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A Kurtosis-Based Dynamic Approach
to Gaussian Mixture Modeling

Nikos Vlassis and Aristidis Likas

Abstract—We address the problem of probability density function
estimation using a Gaussian mixture model updated with the expectation-
maximization (EM) algorithm. To deal with the case of an unknown
number of mixing kernels, we define a new measure for Gaussian
mixtures, called total kurtosis, which is based on the weighted sample
kurtoses of the kernels. This measure provides an indication of how well
the Gaussian mixture fits the data. Then we propose a new dynamic
algorithm for Gaussian mixture density estimation which monitors the
total kurtosis at each step of the EM algorithm in order to decide
dynamically on the correct number of kernels and possibly escape from
local maxima. We show the potential of our technique in approximating
unknown densities through a series of examples with several density
estimation problems.

Index Terms—Expectation-maximization (EM) algorithm, Gaussian
mixture modeling, number of mixing kernels, probability density function
estimation, total kurtosis, weighted kurtosis.

I. INTRODUCTION

The Gaussian mixture model [1] has been proposed as a general
model for estimating an unknown probability density function, or
simply density. The virtues of the model lie mainly in its good

Manuscript received September 17, 1998.
N. Vlassis is with the RWCP, Autonomous Learning Functions SNN,

Department of Computer Science, University of Amsterdam, 1098 SJ Am-
sterdam, The Netherlands (e-mail: vlassis@wins.uva.nl).

A. Likas is with the Department of Computer Science, University of
Ioannina, 45110 Ioannina, Greece (e-mail: arly@cs.uoi.gr).

Publisher Item Identifier S 1083-4427(99)05344-8.

1083–4427/99$10.00 1999 IEEE



394 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 4, JULY 1999

approximation properties and the variety of estimation algorithms that
exist in the literature [1], [2]. The model assumes that the unknown
density can be written as a weighted finite sum of Gaussian kernels,
with different mixing weights and different parameters, namely,
means and covariance matrices. Then, depending on the estimation
algorithm, an optimum vector of these parameters is sought that
optimizes some criterion. Most often, the estimation of the parameters
of the mixture is carried out by the maximum likelihood method,
aiming at maximizing the likelihood of a set of samples drawn
independently from the unknown density.

One of the algorithms often used for Gaussian mixture model-
ing is the expectation-maximization (EM) algorithm, a well-known
statistical tool for maximum likelihood problems [3]. The algorithm
provides iterative formulae for the estimation of the unknown param-
eters of the mixture, and can be proven to monotonically increase in
each step the likelihood function. However, the main drawbacks of
EM is that it requires an initialization of the parameter vector near the
solution, and also it assumes that the total number of mixing kernels
is known in advance.

To overcome the above limitations, we propose in this paper a
novel dynamic algorithm for Gaussian mixture modeling that starts
with a small number of kernelsK (usuallyK = 1) and performs EM
steps in order to maximize the likelihood of the data, while at the same
time monitors the value of a new measure of the mixture, calledtotal
kurtosis, that indicates how well the Gaussian mixture fits the input
data. This new measure is computed from the individualweighted
sample kurtosesof the mixing kernels, defined by analogy to the
weighted means and variances of the kernels and first introduced in
[4] for on-line density estimation. Based on the progressive change
of the total kurtosis, our algorithm performs kernel splitting and
increases the number of kernels of the mixture. This splitting aims at
making the absolute value of the total kurtosis as small as possible.

By performing dynamic kernel allocation, the proposed algorithm
is capable of finding a good estimation of the number of kernels of
the mixture, while it does not require any prior initialization near
the solution. As experiments indicate, our approach seems to be
superior to the original EM algorithm in approximating an unknown
density. This fact renders it a good alternative for Gaussian modeling,
especially in cases where little information about the density to be
approximated is available beforehand.

In the neural networks literature, a feed-forward network that
implements a Gaussian mixture is the probabilistic neural network
[5]. The network uses one Gaussian kernel for each input sample,
while the variance of each kernel is constant and known and the
mixing weights are equal to the reciprocal of the total number of
inputs. The network can be regarded as a distributed implementation
of the Parzen windows method [6]. Some of the limitations of the
original network model were relaxed in subsequent works [7]–[10],
leading to network models that implement some variants of the EM
algorithm. However, in most approaches the numberK of kernels of
the mixture is considered known in advance, and it turns out that the
automatic estimation ofK is a difficult problem [1], [11].

