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Group Updates and Multiscaling: An Efficient Neural
Network Approach to Combinatorial Optimization

Aristidis Likas, Student Member, IEEE, and Andreas Stafylopatis, Member, IEEE

Abstract—A multiscale method is described in the context of
binary Hopfield—type neural networks. The appropriateness of
the proposed technique for solving several classes of optimization
problems is established by means of the notion of group update
which is introduced here and investigated in relation to the prop-
erties of multiscaling. The method has been tested in the solution
of partitioning and covering problems, for which an original
mapping to Hopfield-type neural networks has been developed.
Experimental results indicate that the multiscale approach is very
effective in exploring the state-space of the problem and providing
feasible solutions of acceptable quality, while at the same it offers
a significant acceleration.

I. INTRODUCTION

HE Hopfield neural network model [7], [8] and closely
related models such as the Boltzmann Machine [1],
[3], have proved effective in dealing with hard optimization
problems and yield near-optimal solutions with polynomial
time complexity [6], [20]. The basic idea is to encode the
objective function and the problem constraints in terms of an
appropriate energy function which can be minimized by the
neural network architecture.
The energy function corresponding to a Hopfield-type neural
network with » units, connection weights w;; (with w;; = 0)
and threshold values 6; has the form:
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where ¥ = (y1, --+, Yn) is the state of the network. We

are concerned with networks of binary units (y; € {0, 1})

which operate asynchronously. At each time instant one unit

is selected randomly and the change in the network’s energy

that will result if the selected unit ¢ changes state is computed.

Assuming symmetrical weights (w;; = wj;) this energy
' difference can be written:

SE:(#) = 2y — 1) | D wyiv; +6: | @

If 6F;(§) < O then the change is accepted, otherwise it is
rejected. For symmetrical weights it is ensured that the network
will settle into a state corresponding to a local minimum
of the energy function [71], [18], where 6E;(¢) > O for all
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1 =1, -+, n. In solving optimization problems, our objective
is to reach the global energy minimum.

The Boltzmann Machine Optimizer [1], [2] is based on
the idea of applying an annealing schedule [11], [12] to
the operation of the Hopfield network from an initial high
temperature down to a temperature value near zero. At each
temperature, the network operates as described previously, but
a different update rule is used in case 6 () > 0: the state of
unit ¢ changes according to some probability function which
in general depends on the quantity exp [6F;(y)/T] where T is
the temperature parameter. As T’ tends to zero, the probability
also tends to zero and the update rule becomes the same as
in the pure Hopfield case.

In the following, we first describe the multiscale method
for binary Hopfield-type networks. According to this method,
a smaller network is constructed by grouping the units of the
original network. The minimization of the objective energy
function is carried out by performing iterations either in the
original or in the coarse-scale network. The above technique
has been originally introduced in [13], where a general de-
scription can be found within a slightly different notation
framework. Moreover, the method in its general formulation
was tested in [13], in the context of the Set Partitioning
problem, using the neural network architecture described in
[20] and a random allocation of units to groups. In order to
provide insight into the operation of multiscaling we introduce
in this paper the notion of group update in binary Hopfield-
type networks; instead of selecting a single unit to update
at each time step, we consider a group of units which are
selected and updated simultaneously. We prove that. there
exists a direct relation between performing single updates in
the coarse-scale network and performing group updates in the
original fine-scale network. The idea of group update helps
highlight several issues, which can be very useful in applying
the multiscaling approach for solving optimization problems.
Indeed, we consider the solution of the Set Partitioning and the
Set Covering problems, for which an efficient grouping of units
can be devised based on an original mapping of the problems
to a network architecture. The performance of this approach
is evaluated in terms of numerical experiments which yielded
very good results.

II. MULTISCALING IN BINARY NETWORKS

The idea of multiscaling originates from the methods of
numerical analysis [4], [14] and particularly the multigrid
methods [9], which have been “successfully applied to the
solution of partial differential equations. The basic principle
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is that we can speed up convergence in a large optimization
‘problem by introducing a smaller approximate version at a
coarser scale and alternating the relaxation steps between the
fine scale and the coarse scale instances of the problem.

The above idea is used in [15], [16] to optimize a general
Hopfield objective function of continuous neural variables.
A quite general methodology is suggested, that cannot be
applied in the case where the fine and coarse scale vectors
have binary elements. This happens because the mapping from
the original variables to the coarse scale variables and vice
versa cannot take a simple form as suggested in [16], since
the linear combination of binary variables does not yield a
binary variable. Indeed, the fact that both vectors ‘contain
binary valued elements makes necessary the dependence of
the mappings on the current state of the fine-scale network.
The multiscale method discussed next uses a transformation
of special nature and is appropriate for the widely used class
of neural network optimizers with binary units.

Consider a Hopfield-type neural network with n binary units
(n-net), symmetric connection strengths w;; (with w;; = 0)
and threshold values 6;. Suppose now that we wish to switch
to a smaller network with p units (p-net) that is also assumed
to be a Hopfield-type neural network with binary units. The
mapping from the n-net to the p-net is based on partitioning
the units of the n-net into p disjoint groups, such that each
group G, k=1, - -+, p, corresponds to a unit k of the p-net.
We shall use the notation P to represent the partition.

If the state of the n-net is ¥* = (y7, ---, y5) the corre-
sponding energy function E(§*) can be written:
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Suppose that while being in state §* we decide to switch
to the small network. Suppose also that we have a way of
appropriately constructing the p-net. At some later time, after
operation of the small network, we decide to switch back to the

n-net. Then, if the final state of the p-netis £ = (&1, - -+, &)
the following transformation is used for obtaining the new
state 7 = (y1, ** -, Yn) of the original network:
yi = y; +uil, 1€ Gy C))
for all G, € P. The quantities u; are defined as
wp=1-2yf, i=1,---,n 5)

The advantage of the above transformation (4) is that it can
assure that the new state vector ¢ of the n-net contains binary
components. There is an interesting physical interpretation of
the transformation: for each group Gy, € P, if the final state of
the corresponding unit & of the p-net is 1, all units belonging
to group G, change their state with respect to the state vector
77 *. Inversely, if the resulting value & is 0, the units belonging
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to group Gy, retain the state they had before switching to the
p-net.

