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The global k-means clustering algorithm
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Abstract

We present the global k-means algorithm which is an incremental approach to clustering that dynamically adds one cluster
center at a time through a deterministic global search procedure consisting of N (with N being the size of the data set)
executions of the k-means algorithm from suitable initial positions. We also propose modi2cations of the method to reduce the
computational load without signi2cantly a3ecting solution quality. The proposed clustering methods are tested on well-known
data sets and they compare favorably to the k-means algorithm with random restarts. ? 2002 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

A fundamental problem that frequently arises in a great
variety of 2elds such as pattern recognition, image process-
ing, machine learning and statistics is the clustering problem
[1]. In its basic form the clustering problem is de2ned as the
problem of 2nding homogeneous groups of data points in a
given data set. Each of these groups is called a cluster and
can be de2ned as a region in which the density of objects is
locally higher than in other regions.

The simplest form of clustering is partitional clustering
which aims at partitioning a given data set into disjoint sub-
sets (clusters) so that speci2c clustering criteria are opti-
mized. The most widely used criterion is the clustering error
criterion which for each point computes its squared distance
from the corresponding cluster center and then takes the sum
of these distances for all points in the data set. A popular
clustering method that minimizes the clustering error is the
k-means algorithm. However, the k-means algorithm is a lo-
cal search procedure and it is well known that it su3ers from
the serious drawback that its performance heavily depends
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on the initial starting conditions [2]. To treat this problem
several other techniques have been developed that are based
on stochastic global optimization methods (e.g. simulated
annealing, genetic algorithms). However, it must be noted
that these techniques have not gained wide acceptance and
in many practical applications the clustering method that is
used is the k-means algorithm with multiple restarts [1].

In this paper we propose the global k-means clustering
algorithm, which constitutes a deterministic e3ective global
clustering algorithm for the minimization of the clustering
error that employs the k-means algorithm as a local search
procedure. The algorithm proceeds in an incremental way:
to solve a clustering problem with M clusters, all interme-
diate problems with 1; 2; : : : ; M − 1 clusters are sequentially
solved. The basic idea underlying the proposed method is
that an optimal solution for a clustering problem with M
clusters can be obtained using a series of local searches
(using the k-means algorithm). At each local search the
M − 1 cluster centers are always initially placed at their
optimal positions corresponding to the clustering problem
with M − 1 clusters. The remaining M th cluster center is
initially placed at several positions within the data space.
Since for M =1 the optimal solution is known, we can iter-
atively apply the above procedure to 2nd optimal solutions
for all k-clustering problems k=1; : : : ; M . In addition to ef-
fectiveness, the method is deterministic and does not depend
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on any initial conditions or empirically adjustable param-
eters. These are signi2cant advantages over all clustering
approaches mentioned above.

In the following section we start with a formal de2nition
of the clustering error and a brief description of the k-means
algorithm and then we describe the proposed global k-means
algorithm. Section 3 describes modi2cations of the basic
method that require less computation at the expense of be-
ing slightly less e3ective. Section 4 provides experimental
results and comparisons with the k-means algorithm with
multiple restarts. Finally Section 5 provides conclusions and
describes directions for future research.

2. The global k-means algorithm

Suppose we are given a data set X={x1; : : : ; xN}, xn ∈Rd.
The M -clustering problem aims at partitioning this data set
into M disjoint subsets (clusters) C1; : : : ; CM , such that a
clustering criterion is optimized. The most widely used clus-
tering criterion is the sum of the squared Euclidean distances
between each data point xi and the centroid mk (cluster cen-
ter) of the subset Ck which contains xi. This criterion is
called clustering error and depends on the cluster centers
m1; : : : ; mM :

E(m1; : : : ; mM ) =
N∑

i=1

M∑

k=1

I(xi ∈Ck)‖xi − mk‖2; (1)

where I(X ) = 1 if X is true and 0 otherwise.
The k-means algorithm 2nds locally optimal solutions

with respect to the clustering error. It is a fast iterative algo-
rithm that has been used in many clustering applications. It
is a point-based clustering method that starts with the cluster
centers initially placed at arbitrary positions and proceeds by
moving at each step the cluster centers in order to minimize
the clustering error. The main disadvantage of the method
lies in its sensitivity to initial positions of the cluster cen-
ters. Therefore, in order to obtain near optimal solutions us-
ing the k-means algorithm several runs must be scheduled
di3ering in the initial positions of the cluster centers.

