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a b s t r a c t

The probabilistic RBF network (PRBF) is a special case of the RBF network and constitutes a

generalization of the Gaussian mixture model. In this paper we propose a semi-supervised learning

method for PRBF, using labeled and unlabeled observations concurrently, that is based on the

expectation–maximization (EM) algorithm. Next we utilize this method in order to implement an

incremental active learning method. At each iteration of active learning, we apply the semi-supervised

method, and then we employ a criterion to select an unlabeled observation and query its label. This

criterion identifies points near the decision boundary. In order to assess the effectiveness of our method,

we propose an adaptation of the well-known Query by Committee (QBC) algorithm for the active

learning of the PBFR, and present experimental comparisons on several data sets that indicate the

effectiveness of the proposed method.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

The active learning of a classifier constitutes a special learning
problem, where the training data are available as a stream of
classified observations and are actively collected by the classifier
during training. At each learning iteration, the learning system
determines regions of interest in the data space, asks for labeled
training data that lie in these regions, and exploits the acquired
class labels to improve its classification performance.

The importance of active learning is well established, see [3]
for a study on the increase of classifier’s accuracy as the number of
labeled data increases. Various active learning methods have been
suggested for almost all types of classifiers; in [5] a learning
method for Gaussian mixture models [15] has been proposed, that
selects data minimizing the variance of the learner. The Query by
Committee (QBC) algorithm has been proposed in [17,9] for the
active learning of a committee of classifiers, which picks those
data for which the committee members disagree. Based on this
selection method, in [13] they proposed the exploitation of
available unlabeled data by employing the EM algorithm [8] to
form a better selection criterion, that is used to train a naive Bayes
classifier. In [25] Gaussian random fields and harmonic functions
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are trained, while data selection is based on the estimated
expected classification error. In [23] an active learning methodol-
ogy for support vector machine (SVM) classifiers has been
proposed with applications to text classification.

In this work we focus on pool-based active learning which is well-
studied active learning problem [13,23,25]. In this case a set of
labeled and unlabeled observations is available right from the start.
At each training iteration we are allowed to query the labels of
unlabeled points, and use the acquired labels to improve the
classifier (see Fig. 1). In practice this learning scenario is important
in two cases: (a) when querying a field expert is expensive, as in
medical diagnosis, and (b) when there is a huge quantity of unlabeled
data and is difficult to manually characterize all of them, as for
example in document classification and e-mail filtering [23,11].

An intuition behind pool-based learning is that the unlabeled
data can be exploited to construct a more detailed generative
model for the data set. Thus this problem is closely related to
semi-supervised learning. Algorithms for semi-supervised learning
have been proposed for Gaussian mixtures in [10,18], as well as for
the RBF network [16]. So it has been established that unlabeled
data reveal useful information for the distribution of the labeled
data (see [4] for an informative recent survey book on semi-
supervised learning).

In order to implement active learning the following issues
must be addressed:
�
 Define an effective criterion for selecting the unlabeled points
to query their label.

�
 Use an incremental training algorithm so that learning does not

start from scratch at each iteration.

www.sciencedirect.com/science/journal/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2007.11.039
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Fig. 1. Available data in a pool-based active learning scenario: ‘‘�’’ denotes

unlabeled data, ‘‘þ’’, ‘‘�’’ denote class labels. As learning proceeds ‘‘�’’ points are

selected and their label (‘‘þ’’ or ‘‘�’’) is revealed.
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�
 Exploit during training not only the labeled but also the
unlabeled data (use semi-supervised learning training algo-
rithms).
In this work we treat the problems of semi-supervised learning
and pool-based active learning for the probabilistic RBF (PRBF)
classifier [20,22]. This is a special case of the RBF network [2] that
computes at each output unit the density function of a class. It
adopts a cluster interpretation of the basis functions, where each
cluster can generate observations of any class. This is a general-
ization of a Gaussian mixture model [15,2], where each cluster
generates observations of only one class. In [6] an incremental
learning method based on expectation–maximization (EM) for
supervised learning is proposed that provides classification
performance comparable to SVM classifiers.