The connection weights zx; of the p-net can be computed
as follows. Using the transformation (4) the energy of the new
state i/ of the n-net is

E(7) =

)
LYY 3N @+ wb)) + uibwi

GrEP GLeP 1€Gy, JEG,

= >0 D iy +uibs).

GLEP i€G

(©)

Taking into account the energy definition, after some algebra
(6) yields:

E(§) = BG*) + E(E) @)
where the quantity E(¢) is given from the following:
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We can easily observe that the quantity E(E ) represents the
energy of a network of size p whose state is given by the
vector £ = (&1, ---, &) and whose connection weights zy;

k=1,---,p, 1 =1, .-, p take the form:

Tt = E E UiU; Wiy
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To be consistent with the energy definition (1) the quanti-
ties zxz should be equal to zero. We can achieve this by
making a slight change to (8). We add the terms zgx =
ZiGGk Zi'eGk w;uywiy to the threshold values wy of the
p-net and set g, =0, k = 1, - -, p. Since the & values are
binary and hence & = &, we find

P P P
E()=-3 Z Tréués — E Wik (10)
k=1 [=1 k=1
where
wu;w;; ifk #1
Tpl = { icG. J;l 7 an
0 ifk=1

and the threshold w;, of each unit k of the small network is:

wg = Z Oiui + Z Z > wiyiwi
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Alternatively, using (2) we obtain the following expression

Wk = Z 6Ei(37*) +3 Z Z Uy Uyt Wi/

1€Gy . 1€G 1'€Gy
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It is important to note that the p-net has also symmetrical
weights (i.e., xj = 2y forallk =1, ---,p, I =1, .-+, p),as
we can easily observe from (11). This fact ensures convergence
of the p-net when used in Hopfield-type operations. Another
observation is that in order to compute the weight z; only
the weights w;; connecting the units belonging to groups &
and [ are involved.

The procedure of multiscaling can now be described as
follows: while being in a state §* of the original network, we
create a small p-net as defined above. Then we can perform
iterations on this network and, using (4), we can return to
the original network whose energy is now given by (7). A
characteristic of the method is that the computation of the
weights z; and the values wy depends strongly on the state
7* of the n-net at the time of transformation. Thus, the
computation must be repeated each time we wish to switch
to a p-net. This imposes an overhead that may restrict the
number of transitions between the networks. It should be
stressed, however, that the cost of switching back to the n-net
is negligible.

As a conclusion, we can state that it is possible to achieve
multiscale operation in a binary Hopfield-type network by
appropriately partitioning its units into groups and constructing
a binary Hopfield-type coarse-scale network. The operation of
the latter emulates the interaction among the groups of units of
the original network. According to the result of this interaction
all units participating in a group either change or retain their
state. A transition of a unit of the coarse-scale network to the
“on” state corresponds to a group update in the underlying
fine-scale network. Therefore, the operation of multiscaling
suggests a more. general way of performing state transitions
in a Hopfield network: a group of units can be selected for
update and, based on the resulting energy difference (which
has to be defined properly), all units of the group either accept
or reject the state transition. In the following section a formal
definition of the notion of group update is presented and the
exact correspondence between performing group updates in
the fine-scale network and performing single updates in the
coarse-scale network is established.

III. GROUP UPDATES

The operation of the Hopfield model is based on the notion
of single updates. At each step we randomly select a unit
and calculate the difference in the energy of the network that
would result if the state of this unit was altered. Based on the
energy difference, we decide whether the state of the unit must
change or not. We shall use the term #rial to denote the above
operation. Changing the state of a unit will be referred to as
update. Hence, a trial is eventually followed by an update.

In this section, we introduce the notion of group update
which constitutes a generalization of the notion of single
update. The difference lies in the fact that instead of selecting
a single unit to consider for update, we can select a group
containing a number of units. In a manner analogous to the
single unit case, we first perform a trial by calculating the
difference. in the energy that would result if the state of all
units-in the group was altered. Then -a decision must be made

whether a group update must take place, i.e., whether the
states of all these units must change or not. It is clear that
group operation differs from synchronous operation [1], which
consists of simultaneously performing individual trials and up-
dates and also from block-sequential operation [10]; according
to the latter operation mode, the state vector is divided .into
subvectors which are sequentially updated, where within each
subvector individual updates are performed simultaneously
(synchronous operation within each subvector). ;
Consider a discrete Hopfield-type network with n binary
units as defined in the previous section. -Suppose that while
being in state ¥* = (vf, ---, ¥¥) we consider a group G
consisting of m units and perform a trial on this group. If the
trial is successful, a group update takes place and the new state

7 = (y1, -+, Yn) of the network will be such that:

L yr+u; ifieqG
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where u; = 1 — 2yf, ¢ = 1 € G. Equation (14) 31mp1y

expresses the fact that units in G change state.
Using (14) the energy of the new state i takes the form
E()
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The above equation can be written
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Based on the symmetry of the weights we ﬁnally obtain
E(g):E(g*)—Zuz Zij13+‘9
i€G j=1
- % Z Z ui‘uj'wij. (17)
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Equation (17) provides the change AEg(§*) = E(y) -
E(7*) in the network’s energy caused by the group update.
The energy change can also be written in the form

AEG(J*) =Y SE(§*) -5 D> D wujwy

i€G i€G jEG
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where, according to (2), E;(¥*) is the change in the net-
work’s energy in case the network is in state > and unit ¢ is
selected for a single update.