In this paper, the global k-means clustering algorithm is
proposed, which constitutes a deterministic global optimiza-
tion method that does not depend on any initial parameter
values and employs the k-means algorithm as a local search
procedure. Instead of randomly selecting initial values for
all cluster centers as is the case with most global cluster-
ing algorithms, the proposed technique proceeds in an in-
cremental way attempting to optimally add one new cluster
center at each stage.

More speci2cally, to solve a clustering problem with M
clusters the method proceeds as follows. We start with one
cluster (k = 1) and 2nd its optimal position which corre-
sponds to the centroid of the data set X . In order to solve the
problem with two clusters (k=2) we perform N executions
of the k-means algorithm from the following initial positions
of the cluster centers: the 2rst cluster center is always placed

at the optimal position for the problem with k = 1, while
the second center at execution n is placed at the position of
the data point xn (n= 1; : : : ; N ). The best solution obtained
after the N executions of the k-means algorithm is consid-
ered as the solution for the clustering problem with k=2. In
general, let (m∗

1 (k); : : : ; m
∗
k (k)) denote the 2nal solution for

k-clustering problem. Once we have found the solution for
the (k − 1)-clustering problem, we try to 2nd the solution
of the k-clustering problem as follows: we perform N runs
of the k-means algorithm with k clusters where each run n
starts from the initial state (m∗

1 (k−1); : : : ; m∗
(k−1)(k−1); xn).

The best solution obtained from the N runs is considered
as the solution (m∗

1 (k); : : : ; m
∗
k (k)) of the k-clustering prob-

lem. By proceeding in the above fashion we 2nally obtain a
solution with M clusters having also found solutions for all
k-clustering problems with k ¡M .
The latter characteristic can be advantageous in many ap-

plications where the aim is also to discover the ‘correct’
number of clusters. To achieve this, one has to solve the
k-clustering problem for various numbers of clusters and
then employ appropriate criteria for selecting the most suit-
able value of k [3]. In this case, the proposed method directly
provides clustering solutions for all intermediate values of
k, thus requiring no additional computational e3ort.

In what may be a concern of computational complexity,
the method requires N executions of the k-means algorithm
for each value of k (k =1; : : : ; M). Depending on the avail-
able resources and the values of N and M , the algorithm
may be an attractive approach, since, as experimental results
indicate, the performance of the method is excellent. More-
over, as we will show later, there are several modi2cations
that can be applied in order to reduce the computational
load.

The rationale behind the proposed method is based on
the following assumption: an optimal clustering solution
with k clusters can be obtained through local search (using
k-means) starting from an initial state with

• the k − 1 centers placed at the optimal positions for the
(k − 1)-clustering problem and

• the remaining kth center placed at an appropriate position
to be discovered.

This assumption seems very natural: we expect that the so-
lution of the k-clustering problem to be reachable (through
local search) from the solution of (k − 1)-clustering prob-
lem, once the additional center is placed at an appropriate
position within the data set. It is also reasonable to restrict
the set of possible initial positions of the kth center to the
set X of available data points. It must be noted that this is
a rather computational heavy assumption and several other
options (examining fewer initial positions) may also be con-
sidered. The above assumptions are also veri2ed experimen-
tally, since in all experiments (and for all values of k) the
solution obtained by the proposed method was at least as
good as that obtained using numerous random restarts of the
k-means algorithm. In this spirit, we can cautiously state that
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the proposed method is experimentally optimal (although
it is diKcult to prove theoretically).

3. Speeding-up execution

Based on the general idea of the global k-means algo-
rithm, several heuristics can be devised to reduce the com-
putational load without signi2cantly a3ecting the quality of
the solution. In the following subsections two modi2cations
are proposed, each one referring to a di3erent aspect of the
method.

