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Abstract—We propose a generative mixture model classifier that allows for the

class conditional densities to be represented by mixtures having certain subsets of

their components shared or common among classes. We argue that, when the total

number of mixture components is kept fixed, the most efficient classification model

is obtained by appropriately determining the sharing of components among class

conditional densities. In order to discover such an efficient model, a training method

is derived based on the EM algorithm that automatically adjusts component

sharing. We provide experimental results with good classification performance.

Index Terms—Mixture models, classification, density estimation, EM algorithm,

component sharing.
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1 INTRODUCTION

IN this paper, we consider classification methods based on mixture
models. In the usual generative approach, training is based on
partitioning the data according to class labels and then estimating
each class conditional density pðxjCkÞ (maximizing the likelihood)
using the data of class Ck. The above approach has been widely
used [7], [8], [13], [16], and one of its great advantages is that
training can be easily performed using the EM algorithm [5]. An
alternative approach is discriminative training, where mixture
models are suitably normalized in order to provide a representa-
tion of the posterior probability P ðCkjxÞ and training is based on
the maximization of the conditional likelihood. Discriminative
training [2], [9], [15] essentially takes advantage of the flexibility of
mixture models to represent the decision boundaries and must be
considered different in principle from the generative approach
where an explanation (the distribution) of the data is provided. It
must be pointed out that the model used in this paper is a
generative mixture model classifier, so our training approach is
based on estimating class conditional densities.

Consider a classification problem with K classes. We model

each class conditional density by the following mixture model:

pðxjCk; �k; �Þ ¼
XM
j¼1

�jkpðxjj; �jÞ k ¼ 1; . . . ;K; ð1Þ

where �jk is the mixture coefficient representing the probability

P ðjjCkÞ, �j the parameter vector of component j and � ¼ ð�1; . . . ; �MÞ.
Also, we denote with �k the vector of all mixing coefficients �jk
associated with class Ck. The mixing coefficients cannot be negative

and satisfy

XM
j¼1

�jk ¼ 1; k ¼ 1; . . . ; K: ð2Þ

This model has been studied in [7], [13], [16], and in the sequence it

will be called the common components model, since all the component

densities are shared among classes. From a generative point of view,

the above model suggests that differently labeled data that are

similarly distributed in some input subspaces can be represented by

common density models. An alternative approach is to assume

independent or separate mixtures to represent each class data [1],

[12]. A theoretical study of that model for the case of Gaussian

components can be found in [8]. Next, we refer to that model as the

separate mixtures model. From a generative point of view, the later

model assumes a priori that there exist no common properties of

data coming from different classes (for example common clusters). If

the total number of component density models is M , we can

consider the separate mixtures as a constrained version of the

common components model also having M components [16].
Both methods have advantages and disadvantages depending

on the classification problem at hand. More specifically, an

advantage of the common components model is that training and

selection of the total number of components M , is carried out using

simultaneously data from all classes. Also, by using common

components we can explain data of many classes by the same

density model, thus reducing the required number of model

parameters. Ideally, we wish after training the model, a component

j that remains common (for at least two different classes the

parameter �jk is not zero) to represent data that highly overlap,

which means that the underlying distribution of the differently

labeled data is indeed locally similar. However, we have observed

[16] that, if we allow the components to represent data of any class,

we can end up with a maximum-likelihood solution where some

components represent data of different classes that slightly overlap.

In such cases, those components are allocated above the true

decision boundary, causing classification inefficiency. Regarding

the separate mixtures, a disadvantage of this method is that

learning is carried out by partitioning the data according to the class

labels and dealing separately with each mixture model. Thus, the

model ignores any common characteristics between data of

different classes so we cannot reduce the totally used number of

density models or equivalently the number of parameters that must

be learned from the data. However, in many cases, the separate

mixtures model trained through likelihood maximization provides

more discriminative representation of the data than the common

components model.
In this paper, we consider a general mixture model classifier that

encompasses the above two methods as special cases. The model

assumes that each component is constrained to possibly represent

data of only a subset of the classes. We refer to this model as the

Z-model, where Z is an indicator matrix specifying these constrains.

By fixing the Z matrix to certain values, we can obtain several cases

such as the common components and separate mixtures model.