A more intuitive interpretation of (18) can be obtained in
terms of the following proposition.

Proposition 1: The change in the network’s energy due to
a group update from state §* is equal to the sum of the
individual energy changes that would result if the units of
the group sequentially changed state starting from §™* and
following an arbitrary order.

Proof: Suppose that by sequentially performing those
changes, the network’s state will successively pass through
states ¢/1, 72, ---, §™, i.e., we consider an appropriate num-
bering of units such that the change of the state of unit i € G
causes the transition from state 7*~1 to state §* (we have

= 4% and ™ = ). Since finally the states of all units in
the group have changed, the total energy difference is:

ZéE(—»z 1

1€EG
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In state 77! the states of units 1, ---, ¢ — 1 have changed.
Using the fact that §E;(§) = (2y; — 1)(3)—; wjiy; +6;) and
y;- =yj +uj, J=1,---,4 itis easy to Venfy that

i—1
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Substitution from (20) into (19) yields the expression given by
(18) for the energy change resulting from the group update. &

It is obvious that in order for an operation style based on
group updates to be successful, the identification and selection
of appropriate groups of units must take place and this task is
highly problem dependent. In many problem mappings there
are constraints implying that certain groups of neural variables
should have the same state or some pairs of other neural
variables should have opposite states. If we start the operation
of the Hopfield-type network from an arbitrary initial state
satisfying those requirements and proceed by performing the
appropriate group updates, we always move between valid
states and thus the search is more constrained and effective
than in the general case where the whole state space is
searched. In such a case, despite the fact that group updates
are computationally more expensive, there is a significant
performance benefit, since the number of iterations required
to reach an acceptable network state is much smailer.

As far as grouping schemes are concerned they can be
distinguished into state dependent and state independent. In the
former case, the composition of the group that is considered for
update at each time step is determined based on the current
state of the network, while in the latter case the groups are
specified from the beginning and remain fixed during the
operation of the network. We show in the next section that, if
a state independent grouping scheme is considered, the use of
multiscaling offers a significant performance advantage. As a
matter of fact, the multiscale method is closely related to the
notion of group update not only in an intuitive, but also in a
formal way, as illustrated by the following theorem.

225

Theorem 1: Suppose that while being in state 77* of the n-
net, a p-net is created. Then, the change in the n-net’s energy
in state ¢ caused by a group update concerning the units of the
kth group, is equal to the change in the p-net’s energy caused
by the single update of unit % in state E, provided that the two
networks are in consistent states, i.e., y; = yF 4wy if i € Gy

Proof: If the p-net is in state & = (&1, -+, &), the
change in the network’s energy caused by a single update
concerning unit £, is

P
OBR(€) = (26— 1) (Z &z + wk)- 21
=1
Consider now the n-net being in state § = (y1, -, Yn),
where y; = yF + ;& if ¢ € G. Foreachi =1, .-+, n we
define
W, =1-=2y,. (22)
From (4) and (5) we find that
u; = ui(l - 26), @€ Gy. (23)

According to (18), the energy change caused by a group update
concerning group G of the n-net is

AEG, (@)=Y 6E(i)—% Y. Y wiujwir. (24)
1€G}, 1€GE V€G]
Since
SE(G) = —ui | Y D yjwi+6 (25)
GEP j€G,;
we have
ABq, () ==Y | X D ywij+6
1€Gp GLEP jEG,
Z Z TRTR TIPS (26)
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Using (4) and (23) we obtain
AEg,(7)
= —(1 - 2&) Z Z Z U U w1
GLEP 1€G JEG,
—@a=28) 1 Y0 ST Y wiyiw
GLEP i€Gy JEG;
- (1 —_ ka) (Z u161>
i€Gy
- %(1 - 2§k)2 (Z Z uiui’wii/) (27)
i€G i'EGk
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or
AEg, (7

S (

Z Z uiujwijﬁl

P 1€GE j€G;
a-2a) > > Uiui"wii’) €k
1€Gy 1 €G
1 — 2§k) Usg Z Z y;wij + 6;
’LEGk G eP jEG,
— (1 —2&,) (% Z Z 'Uli'uli"wii’)
1€GE ¥ €GR
+ (1 —2¢) (Z Z Uiui’wii’) &k (28)
i€Gy i'E€Gy
Substitution from (11) and (12) into (28) finally yields
AEq, () = Ex(E).
| |

Therefore, the operation of the coarse-scale network is given
a meaningful physical interpretation, since it constitutes an
exact simulation of group updates in the fine-scale network.
An important consequence of the above theorem is that, if
for a neural network architecture there is an effective state
independent grouping scheme, then instead of performing
group updates it is computationally more efficient to create
the corresponding coarse-scale network and proceed by per-
forming single updates in this network. In the next section we
consider optimization problems for which there is a naturally
arising fixed (state independent) grouping scheme and thus the
employment of multiscaling is very beneficial.

IV. APPLICATION TO OPTIMIZATION

We shall now examine the appropriateness of the multiscale
method in solving optimization problems by considering the
set partitioning and set covering problems. For these two
problems we have developed original mappings to the corre-
sponding fine-scale Hopfield network, which are of interest
by themselves and allow an effective exploitation of the
advantages offered by multiscaling. A similar methodology
can be applied to most of the optimization problems belonging
to the broad category of partitioning, covering, hitting, and
splitting problems [5].

A. Application to Set Partitioning

The formulation of the Set Partitioning Problem (SPP) has
as follows [5]: Given a finite set S containing M elements
and a collection C' of subsets S; (i =1, ---, N) of S, find the
minimum subset £’ of C such that all the subsets belonging to
F' are disjoint and they constitute a partition of S, i.e., their
union is equal to S.