The core of our work is the proposition of a semi-supervised

learning method for the PRBF network, which is based on the EM
algorithm for maximization of the joint likelihood of both the
labeled and unlabeled data. Thus we obtain closed form update
equations for the network parameters. We are facilitated by the
fact that each node of the PRBF describes the local density of
potentially all the classes. In order to handle the unlabeled data, it
is possible to marginalize the class labels from the update
equations of EM, thus using both labeled and unlabeled data in
parameter estimation. Building on this method, we further
present an incremental method for semi-supervised training.
Exploiting the later method, we develop an active learning
framework, by defining a suitable criterion for selecting the
unlabeled observations, and asking for their label. Our contribu-
tion is concluded with the application of the QBC algorithm for
the active learning of the PRBF, and its experimental comparison
with the proposed algorithm.

In the following section we describe the PRBF network, and in
Section 3 we present the semi-supervised training method based
on the EM algorithm. In Section 4 we first propose an incremental
semi-supervised training method, and in the following we
propose an active learning algorithm. In the same section we also
present the application of the QBC algorithm for the active
learning of the PRBF. Section 5 provides the results from our
experimental study, while the discussion in Section 6 concludes
this work.
2. The PRBF classification network

Consider a classification problem with K classes, where K is
known and each pattern belongs to only one class. We are given a
training set X ¼ fðxn; ynÞ;n ¼ 1; . . . ;Ng where xðnÞ is a d-dimen-
sional pattern, and yn is a label k 2 f1; . . . ;Kg indicating the class of
pattern xn. The original set X can be partitioned into K

independent subsets Xk, so that each subset contains only the
data of the corresponding class. Let Nk denote the number of
patterns of class k, i.e. Nk ¼ jXkj.

The PRBF network has the same architecture as the typical RBF
network, i.e. an input layer with d units for the input vector
x ¼ ðx1; . . . ; xdÞ, an output layer with K units (one for each class)
and a single hidden layer with an arbitrary number M of
component functions (hidden units), which are probability
density functions. In the PRBF network all component density
functions pðxjjÞ; ðj ¼ 1; . . . ;MÞ are utilized for estimating the
conditional densities of all classes by considering the components
as a common pool [19,20]. The k-th PRBF output models the class
conditional density function pðxjkÞ of class k as a mixture model of
the form

pðxjkÞ ¼
XM
j¼1

pðjjkÞpðxjjÞ; k ¼ 1; . . . ;K , (1)

where pðxjjÞ denotes the component density j, while the mixing
coefficient pðjjkÞ represents the prior probability that a pattern has
been generated from the density function of component j, given
that it belongs to class k. The priors take positive values and
satisfy the following constraint:

XM
j¼1

pðjjkÞ ¼ 1; k ¼ 1; . . . ;K. (2)

Once the outputs pðxjkÞ have been computed, the class of data
point x is determined using the Bayes rule, i.e. x is assigned to the
class with maximum posterior pðkjxÞ computed by

pðkjxÞ ¼
pðxjkÞpðkÞPK
‘¼1 pðxjlÞpð‘Þ

. (3)

The class priors pðkÞ are computed as pðkÞ ¼ Nk=N, according to the
maximum likelihood solution.

Also using Bayes theorem, the posterior probabilities pðjjx; kÞ

that component j generated a pattern x given its class k can be
easily computed:

pðjjx; kÞ ¼
pðjjkÞpðxjjÞPM
i¼1 pðijkÞpðxjiÞ

. (4)

In the following, we assume Gaussian component densities of the
general form:

pðxjjÞ ¼
1

ð2pÞd=2
jSjj

1=2
exp �

1

2
ðx� mjÞ

TS�1
j ðx� mjÞ

� �
, (5)

where mj 2 Rd represents the mean of component j, while Sj

represents the corresponding d� d covariance matrix. The whole
adjustable parameter vector of the model consists of the mixing
coefficients pðjjkÞ and the component parameters (means mj and
covariance matrices Sj) and we denote it by Y.

It is apparent that the PRBF model is a special case of the RBF
network, where the outputs correspond to probability density
functions and the second layer weights are constrained to
represent the prior probabilities pðjjkÞ. Furthermore, the separate
mixtures model [14] can be derived as a special case of PRBF, if
each component j generates only patterns of the class ‘, and we
set pðjjkÞ ¼ 0 for all classes ka‘.
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Training the PRBF network is performed using the EM
algorithm for maximization of the likelihood with respect to the
parameters [20]:

LðYÞ ¼
XK

k¼1

X
x2Xk

log pðxjkÞ

¼
XK

k¼1

X
x2Xk

log
XM
j¼1

pðjjkÞpðxjjÞ. (6)

