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Abstract Several researchers have shown that substan-
tial improvements can be achieved in difficult pattern rec-
ognition problems by combining the outputs of multiple
neural networks. In this work, we present and test a pat-
tern classification multi-net system based on both super-
vised and unsupervised learning. Following the ‘divide-
and-conquer’ framework, the input space is partitioned
into overlapping subspaces and neural networks are sub-
sequently used to solve the respective classification subt-
asks. Finally, the outputs of individual classifiers are
appropriately combined to obtain the final classification
decision. Two clustering methods have been applied for
input space partitioning and two schemes have been con-
sidered for combining the outputs of the multiple classifi-
ers. Experiments on well-known data sets indicate that the
multi-net classification system exhibits promising per-
formance compared with the case of single network train-
ing, both in terms of error rates and in terms of training
speed (especially if the training of the classifiers is done
in parallel).

Keywords Classifier combination · Classifier fusion ·
Clustering · Divide-and-conquer · Multiple classifier
systems

Introduction

Several paradigms for multi-classifier systems have been
proposed in the literature during the last few years.
Classifier combination approaches can be divided along
several dimensions, such as the representational method-
ology, the use of learning techniques or the architectural
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methodology [1,2]. A major issue in the architectural
design of multiple classifier systems concerns whether
individual learners are correlated or independent. The first
alternative is usually applied to multistage approaches
(such as boosting techniques [3,4], whereby specialised
classifiers are serially constructed to deal with data points
misclassified in previous stages. The second alternative
advocates the idea of using a committee of classifiers,
which are trained independently (in parallel) on the avail-
able training patterns, and combining their decisions to
produce the final decision of the system. The latter combi-
nation can be based on two general strategies, namely
selection or fusion. In the case of selection, one or more
classifiers are nominated ‘local experts’ in some region
of the feature space (which is appropriately divided into
regions), based on their classification ‘expertise’ in that
region [5], whereas fusion assumes that all classifiers have
equal expertise over the whole feature space. A variety of
techniques have been applied to implement classifier
fusion by combining the outputs of multiple classifiers
[1,6–8].

The methods that have been proposed for combining
neural network classifiers can provide solutions to tasks
which either cannot be solved by a single net, or which
can be more effectively solved by a multi-net system.
However, the amount of possible improvement through
such combination techniques is generally not known.
Sharkey [9] and Tumer and Ghosh [10,11] outline a math-
ematical and theoretical framework for the relationship
between the correlation among individual classifiers and
the reduction in error, when an averaging combiner is
used.

When multiple independent classifiers are considered,
several strategies can be adopted regarding the generation
of appropriate training sets. The whole set can be used by
all classifiers [2,12] or multiple versions can be formed
as bootstrap replicates [13]. Another approach is to par-
tition the training set into smaller disjoint subsets, but with
proportional distribution of examples of each class
[12,14].

The present work introduces a different approach for
building a multi-net classifier system. The proposed
method is based on partitioning the original data set into
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subsets using unsupervised learning techniques
(clustering) and the subsequent use of individual classifi-
ers for solving the respective learning subtasks. A key
feature of the method is that the training subsets represent
non-disjoint regions that result from input-space clus-
tering. This partitioning approach produces a set of corre-
lated ‘specialised’ classifiers, which attack a complex
classification problem by applying the divide-and-con-
quer philosophy.

Thus, instead of training a single neural network
involving a lot of parameters and using the entire training
set, neural networks with less parameters are trained on
smaller subsets. Through the splitting of the original data,
storage and computation requirements are significantly
reduced.

The general principle of divide-and-conquer is the basis
of several learning approaches, such as the Hierarchical
Mixtures of Experts of Jordan and Jacobs [15] and related
tree-structured models [16]. The idea of partitioning the
input-space through clustering has been applied to build-
ing classifier selection models [5], where classifiers are
trained on the same training set and are subsequently
assigned to different disjoint regions according to their
accuracy. In the approach proposed here, classifiers are
assigned to overlapping regions from the beginning, and
acquire their specialisation through training with data sets
that are representative of the regions.