In order to deal with this problem we construct the following
neural network architecture. Let k; (¢ = 1, ---, M) denote

the number of occurrences of the i¢th element of S in the
subsets belonging to C. For example, if k; = 2 there are two
subsets in C' that contain the first element of .S. The units of
the neural network are arranged in M rows, such that row ¢
corresponds to the ith element of S and contains-k; units, each
corresponding to an occurrence of that element in the subsets
belonging to C. Thus, the unit (4, j) corresponds to the jth
occurrence of the ith element of S in the subsets belonging to
C. If in the final state of the network a unit (%, 7) is in the “on
state, the subset S; corresponding to the jth occurrence of the
1th element of S must be incorporated in the solution set.

The problem constraints require that every element of S
should be covered and the subsets belonging to the solution
set should be disjoint. This implies that in the final equilibrium
state there must be exactly one “on” unit in each row, i.e., each
element must be covered by one and only one subset. We shall
construct the network so that every equilibrium state fulfills the
above requirement. It is obvious, however, that this property
of equilibrium states solves the problem of disjointness only
partially, as it is still possible to have “on” units in different
rows corresponding to nondisjoint subsets. This problem can
be solved if we enforce the nmetwork to reach equilibrium
points where either all units corresponding to the same subset
are in the “on” state or all are in the “off” state. We shall
call these equilibrium points feasible since they correspond
to feasible (valid) solutions of the original problem [1]. The
network is constructed in such a way that every feasible
equilibrium point is characterized by lower energy than any
nonfeasible equilibrium point. Thus, the lower the energy
of the equilibrium point attained by the network the better
the chance of finding valid solutions of the Set Partitioning
problem instance. It must be noted that the problem of finding
even one valid solution (not necessarily the optimal) of the
SPP is N P-hard. Therefore it is not possible to construct a
neural network with all equilibrium points-corresponding to
valid problem solutions. Another important characteristic of
the proposed architecture is that the resulting energy function
is order preserving, in the sense that for feasible equilibrium
points, the lower the corresponding energy the lower the size
of the resulting solution set F' [1]. ‘

It can be ensured that there is exactly one “on” unit in
each row in an equilibrium state, by assigning a positive
threshold value to each unit and imposing a strong negative
connection between any pair of units belonging to the same
row (no negative conmections are assumed. between units
belonging to different rows). On the other hand, to favor
feasible equilibrium states, a positive connection is imposed
between any pair of units that correspond to the same subset.

Let us first consider positive connections and threshold
values. We assign the value 61/|S,| to the strength of the
positive connection imposed between any pair of units (4, 7)
and (k, {) (with ¢ # k) such that the jth occurrence of the ith
element of S and the [th occurrence of the kth element of S
correspond to the same subset S, in C. The threshold value
of unit (%, 7) is determined as follows

&1 (IST‘I -1+ 52)

=0 29)
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where S, is the member of C corresponding to unit (¢, j) and
|S;| denotes the cardinality of the set Sy. The value of the
parameter o > 0 can be arbitrarily specified, while the values
of §; and 65 will be determined from the requirements of the
problem as will be described next. Note that, actually, both
positive connection weights and threshold values are common
for all units corresponding to a given subset S..

Since in an equilibrium state each row contains exactly one
“on” unit, the network energy has the form:

N
ZT(ZT - |S7-| - 52)
E=-Ma- b ———— (30)
e
where 2z, (r = 1, ---, N) denotes the number of “on” units

that correspond to subset S,.

The value of 62 can be determined from the requirement that
every feasible equilibrium state should correspond to lower
energy than any nonfeasible equilibrium state. Let us define
the function

P
fs(2) = ;(s—z—i-&z) (31)
with f,(0) = 0 and f,(s) = &, where s is a positive integer
and z is an integer such that 0 < z < s. Using the above
function, (30) takes the form:

N
01
E=-Ma+ > fisai(z)- (32)
r=1
The energy corresponding to a feasible equilibrium state
(i.e., either z. = |S,| or z, = 0 for all r) is given by
6162
2

where |F| is the size of the solution set F. The maximum
value that can be assigned to |F| is N, which means that the
maximum energy of a feasible equilibrium state is —Ma +
Né&162/2.

On the other hand, it can be readily verified that, if 0 <
83 < 1, all integer values of z in the interval (0, s) (with
s > 1) yield values of f, greater than 6. Also the minimum
of fs(2)in 0 < z < s (s > 1) occurs for z = 1 and has the
value 1— (1 —02)/s. Hence, a lower bound of >N, fis.i(zr)
for 0 < z, < |S.] is the quantity 1 — (1 — &2)/Smin, Where
Smin denotes the minimum value of |S.|(r = 1,---, N).
Therefore, the minimum energy of a nonfeasible equilibrium
state cannot be less than —Ma + [1 — (1 — 82)/5min) 61/2.

Consequently, the requirement that every feasible equi-
librium state should correspond to lower energy than any
nonfeasible equilibrium state implies that ’

E=—-Ma+|F| (33)

1-6
1-—= > Né, G4
which yields
Smin — 1
§ i 35
2 < ]Vsmin_1 ( )

Moreover, as can be observed from (33), the energy function
is order preserving since between two arbitrary feasible equi-
librium states the one that corresponds to lower energy results
also in a solution set F' of smaller size.
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The value of the parameter §; can be determined from the
requirement that the threshold value 6;; should be greater than
zero for all units (¢, 7). Using (29) we readily obtain the
following inequality:

Smax

0 < 200——m—m———
! Smax — 1+ 02

(36)
where Smax denotes the maximum value of |S.|(r =
1., N).