EM is an iterative procedure with two steps at each iteration.
During the expectation step, posterior probabilities pðjjx; kÞ are
computed using the current estimates of pðjjkÞ, mj and Sj,
according to

pðjjx; kÞ ¼
pðjjkÞpðxjj; mj;SjÞPM
i¼1 pðijkÞpðxji; mi;SiÞ

. (7)

During the maximization step the new estimates of the component
parameters are updated according to

mj ¼

PK
k¼1

P
x2Xk

pðjjx; kÞxPK
‘¼1

P
x2X‘

pðjjx; ‘Þ
, (8)

Sj ¼

PK
k¼1

P
x2Xk

pðjjx; kÞðx� mjÞðx� mjÞ
TPK

‘¼1

P
x2X‘

pðjjx; ‘Þ
, (9)

pðjjkÞ ¼
1

jXkj

X
x2Xk

pðjjx; kÞ; k ¼ 1; . . . ;K . (10)

The EM updates eventually will converge to a maximum of the
likelihood.

2.1. Component splitting

In [21] a hierarchical method for classification has been
proposed based on the PRBF network that contains two stages:
in the first stage (EM-stage), a PRBF network with a fixed number
of components M is trained using the EM update equations
(7)–(10). After the completion of this stage of training, there may
be components of the network with mean vectors located on the
decision boundary. In these regions of the data space there is an
overlapping among classes. This happens if we have under-
estimated the maximum allowed number of components. In order
to increase the generalization performance of the network, it is
suggested in [21] to split each component. This happens in the
second stage (splitting stage) of the training method, where
every PRBF component j is splitted into subcomponents jk
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Fig. 2. An example of the component splitting process. The component in the middle is

each describing the data of one class.
corresponding to the classes of the problem. This is achieved by
evaluating the posterior probability pðjjx; kÞ for a component to
define if it is responsible for patterns of more than one class. So
we compute pðjjx; kÞ for every pattern x 2 X, and check ifP

x2Xk
pðjjx; kÞ40 for more than one class k. If this happens, then

we remove it from the network, and add a separate component for
each class. So finally every subcomponent describes only one
class. Splitting a component j, the resulting subcomponent of class
k is a Gaussian probability density function pðxjj; kÞ, with mean mjk,
covariance matrix Sjk and mixing weight pðjjkÞ. These parameters
are estimated according to

pðjjkÞ ¼
1

jXkj

X
x2Xk

pðjjx; kÞ, (11)

mjk ¼

P
x2Xk

pðjjx; kÞxP
x2Xk

pðjjx; kÞ
, (12)

Sjk ¼

P
x2Xk

pðjjx; kÞðx� mjkÞðx� mjkÞ
TP

x2Xk
pðjjx; kÞ

. (13)

After splitting, the class conditional density is

pðxjkÞ ¼
XM
j¼1

pðjjkÞpðxjj; kÞ; k ¼ 1; . . . ;K . (14)

It has been shown in [21] that the addition of the splitting stage,
on the one hand guarantees the increase of the likelihood and on
the other hand leads to considerable improvement in general-
ization performance compared to the PRBF network obtained in
the first stage. This two-stage approach is called the PRBF-split

method.
Fig. 2 provides a characteristic example illustrating the effect of

the splitting operation. A remark that can be made is that, from a
classification point of view, a full effect exploitation of the
splitting operation is achieved, if the components of the PRBF
network have been placed in regions containing the decision
boundary between classes (see Fig. 3). This remark led to the
development of an incremental method [6] for placing the
components of the PRBF network constructed in the first stage
(EM training).
3. Semi-supervised PRBF training

In this section we develop an EM algorithm for semi-
supervised training of the PRBF network. We assume a set of
labeled observations X ¼ fðxn; ynÞjn ¼ 1; . . . ;Ng and a set of
0 0.2 0.4 0.6 0.8 1 1.2
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located in a region with data of two classes and is splitted into two subcomponents
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Fig. 3. Desirable placement of components on the decision boundary (shown with

dashed line) in the first stage on hierarchical training. A subsequent splitting of

each component will provide a satisfactory solution to the classification problem.
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unlabeled observations XU ¼ fx
njn ¼ 1; . . . ;NUg. The labeled ob-

servations have an ‘‘input’’ part x 2 Rd, and an ‘‘output’’ part y 2

f1; . . . ;Kg in the case of a classification problem with K classes.
This ‘‘output’’ part (called label) assigns an observation to one
class, and in the case of unlabeled observations is missing. Let O
be the joint set of labeled and unlabeled observations, i.e.
O ¼ X [ XU. Moreover we can separate X according to the class
labels in K disjoint sets Xk ¼ fðx

n; ynÞjyn ¼ k;n ¼ 1; . . . ;Nkg one for
each class, then O ¼

S
k Xk [ XU.

