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Mixture Model Analysis of DNA Microarray
Images

K. Blekas, N. P. Galatsanos, A. Likas and I. E. Lagaris

Abstract—In this paper we propose a new methodology for to system imperfections and the microarray image generatio
analysis of microarray images. First a new gridding algorihm  process, the resulting images, in addition to backgrourat flu
is proposed for determining the individual spots and their rescence, contain also other types of undesired signalshwhi

borders. Then, a Gaussian Mixture Model (GMM) approach is . . . -
presented for the analysis of the individual spot images. Témain are termed in the rest of this paperasifacts The correction

advantages of the proposed methodo|ogy are mode“ng f|ex|[ny Of SUCh artifaCtS iS Cl’ucial to making accurate eXpreSSion

and adaptability to the data, which are well known strengthsof measurements, because unlike background fluorescence thei
GMM. The maximum likelihood (ML) and maximum a posteriori  spatial location is unknown and can lead to errors propagate

(MAP) approaches are used to estimate the GMM parameters to all subsequent stages of the analysis [4].

via the Expectation Maximization (EM) algorithm. The proposed P . . . . WO tasks. Hiest. t
approach has the ability to detect and compensate for artifats rocessing microarrays images requires two tasks. Hmst,

that might occur in microarray images. This is accomplishedby ~ individual spots and their borders are determined. Thisgss
a model-based criterion that selects the number of the mixte is also known agridding. Second, each spot is analyzed to
components. We present numerical experiments with artifi@al determine the corresponding gene expression level. A numbe
and real data where we compare the proposed approach with f goftware tools have been introduced that are availattierei
previous ones and existing software tools for microarray irage il f h onl for th Vsi
analysis and demonstrate its advantages. commercially or for research only purposes for the analysis
_ _ _ _ of the microarray images [1], [5], [6], [7]. These tools use
Keywords: DNA microarray image analysis, microarraysimple gridding methods, which are based either on a grid
gridding, Gaussian mixture models, maximum likelihoodyith uniform cells, or on manual specifications of the spot
maximum a posteriori, Markov random fields, Expectatiorsorders. For spot analysis some existing tools assumelaircu

Maximization algorithm, cross-validated likelihood spots for example, the ScanAlyze [6] and the GenePix [7].
Others use simplistic local thresholding based technigioes
I. INTRODUCTION example the Spotfinder [5].

DNA microarrays [1] are used to measure the eXpressionHistogram—based cluster.ing methods have been also pro-
levels of thousands of genes simultaneously over differgf@Sed for spot segmentation [8], [9], [10]. However, these
time points and different experiments. In microarray expefethods use the well knowi’-means and thet-medoids
iments, the two mMRNA samples to be compared are reve@g0rithms that do not adapt well to irregularly based elrst
transcripted into cDNA and then hybridized simultaneously @nd do not utilize all the available prior knowledge about
a glass slide. The end product of a comparative hybridigati§'e data. Furthermore, all previous proposed methods aorre
experiment is a scanned array image, where the measu‘P@J_:V for background fluorescence and ignore the presence of
intensities from the two fluorescent reporters have been caftifacts. o . ,
ored red (R) and green (G) and overlaid. This array imageThe main goqtnbuﬂons of this work are two; fII’St', a new
is structured with intensity spots located on a grid and mudttomatic gridding scheme and second, the application of
be scanned to determine how much each probe is bodfgussian mixture models (GMM) for analyzing microarray
to the spots when stimulated by a laser. Yellow spots ha$BOt images [4]. This allows to bring on bear to this problem
roughly equal amounts of bound cDNA from each sampf@' the known advantages and .p_owerful features of the.GMM
and so have equal intensity in the R and G channels (redngthodology, such as adaptability to the data, modeling-flex
green = yellow). Gene expression data derived from arradity and robustness, that make it attractive for a widegeaof
measure spots quantitatively and can be used further fftPlications [11]. The proposed methodology consists refeth
several analyses [2], [3]. main steps. F_lrst, thg new sch_eme fqr determing the !nokahdu