After having determined positive connection weights and
threshold values, it remains to specify the negative weight
between each pair of units belonging to the same row, which
must ensure that it is not possible to have more than one “on”
unit in each row in an equilibrium state. We define the positive
potential of a unit in a given state as the sum of the threshold
of that unit (which is assumed positive) and of the positive
excitation it accepts from other units. If unit (4, j) corresponds
to subset S, its maximum positive potential over all states
is b;; = 0;; + 861(|S-| — 1)/|S,|. (Obviously, the maximum
positive potential is the same for all units corresponding to the
same subset.) It can be easily verified that, if the strength of
the negative connection weight is greater than the maximum
positive potential of both units it connects, there can be no
more than one *“on” unit in each row in an equilibrium state.
We shall consider a common value b for the strength of all
negative connections of the network, which is taken greater
than the maximum b;; over all units (¢, j). It can be seen that
b;; > o for | S| > 1. For reasons that will become apparent
next (Proposition 3), in any case the value of b is taken greater
than 2o

The proposed Hopfield-type network can operate as a Boltz-
mann Optimizer to minimize the energy function and, conse-
quently, to find feasible solution sets of minimum size for the
SPP. It is also apparent that the employment of multiscaling
is very attractive for this problem, since there is a state
independent grouping of the units of the network. According
to this grouping, all units corresponding to the same subset
in C should participate in the same group and one unit of
the coarse-scale network is allocated to each of these groups.
If creation of the small network takes place at a state of the
original network, where all units belonging to the same group
are in the same state, then the created network has an additional
important feature, as illustrated by the following proposition.

Proposition 2: The feasible equilibrium points of the fine-
scale network correspond to equilibrium points of the coarse-
scale network.

Proof: Suppose that we create the coarse-scale network
while being at a state §* having the property that all units
belonging to the same group are in the same state. Suppose also
that 77 is a feasible equilibrium state of the fine-scale network.
Then, the corresponding state £= (&1, - -+, En) of the coarse-
scale network satisfies that y;; = y7; + us;&x for (4, j) € Gr.
In order to prove that E is an equilibrium state, it is sufficient
to show that §Ex(€) > 0 for each unit k = 1, -+, N of the
coarse-scale network. From Theorem 1 this energy difference
is equal to the energy difference caused by the corresponding
group update AFg, (7) in the fine-scale network. Therefore
it is sufficient to show that, in a feasible equilibrium state #,
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* holds that AEg, () > O for all groups Gy, k=1, ---, N,
(where each group G contains units corresponding to the
same subset Sp).
We distinguish two cases:
1) All units belonging to group Gy, are in the “on” state.
Since there is exactly one “on” unit in each row, we
have for each unit (3, j) € Gi

01

6Eij(§) = 0ij + (1Sk] — 1) 1o+ (37)
S|
Using (18) we find that
AEGk(y)_ Z etJ+ISk|(lSk|_1) |S I
(4, 1)EGK
_1Sul0Si = 1) & .

2 1S

which is greater than zero.

2) All units belonging to group Gy, are in the “off” state.
Since there is exactly one unit “on” in each row, each
unit (%, j) € G} receives an inhibition of strength b from
the unit that is “on” in row ¢. Therefore:

6E;;(§) = —(8:; — b) (39
and using (18) we obtain
L 81(|Sk| — 1+ &
ABG, (7) =15i(6 - o) + 15, 215 )
|Sk|(|sk]_1) b1
—_— 40
2 [EA] “0)
which yields
N N 6152
AEGk(y)_|Sk|(b_a)+T>0 41)
since b > «. |

The equilibrium points of the coarse-scale network that
correspond to feasible equilibrium points in the fine-scale
network will be referred to as feasible coarse equilibrium
points. All other equilibrium points of the coarse-scale network
will be referred to as nonfeasible coarse equilibrium points. It
is possible to extend the result of Proposition 2 in terms of
the following:

Proposition 3: The feasible coarse equilibrium pomts cor-
respond to lower energy than any nonfeasible coarse equilib-
rium point.

Proof: Suppose that we create the coarse-scale network
while being at a state ¥* which, as already stated, satisfies
the property that all units belonging to the same group are
in the same state. Since E(¥*) is constant, we have from
(7) that, if for two arbitrary states £* and £2 the inequality
E(€Y) < E(£?) holds, then, equivalently, the corresponding
states of the original network will satisfy E(7') < E(7?).
Consequently, in order to prove the above proposition, it is
sufficient to show that for every feasible coarse equilibrium
point the energy of the corresponding state of the original
network is lower than the energy of states corresponding to
nonfeasible coarse equilibrium points.

If 5 is a feasible coarse equilibrium point, the energy of the
corresponding state ¢ is given by (33). Using (34) and (36) it
can be shown that Né162/2 < «, and, therefore, we have for
every |F| < N that |F'|6102/2 < a. Consequently, the energy
E; of a feasible equilibrium state satisfies:

Ef<—(M-1)a. 42)

On the other hand, if a coarse equilibrium point 5 is
not feasible, the resulting state ¢ will have the following
characteristics: i) due to the group update operation, for every
subset S, either z, = 0 or 2, = |S,|(r =1, ---, N) and ii)
there will be at least one row having either none or more than
one unit in the “on” state.

Consider first the case where there is a row that does not
contain any unit in the “on” state, whereas all other rows
contain exactly one “on” unit each. The energy of state ¢
takes the form:

6152

Bi=—(M=-1Da+|F| == (43)
Clearly, for every value of |F'| holds that
E]_ > F F- 44)

Consider now the case where there is a row containing two
units in the “on” state, and the remaining rows contain exactly
one “on” unit each The corresponding energy of the original
network would be
51 b2

——(M+1)a+b+|F| (45)
Given that b > 2q, we find that Es > —(M

— 1)o and thus
for every value of |F| :

Ey > Ef (46)

Inequality (46) becomes stronger in the case where there
exist more than two units in the “on” state in the same row.
Moreover, it is obvious that inequalities (44) and (46) hold also
in the case where there are more than one rows that violate
the constraint of having exactly one “on” unit. Therefore, in
any case we see that the feasible coarse equilibrium points
correspond to lower energy than the nonfeasible ones. ]

According to Propositions 2 and 3, the feasible solutions of
a given instance of the Set Partitioning Problem correspond
to the low energy states of the coarse-scale network. Conse-
quently, the construction of the p-net allows us to approach
(or even attain) the optimal solution despite the fact that the
operation takes place at a coarse level. Therefore, one can
use the multiscale method for the creation of the p-net and
then perform iterations exclusively in that network in order to
reach a feasible equilibrium state.