Adopting Bayesian reasoning, a classifier assigns a new
unlabeled observation x to the class k% with maximum posterior
probability. If we drop the part of the posterior that depends only
on x, then

k%

¼ arg max
k

pðxjkÞpðkÞ, (15)

where pðxjkÞ is the class conditional distribution of observations
from class k, and pðkÞ is the prior probability of this class. For two
classes k and k0 there is a decision boundary pðxjkÞpðkÞ ¼ pðxjk0Þpðk0Þ

that divides the space of the observations.
To describe class conditional distributions we employ the PRBF

network with M basis functions. For input x the class conditional
probability pðxjkÞ is the k-th output of the PRBF

pðxjkÞ ¼
XM
j¼1

pðjjkÞpðxjjÞ, (16)

where each basis function is a Gaussian with mean mj 2 Rd and
covariance matrix Sj. In order to find estimates for the parameters
of the network

Y ¼ fpðkÞ; pðjjkÞ;mj;Sjjj ¼ 1; . . . ;M; k ¼ 1; . . . ;Kg

we maximize the joint likelihood, as in [16]. Assuming i.i.d.
observations, the joint log-likelihood L of labeled and unlabeled
data is

L ¼ log
Y

k

Y
x2Xk

pðx; kÞ
Y

x2XU

pðxÞ

( )

¼
X

k

X
x2Xk

log pðkÞ
X

j

pðjjkÞpðxjjÞ

þ
X
x2XU

log
X

k

pðkÞ
X

j

pðjjkÞpðxjjÞ. (17)
The density pðxÞ of the unlabeled data was computed by margin-
alizing the class label from the joint density pðx; kÞ ¼ pðxjkÞpðkÞ as
follows:

pðxÞ ¼
X

k

pðx; kÞ ¼
X

k

pðkÞpðxjkÞ ¼
X

k

pðkÞ
X

j

pðjjkÞpðxjjÞ. (18)

For the maximization of L we use the EM algorithm [8]. The EM is
an iterative algorithm that is guaranteed to converge at a local
maximum of the likelihood surface. It is employed in problems
where hidden variables exist. These variables determine the
solution of the problem, although they are not observable. In
our case the hidden variables define the node of the network that
generated an observation, and the label of an unlabeled observa-
tion. In order to be able to apply the EM algorithm, it should be
possible to compute the posterior probability of the hidden
variables given the observations. Based on this remark, in the
following we formally derive the EM update equations for semi-
supervised PRBF training.

For each unlabeled observation x, we introduce a hidden
variable zðxÞ that assigns this observation to one class k and one
basis function j. Thus, each zðxÞ is a binary M � K matrix, where
zðxÞjk ¼ 1 if x is assigned to the k-th class and the j-th node. This
assignment is unique, so that

P
j

P
k zðxÞjk ¼ 1. Moreover for a

labeled observation ðx; kÞ, the corresponding zðxÞ is constrained so
that zðxÞj‘ ¼ 0 for every class ‘ak and for all j. Thus a hidden
variable can assign a labeled observation to any node but only one
class. This does not hold for the case of unlabeled observations that
can be assigned to any class and any node. Given the set of hidden
variables Z ¼ fzðxÞj8x 2 Og, we define the complete log-likelihood,
as the logarithm of the joint density pðO; ZÞ of both the
observations and the hidden variables:

Q ¼ log
Y
x2O

Y
k

Y
j

½pðkÞpðjjkÞpðxjjÞ�z
ðxÞ

jk . (19)

Then the EM algorithm requires the computation of the expecta-
tion hQi w.r.t. the distribution of Z. Since the expected value of zðxÞjk

is equal to the joint posterior probability pðj; kjxÞ that x is assigned
to the j-th node and the k-th class, it follows that

hQi ¼
X
x2O

X
k

X
j

pðj; kjxÞ logfpðkÞpðjjkÞpðxjjÞg. (20)

The EM algorithm iterates two steps until convergence. During
the E-step, the posterior probability of the hidden variables
given the observations is computed, in order to define the
expectation of the complete log-likelihood hQi, given the current
estimate for the parameter vector Y. During the M-step it
provides estimates Y that maximize hQi. This procedure is
guaranteed to converge at a local maximum of the joint log-
likelihood L (17).