In the next section, we address the issue of data par-
titioning based on unsupervised learning techniques. Sec-
tions 3 and 4 describe the training of classifiers and tech-
niques for combining classifier outputs. Experimental
results for the evaluation of the proposed method are
presented in Section 5. In Section 6 the present work is
compared with related work in the literature and, finally,
conclusions are presented in Section 7.

Partitioning of the data set

Consider a classification problem with c classes and a
training set D having N supervised pairs (x→i, ki) where
x→i � Rl and ki is an integer indicating the class of the pat-
tern x

→i. The first stage of the proposed classification tech-
nique consists of partitioning the original data set D =
{x→l, . . ., x→N} using clustering techniques to identify natural
groupings. As a result of clustering, the set D is par-
titioned into a number M of subsets D1, D2, . . ., DM as
shown in Fig. 1.

We considered two clustering techniques that are based
on completely different principles. The first method is
fuzzy clustering, whereas the second method is based on
probability density estimation using Gaussian mixtures.
Both techniques allow for the specification of the degree
with which a data point belongs to each cluster, i.e. the
data subsets obtained from the clustering stage are not
disjoint. This fact provides the flexibility to define a clus-
tering threshold q that determines the degree of cluster
overlapping. More specifically, a pattern is considered to
belong to a given cluster if the membership degree of the

Fig. 1 Partitioning of the training set D into M subsets using clustering
methods

pattern to that cluster exceeds the value of the factor q.
Experimentally, the best clustering threshold was found
to be q = 1/M, where M is the number of clusters. An
exception is the case M = 2 where, experimentally, the
best threshold was found to be q = 0.3. The two clustering
techniques tested in this work are briefly described in the
following subsections.

Fuzzy C-means clustering

Fuzzy C-means (FCM) [17] is a data clustering technique
in which a data sample belongs to all clusters with a mem-
bership degree. FCM partitions the data set into M fuzzy
clusters (where M is specified in advance), and provides
the centre of each cluster. Clustering is usually based on
the Euclidean distance:

d2(x→, �
→) = �l

j=1

(xj − �j)2 (1)

where x→ � Rl is a training sample and �
→ � Rl corresponds

to a cluster centre. The FCM algorithm provides fuzzy
partitioning, so that a given data point x→ belongs to cluster
j (with centre �

→
j) with membership degree uj varying

between 0 and 1:

uj =
1

�M
k=1

d(x→, �
→

j)
d(x→, �

→
k)

, j = 1, %, M (2)

The membership degrees are normalised in the sense that,
for every pattern,

�M
j=1

uj = 1 (3)

Starting from arbitrary initial positions for cluster centres,
and by iteratively updating cluster centres and member-
ship degrees using Eqs (1) and (2) for each training point
x
→i, i = 1, . . ., N, the algorithm moves the cluster centres
to sensible locations within the data set. This iteration is
based on minimising an objective function J that rep-
resents the distance from any given data point to a cluster
centre weighted by the data point’s membership degree:
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J(�→1, %, �
→

M) = �N
i=1

�M
j=1

(um
i d2(x→i, �

→
j)) (4)

where m � [1, �) is a weighting exponent.
The main drawbacks of this algorithm are that its per-

formance depends upon the initial cluster centres, and that
the number of clusters is predefined by the user. There-
fore, it is required to run the FCM algorithm several times,
each time with a different number of clusters, to discover
the number of clusters that results in best performance of
the classification system. Figure 2 displays the result of
the fuzzy C-means clustering method with the well-known
Clouds data set considering three clusters. The clustering
threshold q is set 0.333. So, in this example, the datapoint
x
→ belongs to the jth cluster (and to the subset Dj), if uj

� 0.333.
In Fig. 2, the three cluster centres are presented with

big circles, and the patterns of each cluster are presented
with crosses, circles and stars, respectively. We can also
observe a degree of overlapping between clusters, as some
patterns belong to two or three clusters simultaneously.
Thus, the data sets created with the fuzzy C-means algor-
ithm are not disjoint. The correlation between the data sets
has a beneficial impact increasing the robustness of the
multi-net classification system.