It has been shown [1] thabackground correctioris an spot borders in a microarray image is presented. This method

important task in the analysis of microarray images. ThR0€s not require any human intervention and is very simple
is necessary in order to remove the contribution in intgnsifnd fast. Itis hierarchical in nature since it first uses tobg
which is not due to the hybridization of the cDNA samples t8"d then the local properties of the microarray image, thus i
the spotted DNA. The R and G intensities of a perfect microdf &S0 very robust.

ray image depend only on the dye of interest. However, dueSecond, after determing the spot boundaries, the protabili

density of each spot pixels is modeled using a GMM with

Manuscript received 27 ; revised 7?7 K components. Two scenarios are possible. Fifét,= 2
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when in addition to background and foreground we have
pixels which are labeled aartifacts The identification of
the appropriate value oK is accomplished using the cross- E
validated likelihood criterion [12]. This can be consid#re

as artifact detection and correctiomechanism, since when .[—/—— | DEEIEE] ;

K = 3 an artifact is identified which is ignored in the = . BB —
subsequent analysis of this spot. Two approaches are @opos: i:-:s HEE e

for estimating the GMM parameters. The first one is basec] —— | EEIIBEE L
on the Expectation-Maximization (EM) algorithm [11] for @ ®)

maximum likelihoodML) estimation of the parameters, whiIeF_ L @.Th nal biained b ) the aod<ol

. . . 1g.1. (a). ese signals are obtaine y summing up the £olumns
the second on anaxmum a pOSte”O_r(MAP) formulation. of both R and G channels forfx 5 grid structure. Mid points of successive
The latter takes also into account prior knowledge about theaks define the horizontal vertical global borders, ey (b). The global

spatial assignment of the pixel labels using a Markov Randdigrders (dotted lines) are refined (solid lines) based oridbal sums. The
Field (MRF) model [13] signals on the left and above the microarray image are thel lmw and

. . column sums, respectively.
Finally, based on the clustering results, the means of the

background and foreground Gaussian components are used

to calculate the normalized log-ratio for the fluorescengg (ofined by locating the minimum of the sum of the rows

intensities log, R/G). This task constitutes theductionstep \vithin the global boundary) of the R and G intensities ofsthe

of our approach and characterizes qualitatively each spot g’pots. In the same spirit, the vertical boundary betweeisspo

finding its correspondmg gene expression value. " S(i,j) and S(i,j + 1) is refined by locating the minimum
The rest of this paper is organized as follows: In secliqfy ihe columns (within the global boundary) sums of the R

2 we present the proposed technique for automatic gridding,y G intensities of these spots. This procedure is repeated

Section 3 describes the two GMM approaches for spot image, row-by-row or column-by-column fashion, scanning the

segmentation and the model-based criterion for estimatipftire microarray image. Fig. 1 (b) illustrates an examgle o
the number of mixture components. In section 4 we presgqpt global border refinement process.

numerical experiments that test the proposed gridding and; myst be also noted that in many cases the color channels

clustering methodologies and compare them to existing soffe not aligned with each other. In such cases one can use

ware packages for microarray image analysis, as well asjfo3qe alignment algorithms prior to the gridding task, s@e f
recently published methods. For this purpose we used b%mple [15], [16], [17].

artificial data, where the "ground truth” is known, together

with real data. Finally, we present our conclusions in secti [1l. MIXTURE MODELS FORSPOT ANALYSIS
S. Spot analysis refers to the task of labeling each pixel of a
spot as background (B), foreground (F), and artifact (A)isTh
1. AUTOMATIC MICROARRAY GRIDDING can be viewed as @usteringproblem which is tackled using

- o MM. Let z¢ = [2%,25]7 (i = 1,...,N) denote theith

The process ofdgtermlnlng Fhe spot bqundanes IS freqpenﬁixel value in a spot area, where the R and G correspond to
refered to asgridding. A variety of microarray gridding the red and green intensities, respectively. In other wdtds
method; h"?‘VG. peen previously suggestgd n thg I'teram@_-rsegmentation is applied to the color image and not to each
determine individual spot boundaries either with userraefi color seperately. GMMs [11] represent density functions as

anchor points [6] and semi-automated geometric teChniq%sconvex combination ofX Gaussian component densities
[10], or with complex methods that are computationally expeﬁ‘;