However, in general, the Z values are part of the unknown

parameters and we wish to discover a choice of Z that leads to

improved discrimination. In the next section, we provide an example

where, for a fixed total number of components, the best classifier is

obtained for an appropriate choice of matrixZ. In order to specify the

Z matrix, we propose a method based on the maximization of a

suitably defined objective function using the EM algorithm [5]. After

convergence, this algorithm provides an appropriate Z matrix

specification and, additionally, effective initial values of all the other

model parameters. Then, by applying again, the EM algorithm to

maximize the likelihood for fixed Z values, the final solution is

obtained. Section 2 describes the proposed mixture model classifier

(Z-model) and provides an example illustrating the usefulness of

constrained component sharing. In Section 3, a training algorithm is

presented based on the EM algorithm that simultaneously adjusts

constraints and parameter values. Experimental results using

several classification data sets are presented in Section 4. Finally,

Section 5 provides conclusions and directions for future research.

924 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 7, JULY 2003

. The authors are with the Department of Computer Science, University of
Ioannina, 45110 Ioannina, Greece. E-mail: {mtitsias, arly}@cs.uoi.gr.

Manuscript received 4 May 2001; revised 29 Apr. 2002; accepted 23 July 2002.
Recommended for acceptance by C. Brodley.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 114096.

0162-8828/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society



2 CLASS MIXTURE DENSITIES WITH CONSTRAINED

COMPONENT SHARING

The class conditional density model (1) can be modified to allow

for a subset of the total mixture components M to be used by each

class conditional model. To achieve this, we introduce an

M �K matrix Z of indicator variables zjk defined as follows:

zjk ¼
1 if component j can represent data of class Ck
0 otherwise:

�
ð3Þ

In order to avoid situations where some mixture components are

not used by any class density model or a class density contains no

components, we assume that every row and column of a valid

Z matrix contains at least one unit element. A way to introduce the

constraints zjk to model (1) is by imposing constraints to the mixing

coefficients, i.e., by setting the parameter �jk constantly equal to

zero in the case where zjk ¼ 0. In such a case, the conditional

density of a class Ck can still be considered that it is described by

(1), but with the original parameter space confined to a subspace

specified by the constraints indicated by the Z matrix, that is

pðxjCk; zk; �k; �Þ ¼
XM
j¼1

�jkpðxjj; �jÞ ¼
X
j:zjk¼1

�jkpðxjj; �jÞ; ð4Þ

where zk denotes the kth column of Z and fj : zjk ¼ 1g denotes the

set of values of j for which zjk ¼ 1. Clearly, the common

components model is a special Z-model with zjk ¼ 1 for all j; k,

while the separate mixtures model is a special Z-model with

exactly one unit element in each row of the Z matrix.
Consider now, a training set X of labeled data that are

partitioned according to their class labels into K independent

subsets Xk, k ¼ 1; . . . ;K. If � denotes the set of all parameters

excluding the Z values, then training can be performed by

maximizing the log likelihood

Lð�Þ ¼
XK
k¼1

X
x2Xk

log pðxjCk; zk; �k; �Þ: ð5Þ

using the EM algorithm (Appendix A) and for fixed values of the

Z matrix.
Let us examine now the usefulness of the above model

compared with the common components and separate mixtures

model. Since the common components model is the most broad

Z-model, it is expected to provide the highest log likelihood value

(5) and, in some sense, better data representation from the density

estimation viewpoint. However, this is not always the best model if

our interest is to obtain efficient classifiers. As mentioned in the

introduction, the common components model can benefit from

possible common characteristics of differently labeled data and

lead to a reduction in the number of model parameters [16]. In the

case of Gaussian components, this usually happens when common

components represent subspaces with high overlap among differ-

ently labeled data and the obtained representation is efficient from

the classification viewpoint. Nevertheless, there are problems

where a common component represents differently labeled data in

a less efficient way from a classification perspective as, for

example, when a common Gaussian component is placed on

boundary between two weakly overlapped regions with data of

different classes. In this case, the separate mixtures model provides

a more discriminative representation of the data. Consequently, we

wish to choose the Z values so that common components are

employed only for highly overlapped subspaces. Fig. 1 displays a

data set where, for a fixed number of components M , a certain

Z model leads to a superior classifier compared to the common

components and separate mixtures case.

Consequently, a method is needed to estimate an appropriate

Z matrix for a given dataset and total number of components M .

Once the Z matrix has been specified, we can proceed to obtain a

maximum-likelihood solution using the EM algorithm for fixed

values of Z. Such a method is presented in the following section.