3.1. The fast global k-means algorithm

The fast global k-means algorithm constitutes a straight-
forward method to accelerate the global k-means algo-
rithm. The di3erence lies in the way a solution for the
k-clustering problem is obtained, given the solution of
the (k − 1)-clustering problem. For each of the N initial
states (m∗

1 (k − 1); : : : ; m∗
(k−1)(k − 1); xn) we do not exe-

cute the k-means algorithm until convergence to obtain
the 2nal clustering error En. Instead we compute an upper
bound En6E − bn on the resulting error En for all pos-
sible allocation positions xn, where E is the error in the
(k − 1)-clustering problem and bn as de2ned in Eq. (2).
We then initialize the position of the new cluster center at
the point xi that minimizes En, or equivalently that maxi-
mizes bn, and execute the k-means algorithm to obtain the
solution with k clusters. Formally we have

bn =
N∑

j=1

max(djk−1 − ‖xn − xj‖2; 0); (2)

i = argmax
n
bn; (3)

where djk−1 is the squared distance between xj and the clos-
est center among the k − 1 cluster centers obtained so far
(i.e., center of the cluster where xj belongs). The quantity
bn measures the guaranteed reduction in the error measure
obtained by inserting a new cluster center at position xn.
Suppose the solution of the (k − 1)-clustering problem is

(m∗
1 (k − 1); : : : ; m∗

(k−1)(k − 1)) and a new cluster center is
added at location xn. Then the new center will allocate all
points xj whose squared distance from xn is smaller than the
distance djk−1 from their previously closest center. There-
fore, for each such data point xj the clustering error will
decrease by djk−1 −|xn− xj|2. The summation over all such
data points xj provides the quantity bn for a speci2c inser-
tion location xn. Since the k-means algorithm is guaranteed
to decrease the clustering error at each step, E − bn upper
bounds the error measure that will be obtained if we run the
algorithm until convergence after inserting the new center
at xn (this is the error measure used in the global k-means
algorithm).

Experimental results (see next section) suggest that us-
ing the data point that minimizes this bound leads to results

almost as good as those provided by the global k-means
algorithm. Moreover, the cluster insertion procedure can
be eKciently implemented by storing in a matrix all pair-
wise squared distances between points when the algorithm
starts, and using this matrix for directly computing the up-
per bounds above. A similar ‘trick’ has been used in the re-
lated problems of greedy mixture density estimation using
the EM algorithm [4] and principal curve 2tting [5].

Finally, we may still apply this method as well as the
global k-means algorithm when we do not consider every
data point xn (n=1; : : : ; N ) as possible insertion position for
the new center, but use only a smaller set of appropriately
selected insertion positions. A fast and sensible choice for
selecting such a set of positions based on k-dimensional
(k-d) trees is discussed next.

3.2. Initialization with k-d trees

A k-d tree [6,7] is a multi-dimensional generalization of
the standard one-dimensional binary search tree, that facil-
itates storage and search over k-d data sets. A k-d tree de-
2nes a recursive partitioning of the data space into disjoint
subspaces. Each node of the tree de2nes a subspace of the
original data space and, consequently, a subset containing
the data points residing in this subspace. Each nonterminal
node has two successors, each of them associated with one of
the two subspaces obtained from the partitioning of the par-
ent space using a cutting hyperplane. The k-d tree structure
was originally used for speeding up distance-based search
operations like nearest neighbors queries, range queries, etc.

In our case we use a variation of the original k-d tree
proposed in Ref. [7]. There, the cutting hyperplane is de2ned
as the plane that is perpendicular to the direction of the
principal component of the data points corresponding to each
node, therefore the algorithm can be regarded as a method
for nested (recursive) principal component analysis of the
data set. The recursion usually terminates if a terminal node
(called bucket) is created containing less than a prespeci2ed
number of points b (called bucket size) or if a prespeci2ed
number of buckets have been created. It turns out that, even
if the algorithm is not used for nearest neighbor queries,
merely the construction of the tree provides a very good
preliminary clustering of the data set. The idea is to use
the bucket centers (which are fewer than the data points)
as possible insertion locations for the algorithms presented
previously.

In Fig. 1 average performance results are shown on 10
data sets each one consisting of 300 data points drawn from
the same mixture of 15 Gaussian components. The compo-
nents of the Gaussian mixture are well separated and exhibit
limited eccentricity.