: ) . ) , . z|09) = N(x|u;,%;), where yu; is the mean ands;
sive [14]. Since typical microarray images contain hundre e covariance matrix of thgth Gaussian, according to the
or thousands of spots, a practical gridding method must mula
fully automatic, fast and simple. K

The proposed gridding method uses a scheme that combines F(@i W) = Zﬂ,(b(miwj) _ 1)
global and local segmentation mechanisms for defining the = !
boundaries of each microarray spot. It initially creatésbal
boundaries, which are horizontal and vertical straighedin
spanning the entire image. To define the global boundar X
we add the sums of the R and G intensities along the ro of all unknown paran_1eters of the model, i¥x =
and columns of the microarray image. The resulting signaf5t - 7, 01, O], with 65 = [py, 35). .
have multiple peaks each corresponding to the coordindtes OHaV|r_1_g_ found the. pargme_ters O.f the GMM' the posterior
a spot center. We use the mid point of two successive peaﬂE pabﬂmes that théth pixel is assigned to thg component
of the row and column sums to define the global horizont& 9'VeN by
and vertical boundaries, respectively. Fig. 1 (a) illugtsathis

The parameters < 7; < 1 represent the mixing weights
satisfying that Y0, m; = 1, while ¥ is the vec-

(" |y, 55)

process for & x 5 grid. P(jli) = % ‘ )
In the next step, the global boundaries are refined. The Z?T@(Xllm,zz)
horizontal boundary between spaffi,j) and S(i + 1,7) I=1
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Therefore, theith pixel is assigned to the labélwith the by comparing the scatter plots in the Fig. 6 with those in
largest posterior probabilityR(l|i) > P(j]i) Vj # ). Fig. 8. Thus, the artifact detection problem corresponda to
model order selection problem between a 2-component or a

A. Maximum Likelihood (ML) Estimation of GMM Parameteré'component GMM.
(ML) Cross-validated likelihood [12] provides an efficient mbde

A common approach for estimating the model parameters gfyer selection framework for GMMs. Following this scheme,
the GMM (Eqg. 1) is based on maximization of the likelihood, K-component model is evaluated by splitting the data in
(ML) disjoint partitions (folds)X,, s =1, ... ,u (of approximately

N ‘ N K ‘ equal size). For each fold we estimate thg parameters of
LX[Wk) = log f(a'[Ux) =Y log{> m;¢(«'f;)} . a GMM with K components using the datas&t— {X,}.
i=1 i=1 j=1 Then, we calculate the likelihood of this modé(X,|¥%,)
(3) using X, as a test set. Next(X,|¥s.) is averaged over the

The EM algorithm is a popular method for ML estimatiodfO'dS in order to obtain the cross-validated evaluationthar

since it is simple to implement and guarantees convergencet"compenent model
a local maximum of the likelihood function [11]. 1M )
Starting from an initial guess of the model parametgjs, CVk =~ > LX) - (7)
at each iterationt} the EM algorithm proceeds in two steps. s=1
The E-step, where the posterior probabilities are computedThe C'Vi value is computed for the two candidate values-
© i () <) {2,3} and we select the model order with the larg€3fx . It
@ Ty (@' |p;”, 257) 4) must be noted that in our experiments we have selected 0
i K _ ' for the number of folds. Whet = 3 (existence of artifacts)
Zﬂl(t)é(leul(t), =) the criterion used to determine which one of the three is the
=1 artifact cluster is the aggregate variance in all dimersidm

and theM-step, where the model parameters are updated Other words, the cluster with the largest(33;) is considered

N as artifact.
24 gt
@+ 1 R ) C. Maximum A Posteriori (MAP) Estimation of GMM Param-
7j —szj T TN T T eters
=t ZZ; According to this approach [13], the probabilitie§ =
i=1 P(j|positioni) of the pixel located at the&th position is

assigned to theth label are considered as additional model
parameters that satisfy the constraints:< w;? < 1 and

i i (1) i (+DNT )
) Zz, (@ =g )" =) S, m = 1. By denoting adl = {z!,... .7V} the set of
E§t+ ) =L ~ . (6) probability vectors an® = {0y, ... ,0x} the set of Gaussian
sz component parameters, the density function is given by
=1 ’ ; K 1 i
In image segmentation the spatial adjacency of pixels vki¢h t f(a'[I1, ©) = Z} mi(x*160;) - (8)
=

