from a PET study, the values
used are also representative of whole-brain, blood-oxygena-
tion-level-dependent (BOLD) functional magnetic resonance
imaging (fMRI) studies that have been spatially smoothed [36].

In the phantom, the ratio of baseline activity in “gray matter”
to that in “white matter” is 4:1 [37]. “Activated” brain images

Fig. 1. Baseline (left) and activated phantom (right). Brighter areas of the base-
line represent gray matter; darker areas simulate white matter. In the baseline
image, the ratio of gray matter activity to white matter activity is 4:1.

were obtained by introducing a circular-shaped “activation”
with fixed size and with random, Gaussian-distributed ampli-
tudes. A noise-free example of an activated image is shown in
Fig. 1 (right).

The amplitude of the simulated activation was varied across
images to simulate physiological variability between subjects or
scans. The amplitude mean (activation strength) was specified



1620 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 12, DECEMBER 2007

Fig. 2. RJMCMC synthetic data example showing: the average of 10 simulated
noise-free activation patterns (upper left), the average of 10 noisy “activated”
images (upper right), the activation pattern estimated by simple MCMC (without
reversible jumps; lower left), and the activation pattern estimated by RJMCMC
(lower right). Without reversible jumps, RJMCMC yields two false positive ac-
tivations, whereas RJMCMC correctly detects a single activated region.

in relation to the local value of the baseline, with proportionality
constant , i.e.,

(39)

where is the amplitude of the kernel, is the value of noise-
free baseline image at the center pixel of activation, and
denotes the expected value. The amplitude variance, denoted by

, was specified in relation to the local noise variance with
proportionality constant , so that

(40)

Unlike in our previous study in which the location of kernels
was kept constant across realizations, in these experiments we
introduced a small variation in the locations by allowing for
either or to change by pixel independently with 50%
probability.

B. RJMCMC and RVM Examples

In Fig. 2, we show results of an experiment that illustrates
the value of the reversible jump feature of the RJMCMC when
the complexity of the model is unknown. Fig. 2 (upper left)
shows an image of the average of ten simulated noise-free acti-
vation patterns. We formed each pattern using only one kernel.
We randomly varied the location and amplitude of the kernel
from image to image to represent physiological variability be-
tween subjects or scans. Fig. 2 (upper right) shows the average
of ten simulated “activated” images, which were obtained from
the activation pattern in Fig. 2 (lower left) with colored noise
added to simulate functional neuroimaging data. Fig. 2 (lower

Fig. 3. RVM synthetic data example showing: the average of 10 simulated
noise-free activation patterns (upper left), the average of 10 noisy “activated”
images (upper right), the activation pattern estimated by RVM with a = 1 and
b = 0 (lower left), and the activation pattern estimated by RVM with a = 0:01

and b = 0 (lower right). The RVM result obtained with a smaller value of a

(flatter prior) is more noisy. The RVM result with the larger value of a correctly
detects a single activated region.

left) shows the activation pattern estimated by a MCMC method
(without reversible jumps), assuming that the number of kernels
was three. Finally, in Fig. 2 (lower right), we show the activation
pattern estimated from the same data by the RJMCMC method,
which clearly demonstrates the value of the ability of RJMCMC
to “jump” between spaces of different dimensions. When the
number of kernels is set incorrectly, simple MCMC (without
reversible jumps) can produce erroneous activation patterns by
fitting the noise in the data. RJMCMC is in comparison rela-
tively immune to such problems.

Fig. 3 shows examples of RVM results. Fig. 3 (upper left)
shows the average of 10 realizations of a simulated focal activa-
tion, and Fig. 3 (upper right) shows the average of 10 simulated
noisy images. Fig. 3 (bottom row) shows the activation pattern
estimated by the RVM method when the hyperparameters are

and (lower left) and and (lower
right). The lower value of (flatter prior) gives a noisier result.