Explicitly described, during the E-step we compute pðj; kjxÞ for
every x 2 O, j 2 f1; . . . ;Mg and k 2 f1; . . . ;Kg according to

pðj; kjxÞ ¼ pðjjk; xÞpðkjxÞ. (21)

If x is unlabeled then we compute pðkjxÞ and pðjjk; xÞ for every class
k using Bayes theorem

pðkjxÞ ¼
pðxjkÞpðkÞP
‘ pðxj‘Þpð‘Þ

, (22)

pðjjk; xÞ ¼
pðjjkÞpðxjjÞP
i pðijkÞpðxjiÞ

. (23)

If x is labeled, then we exploit the information of the label and set

pðkjxÞ ¼
1 if x 2 Xk;

0 if xeXk

(
(24)
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and we compute pðjjk; xÞ similarly

pðjjk; xÞ ¼

pðjjkÞpðxjjÞP
i pðijkÞpðxjiÞ

if x 2 Xk;

0 if xeXk:

8><
>: (25)

During the M-step we maximize hQi w.r.t. y, given the current
estimation of the joint posteriors. Setting the derivatives equal to
zero, we get the following solution for every j 2 f1; . . . ;Mg and
k 2 f1; . . . ;Kg is

mj ¼

P
x2O

P
k pðj; kjxÞxP

x2O

P
k pðj; kjxÞ

, (26)

Sj ¼

P
x2O

P
k pðj; kjxÞðx� mjÞðx� mjÞ

TP
x2O

P
k pðj; kjxÞ

, (27)

pðjjkÞ ¼

P
x2O pðj; kjxÞ

Nk þ
P

j

P
x2XU

pðj; kjxÞ
, (28)

pðkÞ ¼
Nk þ

P
j

P
x2XU

pðj; kjxÞ

N þ NU
. (29)

It must be noted that the class priors pðkÞ are updated during EM
iterations, while in the supervised case they are fixed equal to the
proportion of the data of each class.

3.1. Semi-supervised component splitting

As in the typical supervised case described in Section 2.1, after
the semi-supervised training described above, there may be nodes
of the network located to regions with overlapping among
classes. For this reason, we can apply semi-supervised node
splitting using both labeled and unlabeled observations. First we
evaluate the joint posterior probabilities pðj; kjxÞ for a node, and
define if it is responsible for observations of more than one class.
If
P

x2O pðj; kjxÞ40, then we remove it from the network, and add a
separate node for the k-th class. So finally each node is responsible
for only one class. Splitting a node pðxjjÞ, the resulting node for
class k is a Gaussian pðxjj; kÞ with mean mkj, covariance Skj and
mixing weight pðjjkÞ. These parameters are estimated according to

mkj ¼

P
x2O pðj; kjxÞ xP
x2O pðj; kjxÞ

, (30)

Skj ¼

P
x2O pðj; kjxÞ ðx� mkjÞðx� mkjÞ

TP
x2O pðj; kjxÞ

, (31)

pðjjkÞ ¼

P
x2O pðj; kjxÞ

Nk þ
P

j

P
x2XU

pðj; kjxÞ
. (32)

Consequently the class conditional density is estimated as

pðxjkÞ ¼
X

j

pðjjkÞpðxjj; kÞ. (33)

In the case of a training set where all the points are labeled, the
class conditional likelihood is increased for all classes after
splitting as proved in [21]. However, in the semi-supervised case
we cannot guarantee that splitting increases the joint likelihood.

It can be observed that in the case where there are no
unlabeled data both the EM update equations and the equations
for component split reduce to the supervised training equations
described in Section 2.
4. Pool-based active learning using PRBF

As noted in the Introduction in order to develop an efficient
algorithm for pool-based active learning, it is desirable to have an
incremental training algorithm that exploits both labeled and
unlabeled data. In the following subsection, based on the results
of Section 3 and the supervised incremental algorithm presented
in [6], we present an incremental algorithm for semi-supervised
learning of PRBF.

4.1. Incremental semi-supervised addition of nodes

The incremental semi-supervised training algorithm contains
two stages: the EM-stage where a PRBF network is incrementally
constructed and the split-stage, where the nodes of the resulting
network are splitted using the equations for semi-supervised split.