same label is an important prior information that could soal
taken into account [18], [19]. Since the ML approach does notSpatial adjacency of pixel labels is taken into account by
provide this capability, an alternative method for maximurdsing a suitable prior density function for the parameter se
a posteriori (MAP) estimation of GMM parameters will bell. This is given by the Markov Random Field (MRF) model
described next. However, before we address this problem, {#8], [13], [19]
will elaborate on the problem of selecting the number of the N
mixture componentds, and see how it fits in the proposed p(IT) = EeXp(—U(H)) , andU(II) = BZVM (I1) , (9)
microarray image analysis methodology. i=1

whereZ is a normalizing constant, angla regularization pa-
B. Cross-validated Likelihood for Artifact Identification rameter. The functio, (II) is the clique potential function
of the pixel label vectord=™} within the neighborhoodV;

The application of the EM algorithm to GMM requires,_ . . . : .
. (horizontally, vertically, and diagonally adjacent pieto the
knowledge of the number of the mixture componehtaised Zg} pixel and is computed as follows

in the model. Since previous approaches for microarray sp

analysis assume 2 labels, background (B) and foreground (‘Ij) ; o K ; o
it is reasonable to consider GMMs witki = 2. However, this VA: (I1) = Z 9(tim) s wign = |7 =77 = Z(”a‘ 7).
assumption cannot handle the existence of artifacts whictt m meEN; J=1

also be taken into account, see spots in Fig. 7. In this case an (10)
additional cluster appears in the data, therefore they ettetb The function g(u) must be nonnegative and monotonically
modeled by a GMM withK" = 3. This effect can be visualized increasing [18] and we useg(u) = (1 +u 1)1
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: . . . TABLE |
Given the above prior density (Eq. 93, posteriori log-
. . PERFORMANCE OF THREE GRIDDING METHODS USING TEI(IlO) SPOT
density function can be formed as follows
ARRAYS.
N Proposed| Spotfinder| ScanAlyze
_ i Perfect (%) 89.6 72.8 48.7
=1 Incorrect (%) 1.2 12.9 28.7

and maximized for the MAP estimation of the model param-
etersIl, ©. The EM algorithm can also be used for this case
[13]. The E-step is given by A. Gridding experiments
At first, we tested the proposed gridding technique for
B (12) partitioning grid structures into distinct spot areas. hdey
T K ' to objectively evaluate and compare our method the follgwin
Zﬁ”qﬁ(ximg”, n(0) experimental study was contacted:
1=1 We applied our gridding method, and two other widely used

s i (t t
i T o(x |M§ )7 2§- ))
J

. , o . microarray image analysis tools, the Spotfinder [5] and the
Whllt_a th_e M-step requires the maximization of the fOIIOW'ngScanAlyze [6], to ten (10) spot arrays, (arbitrarily) sedet
log-likelihood [13] from ten (10) different real microarray images. Thus, irakot

nearly 3500 spots were used in this experiment. Each method
was evaluated by visually inspecting the gridding resutid a

N K
Quap(I1,0IIVOM) = ZZZ§{log<7T§> + assigning each spot to one of three categorjsfectly
=1 j=1 marginally and incorrectly gridded. A spot was perfectly,
N marginally, or incorrectly gridded if the entire, at lea®€8, or
log(¢(2*]67))} — gz Z 9(Uim) - (13) less than 80% of the spot area was contained in the assigned
i=1 meN; grld

The results of this study are shown in Table I. These results

This gives update equations for the parameters of the compgearly indicate that our method determines the spot areas
nent densitiesy; and X; similar to those of Eq. (6) of the more accurately than the two other methods. It must be also
ML-approach of the GMM. noted that the Spotfinder and ScanAlyze methods are based on