Greedy-EM algorithm for Gaussian mixtures

We have also considered a different technique for par-
titioning the training set that is based on probability den-
sity function (pdf) estimation using Gaussian mixtures.
According to this approach, the data are assumed to be
generated by several parametrised Gaussian distributions,
so the data points are assigned to different clusters based
on their posterior probabilities of having been generated
by a specific Gaussian distribution. A multivariate Gaus-
sian mixture is defined as the weighted sum:

Fig. 2 Three-cluster partition of the Clouds data set using the fuzzy C-
means algorithm

p(x→) = �M
j=1

�jf(x
→; �

→
j) (5)

where �j are the mixing weights satisfying �j�j = 1, �j

� 0, and f(x→; �
→

j) is the l-dimensional Gaussian density

f(x→; �j) = (2�)−1/2 �Sj�−1/2 exp
[−0.5 (x→ − m

→
j)� S−1

j (x→ − m
→

j)]

(6)

parametrised on the mean m
→

j and the covariance matrix
Sj, collectively denoted by the parameter vector �

→
j. Usu-

ally, for a given number M of kernels, the specification of
the parameters of the mixture is based on the expectation-
minimisation algorithm (EM) [18] for maximisation of the
data log-likelihood:

� =
1
N �N

i=1

log p(x→i) (7)

The iterative EM update equations for each kernel j, j =
1, . . ., M, are the following:

P(j�x→i) =
�jf(x

→i; �
→

j)
p(x→i)

(8)

�j: =
1
N �N

i=1

P(j�x→i) (9)

m→j: =
�N

i=1 P(j�x→i)x→i

�N
i=1 P(j�x→i)

(10)

Sj: =
�N

i=1 P(j�x→i) (x→i − m
→

j) (x→i − m
→

j)�

�N
i=1 P(j�x→i)

(11)

In this work, we have used the recently proposed
greedy EM algorithm [19], which is an incremental algor-
ithm that has been found to provide better results than the
conventional EM algorithm. This algorithm starts with
one kernel and adds kernels dynamically one at a time.
Assuming at some point of the algorithm k kernels, reg-
ular EM steps are carried out until convergence, and then
a new kernel is added to the mixture in a specific way.
To locate the optimal position of the new kernel two types
of search are employed: (i) efficient global search among
all input points, followed by (ii) local search based on
partial EM steps for fine tuning of the parameters of the
new kernel. Simulation results have shown that the
greedy-EM algorithm (running until M kernels have been
added) seems to outperform EM (with M kernels). More-
over, it is possible to estimate the true number of compo-
nents of the mixture as follows: we run the algorithm for
a large final value of Mmax and for the solution obtained
for each intermediate value of M we apply a model selec-
tion criterion, e.g. cross-validation using a set of test
points, a coding scheme based on minimum description
length, etc. Then we finally select the optimal value of M
that corresponds to the optimal value of the model selec-
tion criterion. In this work, we have used as a criterion
for the specification of M, the log-likelihood value on a
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Fig. 3 Means and variances of the kernels using the greedy-EM
algorithm for the Clouds data set

validation set of points that have not been used for train-
ing. After the number of kernels and the mixture para-
meters are specified, we can compute the posterior prob-
ability P(j�x→i) that a pattern x→i has been generated from
kernel j, according to Eq. (8). Therefore, we can consider
that each kernel corresponds to a group (cluster) of pat-
terns, and that P(j�x→i) corresponds to the membership
degree uij of pattern x

→i to the jth group. In analogy with
Eq. (3), it holds that:

�M
j=1

P(j�x→i) = 1, ∀i = 1, %, N (12)

Figures 3 and 4 display the partitioning of the Clouds
data set using the greedy-EM algorithm. The optimal
number of kernels was found to be M = 4. In Fig. 3, we
can see the means m and variances s2 for the kernels,
whereas in Fig. 4 we present the patterns corresponding

Fig. 4 Four-cluster partition of the Clouds data set using the greedy-EM
algorithm

to each kernel (crosses, circles, stars and diamonds),
respectively. Since q = 1/M = 0.25, the ith data point
belongs to the jth kernel if P(j�x→i) � 0.25, ∀i = 1, . . ., N
and j = 1, 2, 3, 4. We can observe some overlapping
between clusters, since some patterns belong to two, three
or four clusters simultaneously.