We compare the results of three methods to the clustering
problem with k=15 centers: (i) The dashed line depicts the
results when using the fast global k-means algorithm with
all data points constituting potential insertion locations. The
average clustering error over the 10 data sets is 15:7 with
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Fig. 1. Performance results for data drawn from a Gaussian mixture with 15 components.

standard deviation 1:2. (ii) The solid line depicts results
when the standard k-means algorithm is used: one run for
each data set was conducted. At each run the 15 cluster cen-
ters were initially positioned to the centroids of the buckets
obtained from the application of the k-d tree algorithm until
15 buckets were created. The average clustering error over
the 10 data sets is 24.4 with standard deviation 9.8. (iii) The
solid line (with error bars indicating the standard deviation
from the mean value) shows the results when using the fast
global k-means algorithm with the potential insertion loca-
tions constrained by the centroids of the buckets of a k-d
tree. On the horizontal axis we vary the number of buckets
for the k-d tree of the last method.

We also computed the ‘theoretical’ clustering error for
each data set, i.e., the error computed by using the true
cluster centers. The average error value over the 10 data sets
was 14:9 with standard deviation 1:3. These results were too
close to the results of the standard fast global k-means to
include them in the 2gure.

We can conclude from this experiment that (a) the fast
global k-means approach gives rise to performance signi2-
cantly better than when starting with all centers at the same
time initialized using the k-d tree method, and (b) restricting
the insertion locations for the fast global k-means to those
given by the k-d tree (instead of using all data points) does
not signi2cantly degrade performance if we consider a suf-
2ciently large number of buckets in the k-d tree (in general
larger than the number clusters).

Obviously, it is also possible to employ the above pre-
sented k-d tree approach with the global k-means algorithm.

4. Experimental results

We have tested the proposed clustering algorithms on
several well-known data sets, namely the iris data set [8],
the synthetic data set [9] and the image segmentation data
set [8]. In all data sets we conducted experiments for the
clustering problems obtained by considering only feature
vectors and ignoring class labels. The iris data set contains
150 four-dimensional data points, the synthetic data set 250
two-dimensional data points and the for the image segmen-
tation data set we consider 210 six-dimensional data points
obtained through PCA on the original 18-dimensional data
points. The quality of the obtained solutions was evaluated
in terms of the values of the 2nal clustering error.

For each data set we conducted the following experiments:

• one run of the global k-means algorithm for M = 15.
• one run of the fast global k-means algorithm for M =15.
• the k-means algorithm for k=1; : : : ; 15. For each value of
k, the k-means algorithm was executed N times (where N
is the number of data points) starting from random initial
positions for the k centers, and we computed the mini-
mum and average clustering error as well as its standard
deviation.

For each of the three data sets the experimental results are
displayed in Figs. 2–4, respectively. Each 2gure plot dis-
plays the clustering error value as a function of the number
of clusters. It is clear that the global k-means algorithm is
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Fig. 2. Performance results for the Iris data set.
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Fig. 3. Performance results for the synthetic data set.
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Fig. 4. Performance results for the image segmentation data set.

very e3ective providing in all cases solutions of equal or bet-
ter quality with respect to the k-means algorithm. In terms
of the fast version of the algorithm, it is very encouraging
that, although executing signi2cantly faster, it provides so-
lutions of excellent quality, comparable to those obtained by
the original method. Therefore, it constitutes a very eKcient
algorithm, both in terms of solution quality and computa-
tional complexity and can run much faster if k-d trees are
employed as explained in the previous section.

In the following subsections we provide extensive exper-
imental results comparing the fast versions of the algorithm
to the conventional k-means algorithm with random initial-
ization.

4.1. Texture segmentation

In this clustering experiment the objective is to cluster
16 × 16 pixel image patches extracted from a set of 37
Brodatz texture images [10]. Each complete texture image
consists of 256 × 256 pixels and 500 patches per texture
were extracted by randomly selecting 16 × 16 windows. It
is expected that patches originating from the same texture
image to form an individual cluster (or clusters).

For every number of textures k = 2; : : : ; 6, we randomly
constructed 100 data sets. Each data set was created by 2rst
randomly selecting k of the 37 textures and then selecting
200 patches for each texture, resulting in 200k patches per
data set. All reported results are averages over the 100 data
sets.