B. Application to Set Covering

The Set Covering Problem (SCP) has the following defi-
nition [5]: Given a finite set S5 containing M elements and
a collection C of subsets S; (1 = 1, ---; N) of S, find the
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minimum subset F' of C such that the subsets belonging to F’
cover the set S, i.e., their union is equal to S.

The neural network architecture constructed to solve the
problem features analogy to the one described in the last
subsection. As previously, we denote by k; (i = 1, ---, M)
the number of occurrences of the sth element of S in the
subsets belonging to C' and consider a network with its units
arranged in M rows. Eachrow ¢ =1, --., M is composed of
two collections of units. The first collection contains k; units,
with unit (%, j) corresponding to the jth occurrence of the ith
element of S in the subsets belonging to C. If in the final state
of the network a unit (¢, §) of the above type is in the “on”
state, the subset S; corresponding to the jth occurrence of the
ith element of S must be incorporated in the solution set F'.

As every element of S must be covered, there must be
at least one unit in the “on” state in each row in the final
state of the network, i.e., there must be at least one subset
covering each element. Satisfaction of this requirement can
be achieved by letting each row 3( = 1, ---, M) contain
a collection of k; — 1 additional units and by imposing the
constraint that in every equilibrium state there must be exactly
k; “on” units in row :. A simple way to do this is to set a
negative connection of strength a between each pair of units
belonging to the same row and specify the threshold values and
the strength of the positive connections of the network so that
the maximum positive potential of each unit (%, j) will be less
than ak; and the minimum positive potential will be greater
than a(k; — 1). The additional units shall be called slack units
[19] and will be distinguished from the originally considered
first collection of units, which correspond to subsets and shail
be called actual units. The above construction scheme ensures
that all equilibrium states of the network are feasible since
they satisfy the covering constraint.

A positive connection of strength 61/|S,| is imposed be-
tween any pair of actual units (7, j) and (k, [) (with ¢ # k),
such that the jth occurrence of the ith element of S and the
{th occurrence of the kth element of S correspond to the same
subset .S, in C. This is necessary, since it is desirable in
equilibrium states to have either all units corresponding to
the same subset in the “on” state or all of them in the “off”
state. The above option leads to reduced redundancy in the
final solution set, by avoiding the existence of subsets that
do not contribute to the covering of S as all their elements
are covered by other subsets of the solution. We call the
equilibrium points having the above property complete. The
weights and thresholds of the network are specified so that
complete equilibrium states correspond to lower energy than
any other equilibrium state.

The threshold value of unit (z, j) is specified as follows. If
unit (¢, j) is an actual unit corresponding to subset S, then

81(]Sr| — 14 62)

5] 47

0ij = a(ki — 63) —

where §; > 0 and 0 < 83, 63 < 1. If unit (i, j) is a slack one,
then 6;; = a(k; — 63). (Note that, in the case of Set Covering,
threshold values depend also upon the row index 7.) We next
discuss the specification of the parameters 6; and ;.
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Since in an equilibrium state there are exactly k; “on” units
in each row i, the corresponding energy has the form

M
E = Z —————kl(k;_ 1) (83

i=1

M
- z ki(k,‘ - 63)()
i=1 -

N
zr(2r ~ |Sr| = 65)
- b —————=- (48)
2 0TS
where z., (r = 1, ---, N) denotes the number of “on” units

that correspond to subset S,.. The first two terms on the right-
hand side of the above equation constitute a constant quantity
which will be denoted by K. Thus,

zr(|Sr| — Zp + 62)

215,] “9)

N
E=K+) &

r=1
The value of 6 can be determined from the requirement that
every complete equilibrium state should correspond to lower
energy than any other equilibrium state. Using the function
fs(#) defined in the previous subsection, (49) takes the form

5
1
E=K+— Z fis,1(2r). (50)
r=1
The energy corresponding to a complete equilibrium state
(i.e., either 2, = |S,| or z. = 0 for all r) is given by

Bi%
2

where |F'| is the size of the subset collection F' that corre-
sponds to the solution of the problem. Using similar arguments
as in the case of the SPP we find that, in order for every
complete equilibrium state to correspond to lower energy than
any noncomplete equilibrium state, the following inequality
must hold

E =K +|F| 1)

Smin — 1
N$min — 1 '
Moreover, the resulting energy function is order preserving for
complete equilibrium states, as can be observed from (51).

The value of §; can be derived based on the requirement
that the maximum positive potential of each actual unit (3, 7)
must be less than ok; and the minimum positive potential
must be greater than a(k; — 1). The maximum positive
potential of actual unit (%, j) corresponding to subset S, is
;5 + 61(|S-| — 1)/|S,|, while the minimum positive potential
is equal to ;;. This leads to the following two inequalities
which must be simultaneously satisfied by the value of §;

6o < (52)

Smax
_ 53
51 <2a63 Smax—l'—52 53)
and
smax
- _— 5
b1 <2C¥(1 (53) PR 5, 54)

Therefore, in order to obtain the desired network charac-
teristics, first the values of & > 0 and 0 < 83 < 1 must be
arbitrarily specified, then the value of §; must be determined



230 IEEE TRANSACTIONS'ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

so as to satisfy (52) and, ﬁnally, the value of §; must be
determined according to the inequalities (53) and (54).