Training the individual classifiers

In what concerns the classification module, the primary
idea is to train a neural classifier, in particular a Multi-
Layered Perceptron (MLP), for each group of patterns Dj

generated through the partitioning of the original data set
D (see Fig. 5). In this sense, each classifier learns a sub-
space of the problem domain and becomes a ‘local expert’
for the corresponding subdomain.

An important advantage of this method is that the train-
ing of each subnetwork can be done separately and in
parallel. Thus, in the case of parallel implementation, the
total training time of the system equals to the worst train-
ing time achieved among the neural classifiers. It must be
noted that this total training time cannot be greater than
the training time of a single neural classifier of the same
type dealing with the entire training set. Since such a sin-
gle network usually requires more parameters, to learn the
whole data set (which is much larger), the multi-net
approach may lead to reduced execution times even in the
case of implementation on a single processor. This case
actually occurred in our experimental study, when during
data partitioning we came up with clusters of a single
class. Thus, there was no need of training a classifier for
these clusters, leading to reduced training time compared
with the case of single network training.

In this work, each classifier is a fully connected MLP,
with one hidden layer of sigmoidal units. We have applied
the BFGS quasi-Newton algorithm [20] to train the MLPs
using the early stopping technique. Assuming that we
have created M groups of patterns after partitioning the
original data set, we divide the available training data of
each group Dj into two parts, a training set and a vali-
dation set for ‘early stopping’. Therefore, we train M
MLPs using different (but possibly overlapping) training
and validation sets. The classifications produced by the
multiple individual MLPs are combined following differ-
ent formulas as discussed next.

Fig. 5 Training a different MLP for each group of patterns
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Techniques for combining classifications

As described above, the original data set D is partitioned
into M subsets and M classifiers are trained, one for each
subset. Given a new pattern x→ we obtain the output
y→j, j = 1, . . ., M, produced by each MLP j. We also com-
pute the membership degrees uj of pattern x

→ in group Dj.
We considered two different ways to combine the outputs
of the MLPs to obtain the final classification decision.

Weighted sum of outputs

Let x→ be an input vector which belongs to one of c classes.
Every MLP has c continuous outputs corresponding to
each of the c classes. More specifically, for each MLP j,
j = 1, . . ., M, the corresponding output vector is

y→j = (y1
j, %, yc

j) (13)

To obtain the combined final output, the weighted sum of
the output vectors y

→
j of the MLPs is computed, with the

weights corresponding to the membership degree uj of
pattern x→ belonging to group j:

yk = yk
1 · u1 + % + yM

k · uM (14)

for k = 1, . . ., c. The final decision C of the classification
system for input x→ is

C = arg max(y1, %, yc) (15)

Equation (15) provides a final estimate for the class of an
input vector x

→, where all classifiers participate in the
decision in a fuzzy manner.

Class probabilities

Consider an input vector x→ which belongs to one of c
classes. As with the weighted sum scheme, we compute
the output vector y→j for every MLP j along with the corre-
sponding membership degree uj of the input vector x→ for
group Dj. A usual approach to obtain the classification of
x→ is to compute the probability P(k�x→) (k = 1, . . ., c) that
pattern x→ belongs to class k and select the class C with
the maximum P(C�x→) as the final decision following the
Bayes rule.

The probability P(k�x→) can be computed as follows: first
we select the maximum component Cj of the output vector
yj to obtain the class label suggested by each MLP j. Then,
we can use the following formula:

P(k�x→) = �M
j=1

ujI(Cj = k) (16)

where I(z) is an indicator function, i.e. I(z) = 1 if z = true,
otherwise I(z) = 0. The above equation states that the class
probability P(k�x→) results as the sum of the weights uj of
the classifiers that suggest class k. It is easy to check that
�c

k=1 P(k�x→) = 1. It must be noted that the combination

method (16) is more general, since it considers the class
label suggested by each classifier, and not the numerical
output vectors as in the weighted sum case. Consequently,
the method can also be used with other types of classifiers,
e.g. decision trees or SVMs.

Experimental results

In this section, we present comparative performance
results from the use of the proposed classification system
using the FCM and greedy-EM algorithms for data par-
titioning and the previously described schemes for com-
bining classifier outputs. For comparison, we also present
results from individual MLPs with different numbers of
hidden units. Five well-known data sets were used in our
experiments, as shown in Table 1.