Consider a PRBF network with M components in the first stage
of training. In order to construct a network with M þ 1
components, the procedure of component addition involves
search in the parameter space, to define the parameters of the
new component. More specifically, the algorithm searches among
a set of candidate regions in the data space to place the new
component, and selects the most appropriate candidate according
to certain criteria. Then, the semi-supervised EM algorithm is
used to adjust the parameters of the resulting network with M þ 1
components. This procedure of sequential component addition
starts with one component and is repeated until some stopping
condition is met.

Assuming a network with M components and parameter vector
YM , the conditional density of each class k is pðxjk;YMÞ. In the case
where a new component j ¼ M þ 1 is added with density f Mþ1ðxÞ,
each new class conditional density pðxjk;YMþ1Þ is defined as a
mixture of the current model pðxjk;YMÞ and the new component
f Mþ1ðxÞ:

pðxjk;YMþ1Þ ¼ ð1� akÞpðxjk;YMÞ þ akf Mþ1ðxÞ, (34)

where ak ðk ¼ 1; . . . ;KÞ are the mixing weights for the new
component and ak 2 ð0;1Þ. This is analogous with the incremental
training procedure called greedy-EM proposed in [24] for
unsupervised probability density estimation. Using the above
combination formula, the resulting network is again a PRBF
network. The log-likelihood LðYMþ1Þ of the model with M þ 1
components is

LðYMþ1Þ ¼
XK

k¼1

X
x2Xk

logfð1� akÞpðxjk;YMÞ

þ akf Mþ1ðxÞg. (35)

The crucial task during component addition is related to the
determination of the parameters of the new component. This is
accomplished through a search procedure among a set of

candidate solutions, since it is not possible to directly specify a
single good component to add. Thus we define a set of candidate

initial component parameters and the best parameter values
ðm;S; akÞ (obtained according to a specific criterion) are considered
as the final component parameters.

Let M be the current number of PRBF components. In order to
determine the candidate initial component parameters, we
partition the labeled data set X into M subsets Sj ¼ fxjPðjjxÞ4
PðijxÞ; 8iajg, based on the posterior probabilities PðjjxÞ obtained by
marginalizing class labels:

PðjjxÞ ¼
XK

k¼1

Pðjjx; kÞPðkÞ, (36)

with PðkÞ ¼ jXkj=jXj being the prior probability of class k. For each
of the M sets Sj, a subset of candidate components is created by
partitioning its data using the kd-tree approach. A kd-tree [1]
defines a recursive partitioning of the data space into disjoint
subspaces. It is a binary tree, where the data associated with any
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non-terminal node are partitioned using a cutting hyperplane, to
specify the successor’s nodes. To partition the data points of a
node we have followed the approach used in [12]: the cutting
hyperplane is defined to be perpendicular to the direction of the
principal component of the data corresponding to the node. Fig. 4
illustrates the partitioning stages for an artificial data set. The
procedure of recursive partitioning is applied until level four (tree
depth), and we consider all tree nodes (not only leaf nodes)
to define overlapping subsets of Sj (i.e. 14 subsets for each
component j). The statistics (sample mean and covariance) of each
of the 14M subsets constitute candidate initial parameter values
for the component M þ 1. The values of ak are set equal to pjk=2 for
the subsets derived from partitioning the subset Sj.

As previously mentioned, we wish the new component to be
placed at regions in the data space containing examples of more
than one class (see Fig. 3). In this case, a subsequent component
split would provide a sensible placement of the resulting
subcomponents on the decision boundary. A way to quantify the
degree to which a candidate component satisfies this property is
to compute the change of the log-likelihood for class k, caused
by the addition of the candidate new component l with
density pðx; yl

Þ, according to (34). So we define the change DLl
k

for class k as

DLl
k ¼

1

jXkj
ðLkðY

l
Mþ1Þ �LkðYMÞÞ

¼
1

jXkj

X
x2Xk

log 1� ak þ ak
pðx; yl

Þ

pðxjk;YMÞ

( )
, (37)

where Yl
Mþ1 ¼ YM [ y

l. Based on the values DLl
k, we search

among the candidate components l to determine those whose
addition causes an increase in the log-likelihood for at least two

classes. Such candidates lie in a region containing data of more
than one class, consequently on a decision boundary. In order to
find the best candidate, we retain the components that increase
the log-likelihood of at least two classes and discard the rest. For
each retained component l, we add the positive DLl