A Boltzmann Optimizer based on the above defined network
is used to find near-optimal solutions for the Set Covering
Problem. As in the SPP case, a considerable benefit is expected
from the employment of multiscaling, since there is a state
independent grouping of the actual units of the network.
According to this grouping, all actual units corresponding to
the samé subset in C should participate in the same group
and one unit of the coarse-scale network is allocated to each
of these groups. Slack units are maintained in the p-net as
individual units. In analogy with the SPP, we create the small
network from a state of the original network, where all actual
units belonging to the same group are in the same state.

In analogy with the SPP, it can be proved that the states
of the resulting coarse-scale network that correspond to com-
plete equilibrium points of the fine-scale network are also
equilibrium points. In addition, it can be shown that the
complete coarse equilibrium points are of lower energy than
any noncomplete coarse equilibrium point. As a result, it is
possible to find complete equilibrium states of the original
network (and therefore near-optimal problem solutions) just
by operating at the coarse-scale level.

It is possible for the network to reach a final solution where
there are still redundant subsets in the sense that all their
elements are covered by other subsets of the solution set.
These subsets can be removed from the solution set £ without
violating the covering constraint. To achieve this, we add a
processing stage after termination of the multiscale algorithm.
During this stage we successively specify groups in the fine-
scale network and perform the corresponding group updates.
At each step, the specification of the group of units to be
updated is done as follows. At first, all rows having at least
one slack neuron in the “off” state are marked. Then we
search for subsets (contained in the final solution) satisfying
the property that all their corresponding units are “on” and
belong to a marked row. If such a subset is found, we consider
the group containing the ‘actual units corresponding to that
subset and one “slack” unit in the “off” state from each of
‘the respective marked rows. A group update concerning this
group will further reduce the energy of the network since it
removes one redundant set. The above operation is repeated
until no suitable group can be specified.

C. Experiments

In order to evaluate the efficiency of our approach a
series of experiments has been conducted regarding both
the Set Partitioning and the Set Covering problems. These
problems are of particular interest, since they constitute the
basic formulation of many scheduling problems. The objective
of the experiments was to examine the suitability of the
proposed original fine-scale architectures for providing valid
near optimal solutions and then to assess the capability of the
resulting coarse-scale networks to speed up execution time and
attain low energy states despite the fact that they operate at a
different level of granularity.

To generate the instances of the SPP first the number M
of elements of the set S and the number N of subsets in the

collection set C were specified. Then, in order to ensure the -
existence of at least one valid solution, we first constructed a
number of subsets of S by allocating each of the elements of
S to one and only one of these subsets so as to create a disjoint
solution. The remaining subsets were randomly constructed by
deciding with probability ¢ whether an element of 'S would
belong to a particular subset. By varying the value of ¢ the
density of the resulting problem instance could be adjusted.
The value of ¢ was chosen in the range from 0.05 (sparse
instances) to 0.4 (dense instances). For the generated problem
instances, first the optimal solution was found using exhaustive
search. Then, the fine-scale architecture was used to solve the
problem and finally the multiscale approach was applied.

As far as the fine-scale architecture is concerned, we tested
its effectiveness on small and medium (/V smaller than 100 and
M smaller than 50) problem instances since for large problem
instances the size of the resulting neural network was very
high (over 1000 units). Both sparse and dense instances were
considered. In what concerns the annealing schedule, we have
adopted the following logarithmic scheme [20]:

_ Tn~1
T 1+log f(n)

where f(n) = f(n — 1)(1 + 7) [with f(0) = 1] and r
is the parameter that adjusts the speed of the schedule. All
experiments with the fine-scale architecture were conducted
starting from temperature Ty = 10.0 and using a temperature
reduction rate = 10~7. Also the value of the parameter
was fixed to 10.0 for all experiments. It should be noted that
the above starting temperature is appropriate for this specific
choice of the value of «. For greater (smaller) values of «, the
starting temperature must be higher (lower). At each tempera-
ture, a number of trials equal to 2n (where n is the number of
network units) was performed and the annealing stopped if for
10 consecutive temperature values none of the units changed
its state. The average value of the final annealing temperature
over all experiments with the fine-scale network was 1.74. The
results obtained from the experiments are shown in Table I for
small and medium size instances and in Table II for big size
instances. As a metric of the quality of a feasible solution
obtained for a given instance I of the problem we use the.
approximation ratio which is defined as h(I)/opt(I), where
h(I) denotes the cardinality of the obtained feasible solution
and opt(I) denotes the cardinality of the optimal solution [17].
In each row of Tables I and II, the percentage of feasible
solutions obtained and the approximation ratio averaged over
all feasible solutions are depicted: The approximation ratio
is not meaningful in cases where the percentage of feasible
solutions is less than 50%. As can be observed, solutions
of acceptable quality are obtained only for small .problem
instances (up to 50 subsets and 10 elements).

The above situation is remedied through the multiscale ap-
proach and the construction of the coarse-scale network, whose
size is equal to the number of subsets NV and independent of the
number of elements and the value of ¢. In all tested instances,
first the fine-scale network was constructed and then the
creation of the p-net took place at the zero state of the n-net,
ie., yf = 0 for all 4. The operation of the p-net started from

- (55)

n



LIKAS AND STAFYLOPATIS: GROUP UPDATES AND MULTISCALING

231

TABLE 1
SPP:  SMALL AND MEDIUM SIZE INSTANCES
Feasible % Approzimation ratio | Average size | Average
N | M | Fine scale | Coarse scale | Fine scale | Coarse scale | Fine scale | speedup