In all the tests presented here, each experiment was run
ten times and the min, mean and max errors were calcu-
lated from these ten trials. For each experiment, each sub-
network was trained several times with different numbers
of sigmoidal hidden units (5, 8, 10, 15, 20) and different
initialisations. The best outcome of the trials according to
the validation error was used when testing the combi-
nation schemes.

The classification performance of the system was evalu-
ated for the following cases of data clustering and clas-
sifier combination:

� FCM algorithm and weighted sum (FCM WS).
� FCM algorithm and class probabilities (FCM CP).
� Greedy-EM algorithm and weighted sum (G-EM WS).
� Greedy-EM algorithm and class probabilities (G-EM

CP).

The Clouds data

The Clouds artificial data from the ELENA project [21]
are two-dimensional with two a priori equally probable
classes. There are 5000 examples in the data set, 2500 in
each class (50%). The theoretical error is 9.66%.

In our experiments, we used 2000 patterns for training,
2000 for validation and 1000 patterns for testing the sys-
tem, respectively. For the FCM algorithm, we obtained
the best results by splitting the original data set into three
subsets (q = 0.333). The Greedy-EM algorithm divided
the Clouds data set into four subsets (q = 0.25). The test-

Table 1 Summary of the data sets

Dataset Cases Classes Features

Continuous Discrete

Clouds 5000 2 2 –
Diabetes 768 2 9 –
Segmentation 2310 7 19 –
Phoneme 5404 2 5 –
Breast cancer 699 2 – 9
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Table 2 The Clouds data set: test set error (%) comparative results

Clouds data set

Classifier min mean max

FCM WS 9.8 11.26 12.2
FCM CP 9.7 11.1 11.8
G-EM WS 10.1 11.03 11.8
G-EM CP 9.8 10.68 11.5
MLP (15 hidden units) 10.1 12.13 13.7
MLP (20 hidden units) 10.6 12.48 16.9
MLP (25 hidden units) 10.8 11.91 17.4

ing results for the multi-net classification system are
shown in Table 2.

The classification error obtained with the multi-net sys-
tem is quite close to the theoretical one; therefore, any
further improvement can hardly be achieved.

The Diabetes data

The Diabetes set from the UCI data set repository [22]
contains eight-dimensional data belonging to two classes.
It is based on personal data from 768 Pima Indians
obtained by the National Institute of Diabetes and Diges-
tive and Kidney Diseases. The diagnostic binary-valued
variable that is investigated indicates whether the patient
shows signs of diabetes according to World Health
Organization criteria.

In our experiments, we used 400 patterns for training,
200 for validation and 168 patterns for testing the system.
For the FCM algorithm, we obtained the best results by
splitting the original data set into three subsets (q = 0.333).
The Greedy-EM algorithm divided the Diabetes data set
into three subsets (q = 0.333). The testing results for the
multi-net classification system are shown in Table 3.

It must also be noted that this data set contains some
known outliers, that affect the construction of the clusters
and eventually the classification performance of the sys-
tem.

The Image Segmentation data

The Image Segmentation data set from the UCI data set
repository [22] contains 19-dimensional examples belong-

Table 3 The Diabetes data set: test set error (%) comparative results

Diabetes data set

Classifier min mean max

FCM WS 19.05 21.95 25
FCM CP 20.83 23.69 26.79
G-EM WS 18.45 22.74 26.19
G-EM CP 19.05 22.56 25.6
MLP (15 hidden units) 19.64 22.97 25.6
MLP (20 hidden units) 19.05 22.56 25
MLP (25 hidden units) 17.86 23.15 26.79

Table 4 The Segmentation data set: test set error (%) comparative results

Segmentation data set

Classifier min mean max

FCM WS 15.8 17.79 19.01
FCM CP 16.54 18.44 21.73
G-EM WS 16.3 21.67 25.43
G-EM CP 16.17 21.79 25.56
MLP (30 hidden units) 33.46 42.28 59.51
MLP (35 hidden units) 16.3 38.25 55.31
MLP (40 hidden units) 29.51 54.74 69.38

ing to seven classes. There are 2310 instances drawn ran-
domly from a database of seven outdoor images. The
images were hand segmented to create a classification for
every pixel. Each pattern corresponds to a 3 	 3 region.