3 TRAINING AND Z MATRIX ESTIMATION

It is computationally intractable to investigate all possible Z-models

in order to find an efficient classifier in the case of large values of

M and K. Our training method initially assumes that the class

conditional densities follow the broad model (1) and iteratively

adjusts a soft form of the Z matrix. In particular, we maximize an

objective function which is a regularized form of the log likelihood

corresponding to the common components model.
We define the constraint parameters rjk, where 0 � rjk � 1, and

for each j satisfy:

XK
k¼1

rjk ¼ 1: ð6Þ

The role of each parameter rjk is analogous to zjk: they specify the
degree at which the component j is allowed to be used for
modeling data of class Ck. However, unlike the mixing coefficients
(2), these parameters sum to unity for each j.

The rjk parameters are used to define the following functions:

’ðx;Ck; rk; �k; �Þ ¼
XM
j¼1

rjk�jkpðxjj; �jÞ k ¼ 1; . . . ;K: ð7Þ

Equation (7) is an extension of (1) with special constraint parameters

rjk incorporated in the linear sum. As it will become clear shortly, for

each j the parameters rjk express the competition between classes

concerning the allocation of the mixture component j.

If for a constraint parameter holds rjk ¼ 0, then, by definition

we set the corresponding prior �jk ¼ 0. However, in order for the

constraint (2) to be satisfied, there must be at least one rjk > 0 for

each k. The functions ’ in general do not constitute densities with

respect to x due to the fact that
R
’ðx;Ck; rk; �k; �Þdx � 1, unless

the constraints rjk are assigned zero-one values (in this special

case each function ’ðx;Ck; rk; �k; �Þ is identical to the correspond-

ing pðxjCk; �k; �Þ) in which case they coincide with zjk constraints.

However, it generally holds that ’ðx;Ck; rk; �k; �Þ � 0 andR
’ðx;Ck; rk; �k; �Þdx > 0.

Using the above function, we introduce an objective function
analogous to the log-likelihood function as follows:

Lð�; rÞ ¼
XK
k¼1

X
x2Xk

log’ðx;Ck; rk; �k; �Þ; ð8Þ

where r denotes all the rjk parameters. Through the maximization

of the above function, we adjust the values of the rjk variables

(actually the degree of component sharing) and this automatically

influences the solution for the class density models parameter

vector �. The EM algorithm [5] can be used for maximizing the

objective function (8). Note that the above objective function is not

a log likelihood, however, it can be considered as the logarithm of

an unnormalized likelihood.

At this point, it would be useful to write the update equations

(provided in Appendix B) for the priors �jk and the constraints rjk
in order to provide insight on the way the algorithm operates:

�
ðtþ1Þ
jk ¼ 1

jXkj
X
x2Xk

�jðx;Ck; r
ðtÞ
k ; �

ðtÞ
k ; �

ðtÞÞ; ð9Þ
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and

r
ðtþ1Þ
jk ¼

P
x2Xk

�jðx;Ck; r
ðtÞ
k ; �

ðtÞ
k ; �

ðtÞÞPK
i¼1

P
x2Xi

�jðx;Ci; r
ðtÞ
i ; �

ðtÞ
i ; �

ðtÞÞ
; ð10Þ

where

�jðx;Ck; rk; �k; �Þ ¼
rjk�jkpðxjj; �jÞPM
i¼1 rik�ikpðxji; �iÞ

: ð11Þ

Using (9), (10) can be written as

r
ðtþ1Þ
jk ¼

�
ðtþ1Þ
jk jXkjPK

i¼1 �
ðtþ1Þ
ji jXij

: ð12Þ

The above equation illustrates how the rjk variables are adjusted at

each EM iteration with respect to the newly estimated prior values

�jk. If we assume that the classes have nearly the same number of

available training points, then, during training each class Ck is

constrained to use a component j to a degree specified by the ratio of

the corresponding prior value �jk over the sum of the rest of the

priors associated with the same component j. In this way, the more a

component j represents data of class Ck, i.e., the higher the value of

�jk, the greater the new value of rjk, which causes in the next

iteration, the value of �jk to become even higher (due to (9) and (11))

etc. This explains how the competition among classes for component

allocation is realized through the adjustment of the constraints rjk.

According to this competition, it is less likely for a component to be

placed at some decision boundary since in such a case the class with

more data in this region will attract the component toward its side.

On the other hand, the method does not seem to significantly

influence the advantage of the common components model in

highly overlapping regions. This can be explained from (11). In a

region with high class overlap represented by a component j, the

density pðxjj; �jÞ will essentially provide high values for data of all
involved classes. Therefore, despite the fact that the constraint
parameters might be higher for some classes, the �j value (11) will
still be high for data of all involved classes.