However, the maximization of the functio@, 4p with manual gridding. More specifically, the size of the spotaisa
respect to the label paramete[rsj} does not lead to closedfirst defined. Then a rectangle is placed manually on the image
form update equations, since we must take into account tBeased on the provided dimensions the rectangle is dividied in
constraints:0 < w} < 1 and ZK:1 w} = 1. Due to this equal rectangular or circular cells each correspondindhéo t
difficulty, a Generalized EM scheme was adopted in [13ggion of a spot. Thus the outcome of the gridding process for
based on an iterativ&radient Projectionmethod. For this these methods is user dependent, while our method is fully
approach, the gradient of the MAP function is first projectegutomated. In these experiments, we tried to the best of our
onto the hyperplane of the constraints, and then a line Beaability to optimize the results obtained by the Spotfinded an
is performed along the direction of the projected gradient ScanAlyze tools.
find the parameter&r}} that maximizes th&)»; 4 p function. In Fig. 2 we provide the gridding results with one of the

Here we use an improved M-step in order to maximize&n spot arrays using our approach as well as the two other
Quap With respect tor’ by formulating the problem asimage analysis tools, the ScanAlyze and Spotfinder. We also
a constrained convex quadratic programmi(@P) problem. provide more detailed gridding results for individual spat
We found that this is advantageous, since it provides arbettee first column of Figures 5 and 7.
and faster update rule for estimating label parame{e@
that meets all the available constraints [20]. A more dethil B. Spot analysis experiments
description of the M-step for this method is given in Appendi

A After identifying the spot regions, we used the proposed

GMM-based approach to analyze each spot region. More
specifically, the procedure we followed consists of the fol-
lowing four stages:

1) Select the number of componetitsof the GMM model

A variety of experiments have been performed to evaluate USINg the cross-validated likelihood method. In other
the proposed methodology for the analysis of DNA microarray ~ Words, test for the presenc& (= 3) or absence’ = 2)

IV. EXPERIMENTAL RESULTS

images. The test imagessed were artificially created or ob-  Of artifacts in a spot.
tained from publicly available microarray databases desdr ~ 2) Estimate the parameters of thé-component GMM
in [2] and [3]. model using the ML or MAP technique and label each

spot pixel with one of thek labels.
1Colored version of the images can be downloaded from 3) _If K = _3* the ar_tlfact compqnent (A)_Of the GM_M
http://ipan.cs.uoi.gr/pub.html is identified by using the maximum variance criterion.
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(©
Fig. 2. Comparative gridding results of our method (a) witlo twidely used microarray image analysis tools: (b) the fpdé¢r and (c) the ScanAlyze.

Then, the remaining two clusters are labeled as F and |
using the criterion|uf|| > ||4?|].
4) Calculate the expression value of the corresponding gen, -

according to the normalizing logarithmic ratio:

UII:; - Ng ) )
HE — hé

For comparison purposes we have also implemented tw
other methods proposed in [8], [9] for spot clustering, ngme
the K-means algorithm and the partitioning arounq medOIq:Sg. 3. (a) classification error and (b) mean squared erraatid versus
(PAM). method. .'I.'hese two methods do not provide modgL,R using artificial spot images.
selection capabilities, and thus only two clustef§ & 2)
were consideredB and F.

r = logy(

At this point it should be also noted that filtering, such as SNR=8DB SNR=6DB SNR=4DB
low-pass or median, could be used for noise removal in a
separate step prior to segmentation [9]. In our methodology
the proposed MAP approach provides a coherent framework
for segmentation in which "noise filtering” is implicitly ta-
grated. Furthermore, it uses a GMM to model the data and

1) With artificial spot imagesin order to objectively com- . . .
pare the proposed GMM based methodology with previou s e
ones we conducted Monte-Carlo simulations using artificial ==
created spots for which the "ground truth” is known. The. . . .
artificial spots were constructed with known mean inteesiti .
for %he red (R) and green (G) cgannels both for_ the baCkgrouﬂg. 4. Segmentation maps and fluorescent ratios at diffe3&Rs using
(M*) and the foreground M("). Then, the images were ree artificial spot images
corrupted with additive white Gaussian noise at ten difiere
levels. For statistical significance, the experiment ahaaise
level was repeated ten times with different noise realireti
Two criteria were used to evaluate the methods tested: a) fiee MSE from the true ratio was used as a comparison metric
classification (segmentation) error defined as the pergenif since, as mentioned previously, this ratio is the featuedus
mis-classified pixels after clustering, and b) the mean sglia for further analysis of microarray data.
error (MSE) of the ratia®, as estimated by each method over In Fig. 3 (a), (b) we show the resulting classification error
the ten repetitions of each experiment, with respect torthe t and MSE curves as functions of the noise level to illustriage t

thus, unlike filtering, it also adapts to their statistics. .