We used 1000 patterns for training, 500 for validation
and 810 patterns for testing the system. For the FCM
algorithm, we obtained the best results by splitting the
original data set into four subsets (q = 0.25). The Greedy-
EM algorithm divided the Segmentation data set into five
subsets (q = 0.2). The testing results for the multi-net
classification system are shown in Table 4.

In our experiments, we preprocessed the Image Seg-
mentation data set by applying a Principal Component
Analysis (PCA). In addition, the size of the input vectors
was reduced to a 7-dimensional space by retaining only
those components which contribute more than a specified
fraction (defined 0.009) of the total variation in the data
set.

The Phoneme data

The aim of using the Phoneme dataset from the ELENA
project [21] is to distinguish between nasal and oral vow-
els, hence, there are two classes: the nasals and the orals.
The Phoneme dataset contains vowels originating from
1809 isolated syllables. Five features were chosen to
characterise each vowel. The features are the amplitudes
of the first five harmonics normalised by the total energy
integrated over all the frequencies. There are 3818 pat-
terns from the first class and 1586 patterns from the
second class.

In our experiments, we used 2500 patterns for training,
2000 for validation and 904 patterns for testing the sys-
tem. For the FCM algorithm, we obtained the best results
by splitting the original data set into two subsets (q = 0.3).
The Greedy-EM algorithm divided the Phoneme data set
into six subsets (q = 0.17). The testing results for the
multi-net classification system are shown in Table 5.

The Breast Cancer data

This is data provided to the UCI repository [22] by Dr
William H. Wolberg [23] from the University of Wiscon-
sin Hospitals, Madison. Data contain 699 patterns belong-
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Table 5 The Phoneme data set: test set error (%) comparative results

Phoneme data set

Classifier min mean max

FCM WS 15.82 17.2 18.69
FCM CP 14.27 16.91 18.47
G-EM WS 14.38 15.47 16.48
G-EM CP 14.82 15.85 16.7
MLP (15 hidden units) 15.49 19.2 21.46
MLP (20 hidden units) 15.49 17.69 20.13
MLP (25 hidden units) 13.83 17.24 19.25

ing to two classes (458 benign and 241 malignant). It
involves nine variables representing cellular character-
istics.

In our experiments, we used 350 patterns for training,
150 for validation and 199 for testing the system. For the
FCM algorithm, we obtained the best results by splitting
the original data set into three subsets (q = 0.333). The
Greedy-EM algorithm divided the Breast Cancer data set
into five subsets (q = 0.2). The testing results for the
multi-net classification system are shown in Table 6.

Discussion

An important conclusion that can be drawn from the
experimental results is that, as expected, the multi-net sys-
tem almost always exhibits better performance than a sin-
gle neural classifier. For the Clouds, Segmentation and
Phoneme data sets the gain in performance is quite sig-
nificant. With FCM partitioning we achieved better classi-
fication error in Diabetes, Segmentation and Breast Can-
cer data sets, while the partitioning based on the Greedy-
EM algorithm led to better performance in Clouds and
Phoneme data. However, the Greedy-EM algorithm
dynamically determines the number of clusters during
data partitioning, and this makes it superior to FCM algor-
ithm which assumes a predefined number of clusters. An
important result that occasionally came up during data
partitioning in our study was the creation of clusters with
examples of a single class. Thus, there was no need of
training a classifier for these clusters. Another interesting
conclusion is that the weighted-sum combination scheme
produces slightly better results than the class probabilities

Table 6 The Breast Cancer data set: test set error (%) comparative results

Breast Cancer data set

Classifier min mean max

FCM WS 2.01 2.97 3.52
FCM CP 2.01 2.8 3.52
G-EM WS 1.51 3.67 5.03
G-EM CP 1.51 3.62 5.03
MLP (15 hidden units) 1.01 3.49 4.52
MLP (20 hidden units) 1.01 3.12 4.02
MLP (25 hidden units) 2.01 3.92 5.03

formula, in all cases except for the Clouds and Breast
Cancer data sets.