Statistical methods or neural network models for estimating the
number of kernels of a Gaussian mixture have been proposed in
the literature [1], [9], [12], [13]. However, most of them usually
cannot satisfy the necessary regularity conditions for estimating the
asymptotic distributions of the underlying tests, and thus have to
resort to costly heuristic techniques, e.g., Monte Carlo bootstrapping,
for obtaining a solution.

In Section II we review the use of Gaussian mixtures as models for
probability density estimation, and show how the EM algorithm can
be used for obtaining maximum likelihood solutions. In Section III
we describe our algorithm. We first define the new measure of total

kurtosis that is needed by the algorithm and then show how the algo-
rithm can make use of this quantity to produce better solutions. We
consider the univariate case only. Work is under progress to extend the
definition and use of total kurtosis in higher dimensions. Section IV
gives experimental results from the application of the algorithm to
density estimation problems, while Section V summarizes and gives
hints for future research.

II. GAUSSIAN MIXTURES AND THE EM ALGORITHM

A. Gaussian Mixtures

We say that a random variablex has a finite mixture distribution
when its probability density functionp(x) can be written as a finite
weighted sum of known densities, or simply kernels. In cases where
each kernel is the Gaussian density, we say thatx follows a Gaussian
mixture. For the univariate case and for a numberK of Gaussian
kernels, the unknown mixture can be written

p(x) =

K

j=1

�jp(xjj) (1)

wherep(xjj) stands for the univariate GaussianN(�j ; �j)

p(xjj) = 1

�j
p
2�

exp
�(x� �j)

2

2�2j
(2)

parametrized on the mean�j and the variance�2j . In order forp(x) to
be a probability density function with integral 1 over the input space,
the additional constraints on the weights�j of the mixture must hold

K

j=1

�j = 1; �j � 0: (3)

The Gaussian mixture model is general and under regular conditions
it may approximate any continuous function having a finite number
of discontinuities [11].

For the estimation problem we assume a training setX =
(x1; � � � ; xn), of n independent and identically distributed samples of
the random variablex, taking values from an input space, e.g., in the
univariate case the real lineIR. Training aims at finding the number
of kernelsK and the optimum vector�� of the 3K parameters of
the mixture

�
� = (��1 ; �

�
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that maximizes the likelihood function

�
� = argmax

�
L(�); L(�) =

n

i=1

p(xi): (5)

Although efficient methods exist for the estimation of the3K
parameters of the mixture from a set of samples ofx, the automatic
estimation ofK remains a difficult problem [11].

B. The EM Algorithm

The EM algorithm [2], [3], [14] is a powerful statistical tool
for finding maximum likelihood solutions to problems involving
observed and hidden variables. The algorithm applies in cases where
we ask for maximum likelihood estimates for some observed variables
X but we do not know the exact form of their probability density
function. Instead, we can compute the joint density of these variables
and some hidden variablesY .

At each EM step the algorithm computes the quantity

Q �j�(t) = EY log p(X; Y j�)jX; �(t) (6)
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which is a function of the parameter vector� and which is obtained by
averaging the logarithm of the joint density ofX andY , conditioned
on �, over the hidden variablesY , given the observationsX and
the current estimate of the parameter vector�(t) (E step). Then, the
next estimate�(t+1) of the parameter vector is computed as the value
that maximizes the quantityQ (M step). Alternating these two steps,
the EM algorithm can be shown [2] to monotonically increase the
likelihood of the observationsX, thus yielding an optimum�� in the
maximum likelihood sense.

The problem of estimating an unknown Gaussian mixture by
maximizing the likelihood of the parameter vector� can be regarded
as a problem with hidden variables and thus solved by using the
EM algorithm. In this case, the hidden variables are the kernels the
input samples statistically belong to, while each EM step provides an
improved estimate of the parameters�j , �j , and�j of each kernel
j, j = 1; � � � ; K. These iterative formulae can be shown [2] to be

�
(t+1)
j =

1

n

n

i=1

P (jjxi); (7)

�
(t+1)
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n

i=1

P (jjxi)xi

n
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P (jjxi) =
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j p xijj; �

(t)
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j

K
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k ; �

(t)
k

: (10)

It is not difficult to see that the weights�j satisfy the conditions (3)
after applying the above formulae for all kernels.