ratio rypue = (ME — MEB)/(ME — ME), i.e. performance of the four methods. In both curves, thaxis
10 corresponds to the signal-to-noise ratio (SNR) calculéted
MSE = i Z(,@t — Tirue)? decibel units, while thg/-axis in Fig. 3 (b) is in logarithmic
10 scale. These results, demonstrate that the MAP GMM-based
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MAP-GMM ML-GMM

€Y (b)
K-means PAM

method outperforms all other methods. Furthermore, at all
SNR levels, both the ML and the MAP GMM-based ap-
proaches provide both better segmentation accuracy and MSE
values compared to the other methods, with these diffesenc
being quite significant at low SNR levels. In Fig. 4 three
examples are displayed corresponding to three differerR SN
levels showing the segmentation and the ratio value for eac
one of the compared methods. It must be noted that in the
above experiments all clustering methods were identically
initialized. Furthermore, MAP parametgr= 1 was used for

all cases.

2) With real spot imagesWe also tested the proposed spot TN 1o
analysis methodology with real data. Figures 5 and 7 iliuetr » .
the results obtained for several real spot examples. In ea . .

case we present the image segmentation results afterrgbeli © %)

the pixels using each of the compared approaches. The s 8t 6. Plot of all pixel values of spaf> of Fig. 5 after labeling them

. . . . 1g.
segmentation map is constructed by setting the intensltyevait, MAP-GMM (a), ML-GMM (b), K-means (c) and PAM methods (d),
of each pixel equal to the mean value of the cluster that risspectively. The ellipsoidal clusters resulting from @M approaches and

assigned to. In the case of the proposed MAP approach, thﬂﬁ'elinear boundary between the two clusters in Hieneans case are also
different segmentation maps are presented that corresjoon own.
three valueg0.01, 0.1, 1.0) for the regularization parametgr
of the Gibbs prior (Eg. 9). In total, for each spot we provide s
segmentation maps along with the corresponding fluorescent L .
ratios. : L . o
More specifically, Fig. 5 represents comparative resutisfr ’ NS ’ AL
five spot examples where no artifacts were detected acaprdi : - : -
to the cross-validated likelihood criterion, i.&. = 2. In cases & ' Q ‘
where the shape of spots is not regular and their contourtis no @ ) ®) )
round (mostly due to retrieval of the microarrayer’s spujti F-means PAM
pin), both GMM-based methods generate more regular fore-
ground regions in comparison with th€-means and PAM
clustering approaches. To better comprehend the behavfour

the different clustering methods, we present in Fig. 6 fou ) e
scatter plots of the R and G pixel intensities for the spo
S, after labeling using GMM with the MAP (MAP-GMM), -

the ML (ML-GMM), the K-means and the PAM methods, © ()
respectively. ! . : . R

The main disadvantage of tH€-means and PAM methods(':;f,.',\,ﬂ3 ‘(a),PL‘j‘L?é{’A'“X,.e'(g)"’,"‘}?_snlgaiﬁg‘ﬁnﬁ'%;JMaﬁ,e;Liﬂi"?C%,Vigzp“é'éigly_
is that they are restricted to use as error metriclthelistance The ellipsoidal clusters resulting from the GMM approachesl the linear
from the mean or median of the cluster. Thus, they genergfémdary between the two clusters in tRemeans case are also shown.
clusters which are separable by simple borders as shown in
Figures 6, (c) and (d). In contrast, GMM-based methods gen-
erate ellipsoidal clusters with complex boundaries as showhe (yellow) artifact pixels. On the other hand, the propgbse
in Figures 6, (a) and (b). As a result, th&means and PAM MAP-GMM and ML-GMM approaches, detect the presence
methods in this example tend to overestimate the backgrowfdthe artifact and generate more realistic foregroundoresyi
clusters and provide spots with background "wholes”, whil€hus, the produced fluorescent ratios of about= —0.7
the GMM-based methods provide more "uniform” spots. and r = 0.45 seem to be more realistic for the spadis