In the RJMCMC method, the kernel widths are estimated
within the algorithm. In the RVM method, they must be selected
in advance. In the simulation experiments described later, cross
validation was used to optimize the RVM kernel width. In the
real data experiments that follow, the RVM kernel width was
fixed at the same value.

C. Prior Distributions

Prior distributions used for the kernel amplitude and width
in all RJMCMC synthetic data experiments were truncated
Gaussian distributions as shown in Fig. 4. The prior for the
amplitude was a Gaussian centered at the true value of 0.2,
with variance 0.05 and truncated at zero to avoid detection of
negative activations. The prior for the diameter was a Gaussian
centered at the true value of 12.5 mm, with variance 4 and
truncated at 11 mm to prevent the algorithm from overfitting
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Fig. 4. Prior distributions of the kernel width parameter d in mm and amplitude a. The prior probability distribution of the width parameter is zero for values less
than 11 mm. In this way, we prevented the algorithm from overfitting (i.e., using a large number of tiny basis functions).

(i.e., using a large number of tiny basis functions). The noise
covariance matrix was assumed known.

D. Detection Performance Evaluation

Next, we provide the results of a comparison study that
demonstrates the potential value of the proposed methods in the
context of functional neuroimaging. To evaluate and compare
performance, we used the area under the portion of the ROC
curve where the false positive fraction (FPF) is between 0.0 and
0.1. We restricted our attention to this portion of the operating
region so as to exclude the region of high FPF, which is not
generally useful for neuroimaging. We normalize the area to
the maximum possible value, which is 0.1, and express the
value as a percentage, i.e.,

(41)

where TPF and FPF denote true-positive fraction and false-pos-
itive fraction, respectively.

Each ROC curve was estimated using the LABROC1 soft-
ware package [38] based on two groups of 50 samples that were
obtained under null- and alternative-hypothesis conditions as
given by (3). Each sample was generated from two groups of

images.
For each of these 10 image pairs, we formed the difference

image, then used the RJMCMC algorithm to search all 10 dif-
ference images collectively for the presence of a common ac-
tivation pattern. We then recorded the value of the RJMCMC
output (which can be thought of as a fitted activation pattern) at
location (33,27), where we knew the true activation to be located
when it is present. To evaluate RVM, we calculated the average
of all 10 difference images and recorded the value of the RVM
signal estimate at the same location.

A comparison of detection performance is shown in Table III,
which shows the value of achieved by various methods,
which are reviewed in detail in [29]. Table II shows that
RJMCMC and RVM produced very similar performance, and
significantly outperformed all of the other methods tested.

TABLE III
COMPARISON OF PERFORMANCES

E. fMRI Cat Data

In this section, we present some preliminary results computed
from actual functional magnetic-resonance imaging (fMRI)
data to demonstrate that the RVM and RJMCMC methods can
compute reasonable spatial patterns from real data. Thorough
performance evaluations will be left for a future paper; our aim
here is simply to establish the feasibility of kernel methods
when applied to real data.

The data set was obtained by scanning an isoflurane-anes-
thetized cat [39] using gradient-echo data collection at 9.4T after
injection of MION contrast. Images were obtained in a 1-mm-
thick slice tangential to the surface of the cortex containing the
visual area with in-plane resolution of 0.15 0.15 mm,

ms, and .
Stimuli consisted of square-wave, high-contrast, moving

gratings with low spatial frequency at two orthogonal orienta-
tions (45 versus 135 ). Each epoch consisted of 10 baseline
(20 s), 10 stimulus (20 s), and nine baseline scans. Baselines
contained stationary grating patterns with the same orientation.
Interleaved 45 and 135 epochs were repeated 40 times, each
with a s break between epochs. Prior to the analysis, three
transitional scans were removed from each segment of every
epoch to ensure that we only use the scans acquired after the
hemodynamic response (HDR) has reached the steady-state.
Forty pairs of baseline-stimulus images were then obtained
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Fig. 5. Spatial activation patterns estimated as the average difference (left), and by RJMCMC (center) and RVM (right) methods.

by averaging over the remaining seven prestimulus baseline
images and seven stimulus images in each epoch. Finally, 40
difference images were calculated and averaged to obtain a
single average difference image.