The obtained results show that the proposed multi-net
classification system outperforms several methods
reported in the literature, like Bagging or Boosting, for
the Diabetes and Breast Cancer data sets [3,4,13], as well
as for the Segmentation data set [4]. Also, for the Pho-
neme data set, the performance of our approach was better
in comparison with the Clustering, Selection and Decision
Templates combination scheme [2,5]. For the Diabetes
data set, it yielded superior results in comparison with
classifier combining through trimmed means and order
statistics [8]. Finally, the proposed multi-net classification
system performed better for the Clouds data set in com-
parison with a variety of soft combinations of multiple
classifiers like Majority, Averaging, Weighted averaging,
Borda count, etc. [6]. It should be noted, however, that,
since the partitioning of the data may or may not be the
same as in our case, this comparison should be considered
as rather indicative.

Related work

We have presented a multi-net classification method that
implements the ‘divide-and-conquer’ problem solving
paradigm through the appropriate combination of
unsupervised and supervised learning schemes. First, the
input space is partitioned into overlapping subspaces
through clustering. Then neural networks are subsequently
used to solve the respective classification subtasks.
Finally, the outputs of the individual classifiers are appro-
priately combined to obtain the final classification
decision. A key feature of the method is that the training
subsets correspond to non-disjoint regions of the input
space. Thus, the partitioning procedure produces a set of
correlated specialised classifiers which cooperate at the
decision level in order to tackle a complex classification
problem. In this way, smaller networks may be employed
that can be trained in parallel on smaller and usually easier
to discriminate training sets. Through the splitting of the
original data storage and computation, requirements are
significantly reduced.

The multi-net methodology described here is related to
a number of divide-and-conquer approaches in machine
learning and neural networks. In general, these approaches
can be classified into two main categories. The first cate-
gory contains the methods that follow the ‘divide-and-
conquer’ philosophy, and can be considered that exhibit
analogy with the proposed technique. The second category
contains multi-net methods (like bagging, boosting, etc.),
which do not perform input space partitioning. Instead,
they consider that each individual classifier is trained
using data points from the whole input space. It is clear
that methods of this category exhibit only marginal rel-
evance with our technique, and cannot be considered to
follow the same principles.

The main multi-net method that belongs to the first cat-
egory is the Hierarchical Mixtures of Experts (HME)
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method of Jordan and Jacobs [15]. It produces a tree-
structured model which partitions the data into different
regions. Such decomposition ensures that the errors made
by the expert nets will not be correlated, as they each deal
with different data points. Expert nets learn to specialise
in sub-tasks, and to cooperate by means of a gating net.
Our approach differs from HME and related architectures,
in that the mixtures-of-experts model makes the assump-
tion that a single expert is responsible for each example,
whereas our combination scheme makes no such mutual
exclusivity assumption, and each data point is likely to be
dealt with by all component nets in the multi-net system.
Since classifiers in the present approach are assigned to
overlapping regions and acquire their specialisation
through training with data sets that are representative of
these regions, this approach is appropriate when no model
is highly likely to be correct for any point in the input
space.

In the second category of multi-net techniques, the most
popular methods for creating ensembles are Bagging [13]
and Boosting [4]. These methods rely on ‘resampling’
techniques from the whole input space to obtain different
training sets for each of the classifiers. Thus, it is not poss-
ible to use smaller networks and accelerate the training of
each classifier. In this group of methods, the individual
classifiers and their combination are trained together. On
average, Adaboost is better than bagging, but the main
problem with boosting seems to be robustness to noise
[3,4]. In parallel environments, bagging and the method
proposed here have a strong advantage because sub-classi-
fiers can be built in parallel. Our approach to designing a
classifier combination is to use already trained classifiers
(typically a smaller number of them compared to boosting
and bagging) and combine their outputs. Simple combi-
nation methods such as Weighted Sum (WS) and Class
Probabilities (CP), do not even require further training or
optimising beyond training the individual classifiers. Also
another multi-net technique of the second category con-
cerns Kuncheva’s clustering, selection and decision tem-
plates model [2,5]. In that model, selection is applied in
regions of the feature space where one classifier strongly
dominates the others from the pool (called Clustering-and-
Selection, CS) and fusion is applied in the remaining
regions; Decision Templates (DT) are adopted for clas-
sifier fusion. Two main futures distinguish the proposed
method from Kuncheva’s work and other related selec-
tion-fusion architectures [12,14]: (i) we apply clustering
techniques (unsupervised learning) to partition the input
space; and (ii) the training subsets resulting from this par-
tition represent non-disjoint regions. We believe that both
of these features can play a role in increasing the benefits
of combining and improving the robustness of the classi-
fication system by producing diverse component net-
works.