To apply the EM algorithm, the component parameters are
initialized randomly from all data (ignoring class labels) and the
constrains rjk are initialized to 1=K. The EM algorithm performs
iterations until convergence to some locally optimal parameter point
ð��; r�Þ. Then we use the r�jk values for determine theZmatrix values:

z�jk ¼
1 if r�jk > 0
0 if r�jk ¼ 0:

�
ð13Þ

The choice of Z� is based on the argument that if r�jk > 0 the
component j contributes to modeling of class Ck (since ��jk > 0) and,
consequently, j must be incorporated in the mixture model
representing Ck, the opposite holding when r�jk ¼ 0. Once the
Z values have been specified, then, we maximize the log-likelihood
(5) applying EM and starting from parameter vector ��. The final
parameters �f will be the estimates for the class conditional
densities (4).

The above method was applied to the problem described in
Section 3 (Fig. 1). The obtained solution �f was exactly the one
presented in Fig. 1d, where the appropriate selection for theZ-model
was made in advance. Remarkably, we found that j�f ÿ��j ¼ 0:03
with the only difference being in the values of the prior parameters of
the component representing the region where the classes exhibit high
overlap.

4 EXPERIMENTAL RESULTS

We have conducted a series of experiments using Gaussian
components and compare the common components model, the
separate mixtures model, and the proposed Z-model. We tested
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Fig. 1. The data of each class was drawn according to pðxjC1Þ = 0:33Nð½2:3 1�T ; 0:08Þ + 0:33Nð½4 1�T ; 0:08Þ + 0:33Nð½7 1�T ; 0:08Þ and pðxjC2Þ = 0:5Nð½1:5 1�T ; 0:08Þ +
0:5Nð½7 1�T ; 0:08Þ, while the prior class probabilities were P ðC1Þ ¼ P ðC2Þ ¼ 0:5. Two data sets were generated; one for training and one for testing, and for each model we
found the maximum-likelihood estimate. The generalization error e and the final log-likelihood value L computed for the four models are: (a) Common components:
e ¼ 33.33 percent and L ¼ ÿ1754:51, (b) separate mixtures (two components for C1 and one for C2): e ¼ 24.33 percent L ¼ ÿ2683:25, (c) separate mixtures (one
component for C1 and two for C2): e ¼ 34 percent and L ¼ ÿ3748:42, and (d) one component common and the other two separate (one per class): e ¼ 21.67 percent and
L ¼ ÿ1822:53.



several well-known classification data sets and also varied the total

number of components. Some of the examined data sets (for

example, the Clouds data set) exhibit regions with significant class

overlap, some other data sets contain regions with small class

overlap, while the rest of them contain regions of both types. We

expect theZ-model to be adapted to the geometry of the data and use

common components only for representing data subspaces with

high overlap among classes.
We considered five well-known data sets, namely the Clouds,

Satimage and Phoneme from the ELENA database, and the Pima

Indians and Ionosphere from the UCI repository [3]. For each data

set, number of components, and model type, we employed the 5-fold

cross-validation method in order to obtain an estimate of the

generalization error. In the case of separate mixtures, we considered

an equal number of componentsM=K used for the density model of

each class.
Table 1 displays performance results (average generalization

error and its standard deviation) for the five data sets and several

choices of the total number of components. The experimental results

clearly indicate that: 1) depending on the geometry of the data set

and the number of available components either the common

components model or the separate mixtures model may outperform

one another and 2) in all data sets theZ-model either outperforms the

other models or exhibits performance that is very close to the

performance of the best model. It must be noted that there was no

case with the performance of theZ-model being inferior to both other

models. This illustrates the capability of the proposed model and

training algorithm to be adapted to the geometry of each problem.

5 CONCLUSIONS AND FUTURE RESEARCH

We have generalized mixture model classifiers by presenting a

model that constrains component density models to be shared

among subsets of the classes. For a given total number of mixture

components that must represent the data learning, the above

constraints leads to improved classification performance. The

objective function that is optimized for learning the constraints can

be considered as a regularized log likelihood. Clearly, the regular-

ization scheme is not a statistical one, since we do not apply Bayesian

regularization. The current training method works well in practice

and, additionally, all the parameters that must be specified are easily

learned through EM. However, in the future, we wish to examine the

suitability of more principled methods such as the method proposed

in [4]. Finally, it must be noted that, in this work, we do not address

the problem of assessing the optimal number of components M and

we consider it as our main future research direction. To address this

issue, our method needs to be adapted and combined with several

well-known methodologies and criteria for model selection [11], [12].