It is useful here to make a qualitative analysis of the above
formulae. In each EM step we use the posterior probabilityP (jjxi)
that a samplexi belongs statistically to kernelj when the prior
probability of the latter is�j , and which is computed in (10) by
applying the continuous version of Bayes’ theorem. This quantity
P (jjxi) is computed for every kernelj from the previous estimates
of the parameters�j , �j , and�j for this kernel, and for inputxi.
Then it is summed over all input samplesxi for the estimation of the
new priors�j (7), it is summed weighted by the inputsxi for the
estimation of the new means (8), and it is summed weighted by the
square distances of the input samplesxi to the new means for the
estimation of the new variances�2j (9). By analogy to the formulae of
the sample moments in statistics, the estimated parameters in each EM
step of the algorithm can be regarded as weighted sample moments
of the random variablex, with the weights being the posterior
probabilitiesP (jjxi).

C. Limitations of EM

In problems of Gaussian mixtures, due to the nonlinearities of
the underlying densities with respect to their parameters� and �,
the likelihood function exhibits almost surely local maxima or saddle
points. It is desirable, therefore, that a maximum likelihood estimation
method should be able to escape from such local maxima.

Although the EM algorithm monotonically increases in each step
the likelihood of the observations, it cannot ensure convergence of

Fig. 1. Wrong fitting: the EM algorithm tries to fit the input samples (vertical
bars) to a Gaussian kernel, while the samples actually follow a bimodal
distribution.

the parameter vector�� to a global maximum (satisfying appropriate
nonsingularity conditions) of the parameter space [2]. The algorithm
may easily get stuck in a local maximum or saddle point. Moreover,
so far we have assumed a known number of mixing kernels and thus
have obtained the iterative solutions (7)–(9). In practice this is hardly
true: K is usually unknown and has also to be estimated from the
input samples. These two constraints hamper severely the efficiency
of the EM algorithm.

On the other hand, for the estimation of the number of mixing
kernels we cannot use the maximum likelihood method. Maximizing
the likelihood with respect to the number of kernels leads to using
one kernel for each input sample ofX, with the kernel mean equal to
the sample. Apparently, such a solution would lead to a large number
of kernels, equal to the cardinality ofX, giving rise to overfitting.

In general, it appears that the EM algorithm for Gaussian mixtures
suffers from the problems of local maxima and an unknown number
of kernels. In order to solve these two problems, we need a measure of
the quality of the approximation at any instant as an indicator of how
well the model fits the data. A bad fitting would necessitate a change
of the parameter vector, or even an increase of the dimensionality of
the parameter space. In the following we touch these issues.

III. T HE KURTOSIS-BASED ALGORITHM

FOR GAUSSIAN MIXTURE MODELING

A. Total Kurtosis Measure

Assuming that the random variablex follows a Gaussian mixture
with a predefined number of kernelsK, the EM algorithm yields the
iterative update equations (7)–(9) for the estimation of the parameters
of the mixture. In these equations, the posterior probability (10)
specifies the probability that a samplexi statistically belongs to a
kernelj, thus each input sample can be regarded as originating from
one of the kernelsj with probability P (jjxi).

Based on this quantity, the fitting procedure tries to optimally
distribute theK given kernels over the input space, in such a way
that most of the details of the unknown density are correctly captured.
However, in cases where the number of kernels is not adequate
for accurately approximating the input density in some parts, the
fitting algorithm, using a limited number of kernels, will unavoidably
underestimate the density in those parts and give poor results. It
turns out that although the parameters of the kernels, i.e., means and
variances, are correctly estimated from the weighted sample moments
shown in (8) and (9), it is probable that the fit is not adequate. In
Fig. 1 we show such a case: the input samples (vertical bars) follow
a bimodal distribution while EM tries to fit them to a single Gaussian
kernel. In this case, there is no way to use the first two moments,
i.e., mean and variance, to reveal this hidden multimodality.