As in the artificial data RJMCMC experiment, we used a trun-
cated Gaussian with mean of 0.8 and variance of 5 as a prior
for amplitude. The maximum amplitude was limited to 1.5. The
positive part of this truncated Gaussian was then reflected about
the vertical axis to allow for negative amplitudes with the same
prior probability. The support of the prior for kernel width was
restricted to the range from 2 to 8 pixels, within which it had a
Gaussian shape with mean of 3 and variance 20. The maximum
number of kernels was limited to 30 and the algorithm ran for
3000 iterations, which was found empirically to provide good
results.

The output of the RVM and RJMCMC methods is an esti-
mated spatial activation pattern , which is a superposition
of kernel functions having the parameters contained within the
vector . Examples of these patterns for the cat data set are
shown in Fig. 5, along with the average difference image for
comparison.

After these patterns are estimated, the estimated parameter
vector is substituted into the likelihood ratio in (2) using the
signal model in (5). The result is a likelihood ratio value at every
pixel, which can be displayed as an image. Images of the likeli-
hood ratio from RJMCMC and RVM, and the -statistic image
from the -test, are shown in Fig. 6.

In the -statistic image in Fig. 6, we display only the values
having . We determined that 62% of the pixel values
within the brain mask region exceeded this threshold, and,
in this image, all the surviving -values were negative. To
facilitate comparison to the likelihood ratio images (which are,
by definition, nonnegative) we inverted the grayscale of the
-statistic image, so that black denotes and white denotes

the largest negative value of . To display the RJMCMC and
RVM likelihood ratio images in Fig. 6 in a comparable way, we
set a threshold in each case that placed 62% of the pixels above
threshold, which is the same fraction of activated pixels as in
the -image.

Comparing the results in Fig. 6, we see that the RJMCMC and
RVM produced highly peaked activation regions, whereas the
-test produced a very dispersed pattern of activation. In these

data, we expect activation in cortical columns, which would be
difficult to identify in the -test result, because of the broad ex-
tent of the activation regions. Therefore, one would need to rely
mainly on further thresholding to identify the locations of the
columns.

It is interesting to note that RJMCMC and RVM produced
almost the same likelihood ratio image, with RVM giving
somewhat higher emphasis to some of the activated regions.
Thus, in both the simulated experiment summarized in Table I,
and the real-data experiment shown in Fig. 6, the two methods
produced very similar results. As we will discuss next, the
RVM method requires a great deal less computation time than
RJMCMC; therefore, it appears to be the more promising of
the two algorithms.

F. Computation Time

A major advantage of the RVM method over the RJMCMC
method is the relatively short computation time that RVM re-
quires. The following are the computation times required to ob-
tain the estimated activation patterns in the real data example.
Using a MATLAB implementation of both algorithms on a com-
puter with dual 3.2-GHz Xeon processors, the RVM analysis re-
quired 10 min to complete, whereas the RJMCMC method re-
quired more than one day (25 h, 15 min). Therefore, the RVM
method is clearly the more practical approach, and the results
appear to indicate that RVM performs about as well as, if not
better than, the RJMCMC method.

VI. CONCLUSION

In this paper, we presented a Bayesian approach for analysis
of functional neuroimages in which we model the activation pat-
tern as a sum of kernel functions. We formulate a MAP esti-
mation problem to determine the parameters of the model. We
apply two different techniques, RJMCMC and RVM, to estimate
the activation pattern, then use a GLRT to quantify the relatively
likelihood of activation at each pixel.
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Fig. 6. Likelihood ratio images computed by RJMCMC and RVM, and the t-image (displayed on an inverted scale for ease of comparison). Each map shows the
upper 64% of pixels, which corresponds to the fraction of pixels in the t-image having jtj > 5.