We compared performance of the three algorithms:
(1) k-means initialized using a uniformly selected random

Fig. 5. Results for the texture segmentation problem using as many
clusters as textures.

subset of the data, (2) fast global k-means, (3) fast global
k-means with the insertion locations limited to the top 2k
nodes of the corresponding k-d tree. To evaluate the dif-
ferent methods, we considered the mean squared clustering
error (MSE) of the patches to their closest mean. In a 2rst
experiment the number clusters was considered equal to the
number of textures selected to create a data set. The results
are given in Fig. 5, where we also provide the correspond-
ing execution times (in seconds). Bold values in the Tables
indicate the method with best performance in terms of the
clustering error.

We also conducted a second series of experiments where
we used twice as many clusters as textures. The results are
displayed in Fig. 6.

It can be observed that (on average) the k-means algo-
rithm with random initialization gives the worst results for
almost every number of clusters and textures. It is also in-
teresting to note that the fast global k-means that uses the
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Fig. 6. Results for the texture segmentation problem using twice
as many clusters as textures.

top 2k nodes of the k-d tree as insertion candidates is not
only much faster than the generic fast global k-means algo-
rithm, but it also provides slightly better results in terms of
the clustering error.

4.2. Arti9cial data

In this subsection we provide more extensive compara-
tive experimental results using arti2cially created data sets.
The purpose is to compare the randomly initialized k-means
algorithm with the fast global k-means algorithm that uses
the top 2k nodes of the corresponding k-d tree as candidate
insertion locations.

The data have been drawn from randomly generated Gaus-
sian mixtures [11] and we varied the number of sources
(mixture components) k, the dimensionality d of the data
space and the ‘separation’ c between the sources of the mix-
ture. Following Ref. [11], the separation c of a Gaussian
mixture satis2es:

∀i �=j: ‖�i − �j‖2¿ c ·max
{i; j}

{trace(Ci); trace(Cj)}; (4)

where the �’s and C’s denote, respectively, the means and
covariance matrices of the mixture components. In our ex-
periments we considered mixtures having a separation in the
range between 0.5 and 1 and these values correspond ex-
clusively to weakly separated clusters. The number of data

Fig. 7. Some example two-dimensional data sets with 2ve sources and separation (from left to right) 0.5, 0.75 and 1.

points in each data set was 50k, where k is the number of
sources. Some example data sets are shown in Fig. 7.

We have considered 120 problems corresponding to any
of the following combination of values: k={2; 7; 12; 17; 22},
d={2; 4; 6; 8}, c={0:5; 0:6; 0:7; 0:8; 0:9; 1:0}. For each prob-
lem 10 data sets were created. The results are displayed in
Figs. 8 and 9.

On every data set, the ‘greedy’ (fast global k-means with
k-d tree initialization) algorithm was applied 2rst. Then the
randomly initialized k-means algorithmwas applied as many
times as possible in the run time of the greedy algorithm.
To evaluate the quality of the solutions found for a speci2c
data set, 2rst the mean clustering error � is computed for
the runs performed using the k-means algorithm. The min-
imum clustering error value corresponding to the runs with
the k-means algorithm is provided in the ‘min’ columns as
(1−min=�)× 100, and the standard deviation in the � col-
umn as �=�× 100. The ‘gr’ column provides the clustering
error Egr obtained with the fast global k-means algorithm in
the form: (1−Egr=�)×100. Finally, the ‘trials’ column indi-
cates how many runs of the k-means algorithm were allowed
in the run time of the greedy algorithm. It must be noted that
each row of the table displays the averaged results over 10
data sets constructed for the speci2c values of k, d and c. We
used bold values in the tables to indicate whether the clus-
tering error of the greedy algorithm or the minimum error
achieved for the runs with the k-means algorithm was the
smallest.

It is clear from the experiments that the bene2t of the
greedy method becomes larger if there are more clusters,
the separation becomes larger and the dimensionality gets
smaller. It is striking that in almost all cases the greedy
algorithm gives better results. In cases where the greedy
method is not superior, both methods yield results relatively
close to the average k-means result. One thing to note is that
the clusters in the created data sets are poorly separable. It
is also interesting to note that the number of trials allowed
for the random k-means algorithm grows only slowly as the
number of clusters increases. From top to bottom, although
the number of clusters has increased by a factor 10 the
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Fig. 8. Experimental results on arti2cial data sets with d = 2 and 4.

number of trials however has not even doubled on average.
The inspection of the number of trials as a function of the
k, d and c indicates dependence on the number of clusters
only. As Fig. 10 indicates, both the average number of trials
as well as the corresponding variance increase as the number
of clusters increases.