Fig. 7 illustrates comparative results with another foustspand Ss, respectively. We also present in Fig. 8 four plots of
examples that correspond to cases where an artifact vilas R and G pixel intensity values for these two spot areas
detected, i.e. KX = 3. After labeling, the artifact pixels are after labeling pixels with the four approaches being coragar
excluded from the calculation of the fluorescent ratios. lAgain, the enhanced data fitting capabilities of the GMM-
the absence of an artifact correction methodology, e based approaches are obvious.
means and the PAM methods erroneously classify these pixel#\nother point to make in our experimental study concerns
as foreground since the contribution of the artifact pixsls the comparison between the MAP-GMM and ML-GMM esti-
significant. The differences in the fluorescent ratipgmong mators. The results in Figures 5, 7 show that both approaches
these methods is noticeable. For example, in the case of spoeeld similar results in terms of the fluorescent ratios. ldwer,
Ss and Si of Fig. 7, theK-means and PAM methods produceghey do not produce the same segmentation maps. For low
a ratio close to zero-(= 0), since they consider as foregroundralues of the regularization parametgr(5 < 0.01) both

MAP-GMM ML-GMM
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Fig. 5.
ratio.

Fig. 7.
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Comparative results for 4 real microarray spots wittifacts. For each method we give the segmentation maptendstimated fluorescence ratio.
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Original| GenePix | Spotfinder ||Original| GenePix | Spotfinder Original MAP- ML- K-means PAM
image image image GMM GMM
Sl - SB
) ) r = 2.270 r=2.211 r = 2.104 r = 2.071
(Fig. 5)| 7 = 0.333 |r = —0.213|| (Fig. 5)|r = 0.875|r = 0.775 —p—
O -,
- BEEEBE
Ss Sl - r = —13.153 r = —16.397 r=—11.779 r = —9.223
(Fig. 5)| » =2.795 | r = 1.474 || (Fig. 7)|r = 0.498 |r = 0.992 _._ . .
Sa . = S4 . r = —7.034 r = —6.751 r = —8.924 r = —10.064
(Fig. 7)|r = —0.732|r = —0.598|| (Fig. 7)|r = 0.834|r = 0.588 ;
Fig. 9. Calculated fluorescent ratios for 6 spot examplesgugie GenePix c
and the Spotfinder microarray image tools.
r = —0.905 r= —0.744 r=—0.777 r = —0.744
methods generate identical segmentation maps. As the vaImE E E E
of 8 grows in MAP-GMM, the contribution of the prior term v asos | ore —asss | ove 11074 | s — 7080
increases and generates smoother foreground and backgro

n
. : . . ixel Fig. 10. Five examples of Agilent Technologies images. Tégrgentation
regions. Thus, it eliminates isolated foreground pixe ted result together with the calculated ratio value are pravifte each clustering

in background regions. While the value of the parameter method.
must be tuned, in our experiments we observed thatalue
in the rangd0.1, 1.0] gives satisfactory results. From this point

of view, the MAP-GMM approach can be viewed as a methQgbrimeter of the spot based on what is called as the "Cookie
for noise reduction in the sense 'that it ellmlnates the &ffeqtter algorithm” [21]. We tested the proposed methodology
of the microarray manufacturing imperfections. with such imagées and found that it is able to detect the
In Fig. 9 we show some comparisons for spot quantificatick;}esence of artifacts in these spots using the cross-tialida
between the proposed method and two existing image analygigerion. Furthermore, it classifies as artifact a "doriker
tools, more specifically the GenePix [7] and the Spotfind@ggion which is not taken into account during the ratio
[5]. Comparisons with the ScanAlyze [6] were not includegdy|cylation. For comparison purposes, we also provide the
since G.eneP.ix.uses the same principle for spot Segme_”tat@ébmentation and the ratioesults using théf-means and the
From Fig. 9 it is clear that the circle used in GenePix is ngiapm algorithms. Since the cross-validation method is djeci
representative on many occasions, when the spot is irégulgg the GMM, only two clusters were used in these methods.
shaped or when artifact islets are present, of the spot arRFig. 10 we show five spot examples of this type of images.
In other words, the analysis provided by GenePix is basgds interesting to notice the considerable differencetia
only on the spatial properties of the spot and does not takgios obtained by the proposed methodology with respect to