Conclusions

In this work we have elaborated on a multi-net classi-
fication system that is based both on unsupervised and

supervised learning methods. To build the classification
system, first the original training set is divided into over-
lapping subsets by applying clustering techniques
(unsupervised learning). Then, an individual MLP is
trained on every defined subset. To obtain the classi-
fication of a new pattern, the outputs of the MLPs are
appropriately combined using several combination
schemes. An important strength of the proposed classi-
fication approach is that it does not depend upon the type
of the neural network, therefore, it is quite general and
applicable to a wide class of models, including neural net-
works and any other classification technique. The learning
method offers the advantages of the ‘divide-and-conquer’
framework, i.e. smaller networks may be employed that
can be trained in parallel on smaller (and usually easier
to discriminate) training sets.

We have considered two algorithms for data clustering.
The first is the fuzzy C-means method, which creates
fuzzy partitioning of the input domain, while the second
approach is based on pdf estimation using mixture models,
so patterns are assigned to different clusters based on their
posterior probabilities. We have considered two schemes
for combining the outputs of multiple neural classifiers:
the first uses a simple weighted sum, while the second
one is based on a probabilistic interpretation. The resulting
classification approaches have been tested on different
benchmark data sets exhibiting very promising perform-
ance.

The multi-net methodology implemented in this work
is quite general. There is ample room for the implemen-
tation and testing of other techniques both in the clustering
and the classification module. It must be noted that we
are particularly interested in testing the performance of
the classification system when Support Vector Machines
(SVM) [24,25] are employed in the place of MLPs, and
this constitutes our primary direction for future study.
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Originality and contribution

The present work introduces a novel approach for building multi-
classifier systems. A pattern classification multi-net method is
presented and tested, which is based on unsupervised and super-
vised learning schemes. First, the input space is partitioned into
overlapping subspaces through clustering. Neural networks are sub-
sequently used to solve the respective classification subtasks.
Finally, the outputs of individual classifiers are appropriately com-
bined to obtain the final classification decision. A key feature of
the method is that the training subsets represent non-disjoint regions
of the input-space. Thus, the partitioning procedure produces a set
of correlated ‘specialised’ classifiers, which attack a complex classi-
fication problem by applying the ‘divide-and-conquer’ philosophy.
This approach offers the advantages of divide-and-conquer, i.e.
smaller networks may be employed that can be trained in parallel
on smaller and usually easier to discriminate training sets. Through
the splitting of the original data, storage and computation require-
ments are significantly reduced. The idea of partitioning the input-
space through clustering has been applied elsewhere in the aim of
building classifier selection models, in which classifiers are trained
on the same training set and are subsequently assigned to different
disjoint regions according to their accuracy. In the approach pro-
posed here, classifiers are assigned to overlapping regions from the
beginning and acquire their specialisation through training with data
sets that are representative of the regions.

We have considered two algorithms for data clustering. The first
is the fuzzy C-means method, which creates fuzzy partitioning of
the input domain, while the second approach is based on pdf esti-
mation using mixture models, so patterns are assigned to different
clusters based on their posterior probabilities. We have considered
two schemes for combining the outputs of multiple neural classifi-
ers: the first uses a simple weighted sum, while the second one is
based on a probabilistic interpretation. The resulting classification
approaches have been tested on different benchmark data sets exhi-
biting very promising performance. The results obtained show that
the proposed multi-net system outperforms several methods
reported in the literature for the same data sets. An important
strength of the proposed classification approach is that it does not
depend upon the type of the neural network, therefore it is quite
general and applicable to a wide class of models, including neural
networks and any other classification technique.