APPENDIX A

EM ALGORITHM FOR A Z-MODEL

The Q function of the EM algorithm is

Qð�; �ðtÞÞ¼
XK
k¼1

X
x2Xk

X
j:zjk¼1

P ðjjx;Ck; zk; �ðtÞk ; �ðtÞÞ logf�jkpðjjx; �jÞg:

ð14Þ
If we assume that the mixture components are Gaussians of the
general form
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Generalization Error and Standard Deviation Values for All Tested Algorithms and Data Sets



pðxjj;�j;�jÞ ¼
1

ð2�Þd=2j�jj1=2
exp ÿ 1

2
ðxÿ �jÞT�ÿ1

j ðxÿ �jÞ
� �

; ð15Þ

then, the maximization step gives the following update equations:

�
ðtþ1Þ
j ¼

P
k:zjk¼1

P
x2Xk

P ðjjx; Ck; zk; �ðtÞk ; �ðtÞÞxP
k:zjk¼1

P
x2Xk

P ðjjx; Ck; zk; �ðtÞk ; �ðtÞÞ
; ð16Þ

�
ðtþ1Þ
j
¼

P
k:zjk¼1

P
x2Xk

P ðjjx;Ck ;zk ;�
ðtÞ
k
;�ðtÞ Þðxÿ�ðtþ1Þ

j
Þðxÿ�ðtþ1Þ

j
ÞTP

k:zjk¼1

P
x2Xk

P ðjjx;Ck ;zk ;�
ðtÞ
k
;�ðtÞ Þ

; ð17Þ

for j ¼ 1; . . . ;M and

�
ðtþ1Þ
jk ¼ 1

jXkj
X
x2Xk

P jjx;Ck; zk; �ðtÞk ; �ðtÞ
� �

; ð18Þ

for all j and k such that zjk ¼ 1.

APPENDIX B

EM ALGORITHM FOR LEARNING THE Z MATRIX

The objective function to be maximized is

Lð�; rÞ ¼ logP ðX; �; rÞ ¼ log
YK
k¼1

Y
x2Xk

XM
j¼1

rjk�jkpðxjj; �jÞ: ð19Þ

As noted in Section 4, since P ðX; �; rÞ does not correspond to

probability density (with respect toX), the objective function can be

considered as an unnormalized “incomplete data log-likelihood.”

Now, the EM framework for maximizing (19) is completely

analogous to the mixture model case. The expected complete data

log likelihood is given by

Q �; r; �ðtÞ; rðtÞ
� �

¼
XK
k¼1

X
x2Xk

XM
j¼1

�j x;Ck; r
ðtÞ
k ; �

ðtÞ
k ; �

ðtÞ
� �

logfrjk�jkpðxjj; �jÞg:
ð20Þ

In the M-step, the maximization of the above function provides

the following update equations:

�
ðtþ1Þ
j ¼

PK
k¼1

P
x2Xk

�jðx;Ck; r
ðtÞ
k ; �

ðtÞ
k ; �

ðtÞÞxPK
k¼1

P
x2Xk

�jðx;Ck; r
ðtÞ
k ; �

ðtÞ
k ; �

ðtÞÞ
; ð21Þ

�
ðtþ1Þ
j
¼

PK

k¼1

P
x2Xk

�j ðx;Ck;r
ðtÞ
k
;�
ðtÞ
k
;�ðtÞ Þðxÿ�ðtþ1Þ

j
Þðxÿ�ðtþ1Þ

j
ÞTPK

k¼1

P
x2Xk

�j ðx;Ck;r
ðtÞ
k
;�
ðtÞ
k
;�ðtÞ Þ

; ð22Þ

�
ðtþ1Þ
jk ¼ 1

jXkj
X
x2Xk

�jðx;Ck; r
ðtÞ
k ; �

ðtÞ
k ; �

ðtÞÞ k ¼ 1; . . . ;K: ð23Þ

r
ðtþ1Þ
jk ¼

P
x2Xk

�jðx;Ck; r
ðtÞ
k ; �

ðtÞ
k ; �

ðtÞÞPK
i¼1

P
x2Xi

�jðx;Ci; r
ðtÞ
i ; �

ðtÞ
i ; �

ðtÞÞ
; ð24Þ

where j ¼ 1; . . . ;M and k ¼ 1; . . . ;K.
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