k terms to
compute the total increase of the log-likelihood DLl. The candidate
l% whose value DLl% is maximum is added to the current model
PRBF(M), if this maximum value is higher than a predefined
threshold (set equal to 0.01 in all experiments). Otherwise, we
consider that the attempt to add a new component is unsuccessful
and terminate the first stage of training with a PRBF model with M

components.
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Fig. 4. Successive partitioning of an artificial data set overlapping partitions using the kd

specify candidate parameter vectors.
After the successful addition of a new node we apply the semi-
supervised EM to the PRBF network with M þ 1 components, as
described in the previous section. It must be noted that in this case
the use of unlabeled data provide an additional important benefit.
This is related to the avoidance of singular solutions (i.e. the variance
of some component tends to zero), that is a typical problem of EM
when the data set in sparse. In the first iterations of active learning,
the available labeled are few and there may be numerical problems
when applying the typical EM algorithm for supervised learning
(Section 2). The exploitation of unlabeled data in the semi-supervised
case assists the EM algorithm in avoiding singular solutions.

The above incremental procedure of node addition followed
semi-supervised training can be applied many times, in order to
add the desired number of nodes to the given network. Fig. 5
illustrates the addition of the first two nodes. The initial network
with only one node is illustrated in Fig. 5(a). The six candidate
nodes and the chosen node are illustrated in Fig. 5(b) and
(c) correspondingly. Fig. 5(d) illustrates the network after the
application of semi-supervised EM.

After the stage of adding nodes, the equations for semi-
supervised node splitting are applied to provide the final solution
to the incremental semi-supervised PRBF training problem.
4.2. The active learning algorithm

In the previous subsection we described an incremental
algorithm for training a PRBF network using labeled and
unlabeled observations. In the following we incorporate the
algorithm in an active learning framework, where we iteratively
select an unlabeled point and query its label. After its label is
given, we add the labeled point in the labeled set and train the
network again. The only issue that remains to be specified is
related to the specification of the criterion used to select the
unlabeled data point to ask for its label. We propose the selection
of a point that lies near the classification boundary. In this way we
facilitate the iterative addition of basis functions on the decision
boundary, as described in the previous section.

As a criterion for selecting a suitable point we propose the ratio
of class posteriors. For each unlabeled observation x 2 XU we
compute the class posterior pðkjxÞ for every class, and then find
the two classes with the largest posterior values:

kðxÞ1 ¼ arg max
k

pðkjxÞ; kðxÞ2 ¼ arg max
kakðxÞ

1

pðkjxÞ. (38)
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-tree method. All the 14 partitions illustrated in the three graphs are considered to
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Fig. 5. Addition of the first two basis functions. The nodes of the network are

drawn with solid lines, and the candidate nodes with dashed lines. The dots

represent the unlabeled observations in a two-class problem.
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We choose to ask for the label of x̂ that exhibits the smallest ratio
of largest class posteriors:

x̂ ¼ arg min
x2XU

pðkðxÞ1 jxÞ

pðkðxÞ2 jxÞ
. (39)

In this way we pick the unlabeled observation that lies closer to
the decision boundary of the current classifier. Note that
according to (15), we classify observations to the class with the
maximum class posterior. Thus for some x on the decision
boundary holds that pðkðxÞ1 jxÞ ¼ pðkðxÞ2 jxÞ. Consequently if an
observation approaches the decision boundary between two
classes, then the corresponding logarithmic ratio of class poster-
iors tends to zero.

Summarizing the presented methodology, we propose the
following active learning algorithm:
1.
 Input: The set X of labeled observations, the set X; of unlabeled
observations, and a degenerate network PRBFJ¼1 with one basis
function.
2.
 For s ¼ 0; . . . ; S� 1:
(a) Add one node to the network PRBFJþs to form PRBFJþsþ1:

(b) Apply EM until convergence for semi-supervised training
of PRBFJþsþ1.
3.
 For s ¼ 0; . . . ; S:
(a) Split the nodes of PRBFJþs to form PRBFsplit

Jþs .
4.
 Select the network PRBFsplit
J% 2 fPRBFsplit

J ; . . . ; PRBFsplit
JþS g that max-

imizes the joint likelihood.

5.
 Set the current network: PRBFJ ¼ PRBFJ% .

6.
 If X; is empty go to step 7, else

(a) Pick an unlabeled observation x̂ according to (39), and ask
its label ŷ.