A solution to the problem is to resort to higher moments in order
to decide whether a kernelj fits adequately the samples lying in
its vicinity. Under the assumption thatp(xjj) in (1) is the Gaussian
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density (2), it is not difficult to verify that the following equation
holds irrespective of the values of�j and�j

1

�1

x� �j

�j

4

p(xjj)dx = 3: (11)

Using Bayes’ rule we can expressp(xjj) in the above formula in
terms of the mixturep(x)

p(xjj) =
P (jjx)

�j
p(x) (12)

and (11) becomes

1

�1

x� �j

�j

4
P (jjx)

�j
p(x)dx = 3: (13)

The left part of this equation can be approximated by Monte Carlo
integration [11], [15] from the training dataxi, i = 1; � � � ; n, which
are independently sampled fromp(x) to give

1

n�j

n

i=1

xi � �j

�j

4

P (jjxi) = 3: (14)

To make this result more intuitive, we can substitute in the above
formula the mixing weights�j computed in each step of the EM
algorithm from (7) to arrive at the result

n

i=1

x ��

�

4

P (jjxi)

n

i=1

P (jjxi)

= 3: (15)

Based on that, we define theweighted kurtosis�j of a kernelj of
the mixture as

�j =

n

i=1

x ��

�

4

P (jjxi)

n

i=1

P (jjxi)

� 3 (16)

which, for a true Gaussian mixture, should be zero for all components,
and which can be regarded as the “weighted” equivalent of the
original definition of the kurtosis of a distribution [15]

Kurt =
1

n

n

i=1

xi � �

�

4

� 3 (17)

where� and� the sample mean and variance, respectively, of the
random variablex.

For a mixture of well-separated kernels where the posteriors
P (jjxi) for a kernel j are almost one for samples belonging to
the correct kernel and almost zero for distant samples, the weighted
kurtosis�j approximates the original kurtosis measure (17). On the
other hand, if for some kernelj the distribution of the samples in its
vicinity is non-Gaussian, the associated weighted kurtosis�j deviates
from zero to a positive or negative number.

To test how large this deviation is for the whole mixture, a new
measure is needed that weighs the deviation�j of each kernel
according to its importance�j for the whole mixture. In this sense,
we define a new quantity calledtotal kurtosisas

KT =

K

j=1

�j j�j j (18)

which is a weighted average of the individual weighted kurtoses of the
kernels of the mixture. The absolute values are needed to compensate
for the individual kurtoses taking positive or negative values.

The total kurtosisKT can be regarded as a measure of how
well a Gaussian mixture fits the data, since a low value (near zero)
indicates that each individual kernel fits naturally the samples in its
vicinity, therefore the mixture constitutes a good approximation to
the unknown density that generated the samples. On the other hand,
a large value of the total kurtosis means that there are kernels that
do not fit adequately their corresponding samples, or their parameters
(mean and variance) are not properly adjusted.

The measure of kurtosis is important since the value of the
likelihood alone does not provide much information regarding the
effectiveness of the fit. For example, by using the EM algorithm we
arrive at a solution of maximum likelihood for a specific number of
kernels, but we cannot be sure whether the solution constitutes an
acceptable approximation to the unknown density; the two densities
may differ significantly based on other distance measures [16]. On the
other hand, we know that a lower bound for the total kurtosis is the
zero value. Therefore, we can expect that the lower the total kurtosis
value of the obtained solution is, the better is the approximation of
the unknown density.

As an example, consider the approximation of two unknown
densities using a Gaussian mixture withK = 10 kernels. The first
density was a Gaussian mixture with four components, while the
second was a uniform density. The maximization of the likelihood
provided solutions with log-likelihood values�12 202 and�11732,
respectively. These values contain no information of how well the
obtained solutions approximate the corresponding densities. As ex-
pected, the first solution accurately approximated the known Gaussian
mixture, while the second solution was only a coarse approximation
to the uniform density. The total kurtosis of the solutions was 0.03 and
0.31, respectively, for the two cases. This means that the total kurtosis
value revealed that the first approximation was accurate, while the
second approximation was coarse. In general, solutions of lower total
kurtosis, provide better fit to the samples compared to solutions with
higher total kurtosis. In the following section we propose an algorithm
that is based on EM and which automatically increases the number
of kernels based on the value of the total kurtosis of the mixture.

B. The Proposed Algorithm

Based on the definition of the total kurtosis (18), we have devel-
oped a new algorithm for Gaussian mixture density estimation that
uses the EM algorithm for parameter estimation and automatically
adjusts the number of kernels using criteria based on the total kurtosis
of the mixture. The proposed algorithm is based on the idea that we
should try to maximize the likelihood by performing EM steps that
in general lead to a decrease of the total kurtosis value.