30 | 10 86.0 100.0 1.32 1.08 80 2.05

30 | 20 62.5 100.0 1.12 1.25 114 3.38

50 |10 67.5 100.0 1.37 1.23 133 2.17

50 {30 52.0 100.0 1.58 1.11 212 7.94

50 | 50 28.0 100.0 . —_ 1.14 377 13.52

100 | 10 57.0 100.0 1.42 1.27 254 3.42

100 | 30 12.0 87.5 — 1.29 798 12.59

100 | 50 5.0 75.0 —_ 1.16 922 18.67
TABLE II resulting p-net is much smaller and, thus, the number of trials
SPP: BIG SIzE INSTANCES performed at each temperature is considerably reduced. (The
Feasible % | Approzimation ratio speedup can be estimated as O(n?/p?), since, for a network
N | M | Coarse scale Coarse scale of size I, 2[ iterations are performed at each temperature
200 | 50 100.0 1.19 with each iteration requiring [ multiplications.) Since, due
200 | 100 95.0 1.23 to the problem formulation, just one execution of the p-
200 | 150 91.0 137 net is adequate to obtain near-optimal solutions, this benefit
. - is significantly higher than the overhead imposed by the
350 | 50 100.0 1.22 construction of the p-net and by the fact that the annealing
350 | 100 92.0 1.27 starts at a higher temperature. As Table I indicates, the average
350 | 150 86.0 1.36 speedup for small and medium size instances was in the range
500 | 50 83.0 1.33 between 2~18, while for large instances the speedup could not
500 | 100 72.0 1.42 be determined, as the big size of the fine-scale network did
500 | 150 68.0 1.44 not allow us to find acceptable solutions in reasonable time

temperature Ty = 20.0 and followed a temperature reduction
rate » = 1077, while the average final temperature value
was 3.6. As the weights and thresholds of the coarse-scale
network are greater than in the fine-scale case (in absolute
values) a higher value of T, was chosen for the annealing
schedule [1]. After the operation of the p-net was terminated,
the corresponding state of the n-net was found and the fine-
scale network operated as a pure Hopfield network (with zero
temperature) to provide the final solution to the problem.

In what concerns the quality of the resulting solution, when
the above annealing schedule was employed, feasible solutions
were obtained for most of the experiments. In accordance with
Propositions 2 and 3, all feasible solutions were attained by
performing iterations only in the p-net, i.e., the resulting state
7 of the n-net was a feasible equilibrium point and further
operation at the fine-scale level provided no improvement. In
the case of nonfeasible coarse equilibrium points, the fine-scale
network simply settled to the nearest equilibrium state (which
was not feasible). This result establishes the capability of the
coarse-scale network to effectively search the constrained state
space and provide solutions of very good quality. The average
case approximation ratio over all tested instances was 1.25. It
must be noted that solutions of better quality were found in
the case of dense than in the case of sparse problem instances.

In addition, a significant benefit in terms of execution time
was achieved, in comparison to the case where the fine-
scale network operates solely. This is due to the fact that the

(Table II).

It should also be noted that the quality of the obtained
solution depends heavily on the choice of the temperature
reduction rate. We have found that the chosen rate value
provides solutions of good quality in reasonable execution
time. In general, with smaller (larger) rate values the quality
of the solution is better (worse), but the annealing procedure
is slower (faster).

Similar experiments were performed for the Set Covering
problem. Due to the existence of slack neuronms, the size
of the resulting networks was bigger in this case, thus the
experiments were performed for problem instances with N
between 30-100 and M between 10-50. Moreover, both sparse
and dense problem instances were examined. The value of o
was fixed to 10 and the value of 63 was fixed to 0.1 for all
the experiments. The construction of a problem instance was
similar to the SPP case, except that we were not concerned to
create a disjoint solution. Care was taken so that every element
participated in at least one subset. Due to the appropriate
construction of the network all resulting solutions are feasible,
i.e., all elements of S are covered.

Experiments with the fine-scale network have shown that
the quality of the obtained solutions was poor, even for small
problem instances. On the contrary, the multiscale method
provided results of good quality. The multiscale scheme used
in the experiments had the same characteristics as in the SPP
case, except for the fact that the initial temperature of the
p-net was set equal to 0.5. The annealing rate of the p-net
was 7 = 10~7 and the average final temperature was 0.11. In
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TABLE III
SET COVERING PROBLEM
N | M | Approzimation ratio
30 | 10 1.12
30 | 20 1.18
50 | 10 1.27
50 | 30 1.03
50 | 50 1.13
100 | 10 1.18
100 | 30 1.31
100 | 50 1.24

addition, as described in the previous section, a postprocessing
stage was added to remove redundant subsets from the final

solution set. Table III depicts the average case approximation’

ratio for instances of various sizes, while the overall average
case approximation ratio is equal to 1.18. As can be observed,
the obtained results are quite satisfactory.

V. CONCLUSIONS

We have introduced the notion of group update in the
context of Hopfield-type neural networks having binary com-
puting elements, and we have shown that the multiscale
approach is an easy and fast way for performing group
updates. It has been proved that a single update in the coarse-
scale network is equivalent (in terms of the resuiting energy
difference) to the corresponding group update in the original
fine-scale network. This fact makes the multiscale approach
very attractive, especially in problems where state independent
grouping schemes can be devised.

We have exploited the idea of multiscaling in solving
optimization problems, such as the Set Partitioning and Set
Covering problems. An original mapping of these problems
to a binary Hopfield neural network -architecture has been
constructed, which is characterized by an order preserving
energy function. Then, by appropriately grouping the units of
this network, a coarse-scale network was created having the
property that the low energy equilibrium points correspond to
feasible equilibrium points of the original network. Thus, fea-
sible solutions can be obtained by operating exclusively at the
coarse level, allowing for both faster and more effective search
of the problem state space. In such a case, multiscaling can be
considered as a method for developing a coarse representation
of the problem without losing any significant information. A
similar construction methodology (concerning the creation of
both the fine-scale and the coarse-scale networks) can also be
applied to other relevant combinatorial optimization problems
such as the Set Packing, Independent Set, Vertex Covering,
Set Splitting, Hitting Set, etc.
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