Using ROC analysis of simulated data, we compared the per-
formance of these two methods to the others evaluated in a pre-
vious study [29]. In this experiment, the RJMCMC and RVM
methods performed well, outperforming more-traditional ap-
proaches, such as -test and SVD thresholding. However, further
investigations will be needed to determine whether this finding
generalizes to other data sets.

To demonstrate feasibility of the proposed methods, we ap-
plied them to real fMRI data and obtained satisfactory results. In
future work, we will quantify performance of these techniques
on real data by evaluating reproducibility and predictive power
of the activation patterns using the NPAIRS [40] resampling
framework. This should shed further light on the relative merits
of the various techniques. This will also provide us a basis for
optimizing the hyperparameters used.

We would like to point out that for the RJMCMC Gaussian
kernels were initially tested that did not work well. Since the
RJMCMC methodology gives us the capability to incorporate
very easily the estimation of parameters, we changed the
kernel to a blurred pillbox function where we estimate the
width of the pillbox using the data. Clearly this can be viewed
both as a strong point and as a shortcoming of the RJMCMC
methodology. For the RVM methodology there is no simple
and easy way to perform an analogous step. As stated in [17],
to estimate the kernel width, cross validation methods could be
employed which are computationally intensive, thus negating
the main advantages of the RVM approach (speed and ease of
implementation).

In our application, one might consider the use of more-com-
plex kernels. However, in our current RJMCMC formulation, it
is already difficult to estimate the parameter vectors; therefore,
we expect that more complex kernels (with greater numbers of
parameters) may not improve performance. The current RVM
formulation does not include parameter other than the kernel
weight, so flexible kernels cannot be used without a significant
modification of the procedure.

Based on these initial studies, RVM appears to be a more
promising approach than RJMCMC. RVM produced compa-
rable performance to RJMCMC in simulations, and produced
spatial patterns from real data that appear more plausible. RVM
is also clearly favoured from a practical standpoint, as it requires
much less computation time than RJMCMC (more than two or-
ders of magnitude less time in our experiments).

APPENDIX

ESTIMATING THE NOISE COVARIANCE MATRIX

We estimate the noise covariance matrix based on esti-
mates of the noise autocorrelation function given by

(42)

where denotes noise in the row and column in the image.
We assume spatially stationary noise, therefore is indepen-
dent of and . We model the noise as white, blurred by some
unknown blurring kernel

(43)

where is a unit variance Gaussian random vari-
able in the row and column and is a 2-D blur-
ring kernel. In this model, all are independent, i.e.,

. If the pixels in the
image are rearranged using lexicographical ordering, the blur-
ring operation in (43) can be expressed as a matrix-vector
multiplication

(44)

where is a matrix containing the elments of reranged so
that (43) is equivalent to (44). We can now express the noise
covariance matrix as

(45)

Therefore, to estimate we need to estimate the blurring
kernel h. By substituting (43) into (42), it can be shown that
the noise autocorrelation function is a convolution of with
itself, i.e., , assuming that is symmetric, i.e.,

. Therefore, we can estimate and in turn
by estimating .

We estimate the elements of the noise autocorrelation func-
tion by averaging over local windows of size 3 3 pixels and
over all images

(46)
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where is a set of pixel pairs and such that the differ-
ence in their corresponding rows is equal to and the difference
in their corresponding columns is equal to .

To estimate from , we recall that and use the
convolution property of the Fourier transform:

(47)

where denotes the Fourier transform operator. Therefore ,
can be estimated as

(48)

where the square root is calculated at each pixel and de-
notes the inverse Fourier transform operator. In practice, to in-
force the symmetry of , we estimate it as

(49)

We then construct the matrix from the elements of and
estimate according to (45). This procedure guarantees that
the estimate of is positive definite.
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