More specifically, we start with a small numberK of kernels
(usually K is selected from one to three) and perform EM steps
using theK kernels. These EM steps adjust the parameters of the
kernels so that the likelihood is increasing and the total kurtosis is
decreasing. This procedure is continued until either a local maximum
of the likelihood is encountered or the total kurtosis reaches a
minimum value and starts increasing. We distinguish between these
two cases. In the first case a local maximum of the likelihood is also
a local minimum of the total kurtosis, since no further update of the
parameters is possible. If this happens, we check the value of the total
kurtosis and, if it is sufficient low, we accept the solution, otherwise
we consider that the solution is inadequate. Then, using the current
local maximum parameters of the kernels, we create a new initial
point for the EM algorithm by splitting one of the kernels in two as
it will be described later in this section.

In the second case where the total kurtosis starts increasing without
the likelihood having reached yet a local maximum, we consider that
the EM algorithm has made its best in trying to fit each Gaussian to
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the given samples. Consequently, more kernels are needed to approx-
imate the samples better. Therefore, if an EM step leads to an increase
in the value of the total kurtosis, this is considered as the event that
triggers the split of a kernel in two kernels in order to provide the
capability for better approximation of the unknown density by the
Gaussian mixture. After splitting, theK + 1 kernels continue to be
updated at each step using the EM algorithm. In general, the splitting
of the kernels leads to a decrease in the value of total kurtosis. Never-
theless, in some cases it is possible that, due to improper initialization
of the two new kernels, the value of the kurtosis temporarily increases
for some steps, until the kernels move to the right positions, and the
kurtosis starts decreasing again. For this reason, for a number of EM
steps after a split, no further splits are permitted, since we allow the
kernels to move to their appropriate positions even if this temporarily
leads to an increase of the total kurtosis.

Once we have decided when to perform kernel splitting by moni-
toring the value of the total kurtosis after each EM step, it remains
to specify which kernel will be selected for splitting.

A deviation of the total kurtosisKT from zero implies that the
weighted kurtosis� of one or more kernels deviates also from the
zero value. Therefore, a reasonable selection criterion is to split the
kernel j that contributes most significantly to the high value of the
total kurtosis, i.e., we select the kernel with the highest value of
�j j�j j. The two new kernels that are created have means equal to
�j + �j and�j � �j respectively, and variances both equal to�j .
Their priors are set to�j=2 so that (3) still holds.

Finally, we must also specify termination criteria for the proposed
method. Since the EM algorithm converges for fixed number of
kernels, we must specify criteria for disabling kernel splitting in future
steps. Consequently, the EM algorithm will converge to a maximum
value of the likelihood. A criterion of this kind is a measure of the
effectiveness of the split: we store the value of the total kurtosis at
the time of a split and the corresponding value at the time of the
next split. If the difference is very small, we consider that splitting
is no longer effective and from that time on, we keep the number of
kernels fixed and perform EM steps until reaching a local maximum
of the likelihood.

The algorithm just described that dynamically adds kernels based
on the value of the total kurtosis, has the attractive feature that it
requires no initial knowledge about the numberK of the kernels of
the mixture. It starts using a small number of kernels and adds kernels
in the mixture dynamically, while the algorithm evolves. Moreover,
it requires no initialization at a point� which is already near the
optimum solution, while, by dynamically increasing the number of
kernels, it is also capable of potentially escaping from local maxima
of the likelihood function, thus yielding a better approximation to the
unknown density.

The complete algorithm is summarized below. In the following
description �1; �2 are user defined variables,limit denotes the
number of steps after the last splitting during which a new splitting
is not allowed,nosteps denotes the number of steps after the last
splitting andKsplit denotes the total kurtosis value at the time of the
last split. Moreover if the variableenableSplitting is set equal to 1
then no further kernel splitting is allowed.

1) Initialization: Set the initial numberK of kernels and initialize
the parameters of the kernels (means and variances).