spotSs shown in Figures 5 and 9 the circle used by GenePix

misses completely the cresent shaped spot which the prdpose
method captures quite accurately. This is also reflectetien t )
large difference of the fluorescent ratios provided by these!n this paper we have proposed a new fully automated ap-
methods. Also in spoB, in Figures 7 and 9 it is clear that Proach fqr the a.naIyS|s_, of.mlcroarray images. First we dlascr
the region selected by GenePix segmentation as foregrodh@eW hierarchical gridding procedure based on the vertical
includes pixels that our algorithm labels as artifact arig thand horizontal projections of the color images. This appoa
is also reflected in the computed fluorescent ratios. Silyjlar’S Simple, automatic, and provides better results compared
the thresholding based algorithm used in Spotfinder in ertdith popular existing tools. However, the main novelty of
instances of irregular spots and spots with artifacts predu this work is the proposed GMM-based methodology for spot
faulty segmentations, see for example spSisin Figures image segmentation. Two methods for estimating the GMM
5 and 7, respectively. In these spots also the fluoresc@dameters are presented: the ML and a MAP. Both approaches
ratios provided by Spotfinder and our method are signifiganft™® based on the EM algorithm. A cross-validated likelihood
different. criterion is also used to select the number of components of
Finally, the last series of experiments uses an interestifif GMM. This provides the capability to detect and correct
family of microarray images provided by Agilent Technoles artifacts in the spot area. As our experiments demonstrated
that have a specific imperfections: the spots in these imadB§ Proposed methodology produces better and more accurate
although perfgctly circu_lar, contain _sometimes artifa_nttheir 2Test images were downloaded
perimeter. Agilent provides analysis software that igsdiee http:/imww.silicocyte.com/dis/imagesforevaluatiamh

V. CONCLUSIONS

from
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results in terms of segmentation maps and fluorescences rafidgorithm 1 : A sequential convex QP algorithm
as compared with existing software tools and other clusgerilnput: ¢ € R%
methods proposed in previous works.

APPENDIXA: AN M-STEP FOR ESTIMATING THE
PARAMETERSW}

To maximize @Qnap (Eq. 13) with respectrj- we set its

derivative equal to zero and obtain the following quadratic

expression

15|

meN;

> i)l

meN;

> gl (ri)? ~ 45
(14)

where g(u) indicates the derivative. Let us denote wiih

the positive root of the above equation. The problem can be

formulated as follows:

"Given a vectora € R¥ with elementsa; > 0 and the
hyperplanezfi1 y; = 1, find the pointy on the hyperplane
with y; > 0 that is closest ta".

This defines the following constrained convex quadratic pro

gramming (QP) problem:

1 K
. 2
min ;(yj — a;)
/ (15)

subject to) "y; =1andy; >0,Vj=1,... K .

j=1

Output:y € R¥

. K K
f%%ZFJ%—%VSLELd%

1 and y; >0 Vy

SetD=Kandv; =1,Vj=1,... | K
1. Calculatey; Vj =1,... ,K as:
if v; =1 then

](W})—z;ZO,

K
1-— E viay
=1

Yi = a; +

else{v; = 0}

y; =0

end if

2. Check for termination

if

y; >0Vji=1,...,K then
STOP

end if
3. Updatev; Vj =1,... ,K and D as:

if y; <0 then

vi=0andD =D -1

end if
4. Go to step 1.

[10] A. W.-C. Liew, H. Yang, and M. Yang, “Robust Adaptive SpBeg-

[11]

In order to solve this QP problem several approaches cafl
be employed such asctive-setmethods andpenalty-barrier
methods. For this purpose, we have implemented an active{4él

type of method [20] where we exploit the fact that the Hessian

is the identity matrix which in turn leads to closed formug
expressions for the Lagrange multipliers. The detaileghsste
for solving this QP problem are given in the next Algorithnhs]
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