Matlab implementations of the fast global k-means and
the k-d tree building algorithms can be downloaded from
http://carol.wins.uva.nl/∼jverbeek/software/.

5. Discussion and conclusions

We have presented the global k-means clustering algo-
rithm, which constitutes a deterministic clustering method
providing excellent results in terms of the clustering error
criterion. The method is independent of any starting con-
ditions and compares favorably to the k-means algorithm
with multiple random restarts. The deterministic nature of
the method is particularly important in cases where the

http://carol.wins.uva.nl/$sim $jverbeek/software/
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Fig. 9. Experimental results on arti2cial data sets with d = 6 and 8.

Fig. 10. The number of allowed trials for the randomly initialized
k-means as a function of the number of clusters.

clustering method is used either to specify initial parameter
values for other methods (for example RBF training) or con-
stitutes a module in a more complex system. In such a case
we can be almost certain that the employment of the global
k-means (or any of the fast variants) will always provide
sensible clustering solutions. Therefore, one can evaluate the
complex system and adjust critical system parameters with-
out having to worry for dependence of system performance
on the clustering method employed.
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Another advantage of the proposed technique is that in
order to solve the M -clustering problem, all intermediate
k-clustering problems are also solved for k=1; : : : ; M . This
may prove useful in many applications where we seek for
the actual number of clusters and the k-clustering problem is
solved for several values of k. We have also developed the
fast global k-means algorithm, which signi2cantly reduces
the required computational e3ort, while at the same time
providing solutions of almost the same quality.

We have also proposed two modi2cations of the method
that reduce the computational load without signi2cantly
a3ecting solution quality. These methods can be employed
to 2nd solutions to clustering problems with thousands of
high-dimensional points and one of our primary aims is to
test the techniques on large scale data mining problems.

Another direction of future work is related with the use
of parallel processing for accelerating the proposed meth-
ods since, for every k, the N executions of the k-means al-
gorithm are independent and can be performed in parallel.
Another research direction concerns the application of the
proposed method to other types of clustering (for example,
fuzzy clustering), as well as to topographic methods like
SOM. Moreover, an important issue that deserves further
study is related with the possible development of theoretical
foundations for the assumptions behind the method. Finally,
it is also possible to employ the global k-means algorithm
as a method for providing e3ective initial parameter values
for RBF networks and data modeling problems using Gaus-
sian mixture models and compare the e3ectiveness of the
obtained solutions with other training techniques for Gaus-
sian mixture models [12,13].

6. Summary

In this paper the global k-means algorithm is presented
which is an incremental approach to clustering that dynam-
ically adds one cluster center at a time through a determin-
istic global search procedure consisting of N (with N being
the size of the data set) executions of the k-means algorithm
from suitable initial positions. The basic idea underlying the
proposed method is that an optimal solution for a clustering
problem with M clusters can be obtained using a series of
local searches (using the k-means algorithm). At each local
search the M − 1 cluster centers are always initially placed
at their optimal positions corresponding to the clustering
problem with M − 1 clusters. The remaining M th cluster
center is initially placed at several positions within the data
space. Since for M = 1 the optimal solution is known, we
can iteratively apply the above procedure to 2nd optimal so-
lutions for all k-clustering problems k = 1; : : : ; M . The pro-
posed method is deterministic, does not depend on any ini-
tial positions for the cluster center and does not contain any
empirically adjustable parameters, thus eliminating all prob-
lems characterizing the k-means algorithm and its stochastic
extensions.

In addition we present modi2cations of the method to
reduce the computational load without signi2cantly a3ecting
solution quality. The 2rst modi2cation called the fast global
k-means algorithm de2nes a fast computed bound on the
clustering error that is used instead of local searches. The
second modi2cation is related with the partitioning of the
data space using a k-d tree structure, in order to reduce the
number of examined insertion positions for a new cluster
center.

The proposed clusteringmethods are tested onwell-known
data sets and they compare favorably to the k-means al-
gorithm with random restarts. In addition, the modi2ed
versions lead to implementations that are very fast and
exhibit almost equal performance.
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