2) Compute the initial value of the total kurtosisKold
T and the

initial value of the likelihoodLold.
3) Setnosteps := 0, Ksplit := Kold

T , enableSplitting := 1.

a) Perform an EM step. Setnosteps := nosteps+ 1.

b) Compute the new value of the total kurtosisKnew
T and

the new value of the likelihoodLnew.

c) Check for convergence: ifjLnew � Loldj < �1 go to
step (f).

d) If (Knew
T > Kold

T ) and (nosteps > limit) and
(enableSplitting = 1) then

• Perform kernel splitting.
• K := K + 1, nosteps := 0.
• Kold

T := Knew
T , Lold := Lnew

• ComputeKnew
T , Lnew

• If jKsplit �Knew
T j < �2 thenenableSplitting :=

0.
• SetKsplit := Knew

T

e) Go to step (a)
f) If (Knew

T is not small enough) and (enableSplitting =
1) then

• Perform kernel splitting.
• K := K + 1, nosteps := 0.
• Kold

T := Knew
T , Lold := Lnew

• ComputeKnew
T , Lnew

• If jKsplit �Knew
T j < �2 thenenableSplitting :=

0.
• SetKsplit := Knew

T

• Go to step (a)

4) end.

IV. EXAMPLES

To assess the effectiveness of our approach we have conducted
experiments with data drawn independently from known distributions,
which in turn we tried to approximate using our algorithm and the
conventional EM algorithm. After training, we tested the accuracy of
the obtained approximations with respect to the true densities.

In every problem considered, we have created a data set of
n = 5000 points drawn independently from the corresponding density
to be approximated. In all experiments the EM algorithm started with
the means of theK kernels being uniformly distributed within the
range of the data, while the deviance� of each kernel was set equal
to 0.5. On the other hand, our algorithm always started withK = 1
kernel with mean in the center of the data range and� also equal
to 0.5.

We have considered three one-dimensional problems:

1) a Gaussian mixture density with four kernels;
2) a Gaussian mixture density with five kernels;
3) a density with two Gaussian and two uniform kernels.

In all experiments, since the original densityg(x) is known, we
could compute the theoretically optimal log-likelihood~L for the given
set of samplesxi, i = 1; � � � ; n, drawn from the respective density

~L =

n

i=1

log g(xi): (19)

Example 1: In this experiment we have generated samples using
the following Gaussian mixture density

g(x) = 0:25N(�7; 0:5) + 0:25N(�3; 1)

+ 0:25N(3; 1) + 0:25N(7; 0:5) (20)

whereN(�; �) is the normal distribution with mean� and standard
deviation �. The value of the theoretical log-likelihood was~L =
�12201.

Fig. 2 displays the original densityg(x) as well as the obtained
solutions using our approach and the EM algorithm. The EM algo-
rithm was applied onK = 4 kernels and provided accurate solution
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Fig. 2. Approximation of a Gaussian mixture density with four kernels.

Fig. 3. Approximation of a Gaussian mixture density with five kernels.

with L = �12 201:4 and total kurtosisKT = 0:03. Our algorithm
was able to identify the correct number of kernels and provided an
accurate solution withK = 4 kernels havingL = �12201:9 and
KT = 0:033.

Example 2: In this experiment we have generated samples using
the following density:

g(x) = 0:2N(�7; 1) + 0:2N(�3; 0:5) + 0:2N(0; 3)

+ 0:2N(3; 0:5) + 0:2N(7; 1): (21)

The value of the theoretical log-likelihood was~L = �13382:6.
Fig. 3 displays the original densityg(x) as well as the obtained so-

lutions using our approach and the EM algorithm. The EM algorithm
was applied onK = 5 kernels and was stuck in a local maximum
with L = �13718 and total kurtosisKT = 0:35. On the contrary,
our algorithm provided a much better solution withK = 6 kernels
havingL = �13385 andKT = 0:062.

Example 3: Finally we have conducted experiments with the fol-
lowing density consisting of two Gaussian and two uniform kernels

g(x) = 0:25N(�7; 0:5) + 0:25U(�3; �1)

+ 0:25U(1; 3) + 0:25N(7; 0:5) (22)

Fig. 4. Approximation of a mixture with two Gaussian and two uniform
kernels.

whereU(a; b) denotes the uniform density in[a; b]. The value of
the theoretical log-likelihood was~L = �10492.

The obtained solutions are shown in Fig. 4. Our algorithm provided
a solution withK = 12 kernels havingL = �10577 and total
kurtosisKT = 0:15. The EM algorithm was also tested withK = 12
kernels, but again the obtained solution was worse compared to ours:
the log-likelihood value wasL = �10730 and the value of the total
kurtosis wasKT = 0:31.

As a conclusion, we can state that the dynamic allocation of new
kernels which is guided by monitoring the value of the total kurtosis
makes the proposed algorithm an efficient method for Gaussian
mixture density estimation that yields considerable improvement over
the classical EM algorithm. Moreover, as shown in examples 1 and 2,
our algorithm has the ability to approximately identify the number of
kernels of an unknown Gaussian mixture density, which is of major
importance in many applications.

V. CONCLUSION

We proposed a new method for Gaussian mixture modeling which
is based on the EM algorithm, and which dynamically adjusts the
number of the kernels of the mixture. We defined a new quantity,
called total kurtosis, to be used in the algorithm as an indicator of
how well a Gaussian mixture fits the data. The algorithm performs
EM steps and updates the parameters of the mixture, while at the
same time monitors the value of the total kurtosis and increases the
number of kernels in the case where this quantity starts increasing.
The increase of the number of kernels is performed through splitting
of the kernel that contributes more significantly to the value of
the total kurtosis. In this sense the proposed algorithm proceeds by
performing both likelihood maximization and kurtosis minimization.
The increase in the number of kernels stops when no further progress
in the minimization of the kurtosis seems possible. Experimental
results on several test problems indicate that our approach constitutes
a promising alternative to the EM algorithm.

In this work we have examined the univariate case. Current work
focuses on a multidimensional definition of the weighted kurtosis
(and the total kurtosis) and the application of the proposed algorithm
to density estimation problems of higher dimensionality. Moreover,
we aim at testing the effectiveness of the algorithm on several
applications where an EM approach has already been employed, e.g.,
classification, time series, etc.
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Analysis of Modularly Composed Nets by Siphons

MuDer Jeng and Xiaolan Xie

Abstract—This paper uses siphons to analyze the class of Petri nets
constructed by a modular approach in [5] for modeling manufacturing
systems with shared resources. A resource point of view is taken. First the
behavior of each resource is modeled using resource control nets, strongly
connected state machines with one place being marked initially. Inter-
actions among the resources are modeled through merging of common
transition subnets. This paper provides conditions, expressed in terms of
siphons, under which reversibility and liveness of the integrated model
are obtained. Relations between siphons and circular-wait are formally
established. Superiority of the siphon-based analysis over a previous
analysis using circular wait is shown.

Index Terms—Analysis, Petri nets, synthesis.

I. INTRODUCTION

Modular approach is an efficient way to cope with the complexity
in modeling a large-scale system. It consists in decomposing it
into simple subsystems called modules, modeling each module and
integrating the module models together to obtain the model of the
whole system.

A major concern, when modeling a real-life system, is to check
whether the Petri net model has desired qualitative properties such
as liveness, boundedness, and reversibility. As long as manufacturing
systems are concerned, the liveness ensures that blocking will never
occur, the boundedness guarantees that the number of in-process parts
is bounded, the reversibility enables the system to come back to its
initial state from whatever state it reaches.

Due to the complexity of real-life systems, classical property
checking methods such as coverability tree, invariant analysis and
algebraic analysis (see [10]) hardly apply. There are two classes of
methods for analyzing a large Petri net model. The first one is the
reduction of Petri nets while preserving properties. Reduction rules
have been proposed [2], [9]. The main disadvantage of this approach
lies in the difficulty of finding reducible subnets.

The second class of methods includes synthesis methods which
build the models systematically and progressively such that the
desired properties are preserved all along the design process. Two
synthesis approaches: top-down approach and bottom-up approach,
have been proposed.

The top-down approach begins with an aggregate model of the
system which is refined progressively to introduce more and more de-
tails. The basic refinement is the substitution of a place or a transition
by a so-called well-formed block [12], [13], [15]. Conditions, under
which the desired properties are preserved, are given. This approach
is well suited to model systems composed of almost independent
sub-systems. However, this approach loses its efficiency in case of
strongly coupled sub-systems since it is impossible to find small
aggregate models.

The bottom-up approach [1], [4], [5], [7], [8], [11], [14] starts from
sub-system models and integrate them by merging some places and/or
transitions. The disadvantage of the general bottom-up approach lies
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