(b) Update the sets: X ¼ X [ fðx̂; ŷÞg and X; ¼ X;nfx̂g.
(c) Go to step 2.
7.
 Output: Split the nodes of PRBFJ to form the output network
PRBFsplit

J .

In all our experiments we use S ¼ 1, thus we try to add one node
at each iteration of the active learning.
4.3. The QBC algorithm

In order to compare the proposed algorithm with another
active learning technique, in the following we briefly discuss the
QBC method [17,9], and we describe its application to the PRBF
classifier. At each iteration of the QBC method, it constructs a
committee of classifiers, and uses its members to classify
unlabeled observations. Using some measure of disagreement,
the method selects the observation for which the members of the
committee disagree the most. The label of this observation is
added in the training set, and the procedure is repeated.

The crucial task for the QBC method is the construction
of the committee. In [9] they assume a distribution over the
classifiers, and they sample the members of the committee from
the subset of valid classifiers, which classify correctly the current
training set. Thus, when QBC selects to add in the training set a
label that causes disagreement, the number of valid classifiers is
reduced.

The use of the QBC with a probabilistic classifier has been
proposed in [7] for training hidden Markov models for natural
language processing, and also in [13] for the pool-based active
learning of a naive Bayes classifier in the context of text
classification. At each iteration of QBC they train a classifier, and
they propose the sampling of the parameters for each member of
the committee w.r.t. to the posterior distribution of the para-
meters of the current classifier given the current training set.
During training, in [7] they employ the EM to predict the missing
labels and improve the accuracy of the classifier, exploiting the
semi-supervised learning. It is easy to adapt this approach for the
PRBF classifier. Although we have to examine two important
stages of the method, namely the creation of the committee
members, and the measure of disagreement between them.

We sample the parameters of each member of the committee
w.r.t. to the posteriors of the parameters of the current PRBF
classifier. After sampling, we apply EM for semi-supervised
training of the members, in order to improve their generalization
performance. So we can make some assumptions to facilitate
the sampling. Although the Gaussian components of the PRBF
are not independent, we make the simplifying assumption that
we can sample the parameters of each Gaussian independently of
the rest. The next assumption is that the features of the
data are independent, so that the covariance matrix of each
component is diagonal. Thus we can sample each of the d

components of the mean vector independently, and the same
holds for the d diagonal components of the covariance matrix. We
also assume conjugate priors, consequently for the j-th Gaussian
component the prior of each mean component mjðdÞ is the standard
normal distribution, the prior of each inverse variance component
tjðdÞ ¼ 1=s2

jðdÞ is gamma GðtjðdÞjâ; b̂Þ, and the prior of the mixing
weights fpjk ¼ pðjjkÞjj ¼ 1; . . . ;Mg given class k is Dirichlet
Dðp1k; . . . ; pMkjŷ1; . . . ; ŷMÞ. We set all parameters of the priors equal
to unit, so that â ¼ b̂ ¼ ŷ1 ¼ � � � ¼ ŷM ¼ 1. Consequently, we
sample the parameters of the j-th Gaussian component from
thefollowing posterior distributions:

mjðdÞ�NðmjðdÞjmj; sjÞ, (40)

tjðdÞ�
1

GðajÞ
b
aj

j t
aj�1

jðdÞ expð�bjtjðdÞÞ (41)
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and we sample the weights of the k-th class according to

p1k; . . . ; pMk�
Gð
P

j yjkÞQ
j GðyjkÞ

YM
j¼1

p
yjk�1

jk . (42)

The parameters of the posteriors are the following:

mj ¼
Ẑj m̂jðdÞ

Ẑj þ ŝ2
jðdÞ

;
1

sj
¼ 1þ

Ẑj

ŝ2
jðdÞ

, (43)

aj ¼ âþ
Ẑj

2
; bj ¼ b̂þ

Ẑj

2
ŝ2

jðdÞ, (44)

yjk ¼ ŷj þ r̂jk. (45)

These parameters are functions of the maximum likelihood
estimations of the mean m̂jðdÞ and the variance ŝ2

jðdÞ, and the
number r̂jk of patterns that belong to class k and have been
generated from the j-th component. If we have trained a PRBF
using EM, then these estimations are already available:

m̂jðdÞ ¼
1

Ẑj

X
k

X
x2Xk

pðjjx; kÞxðdÞ, (46)

ŝ2
jðdÞ ¼

1

Ẑj

X
k

X
x2Xk

pðjjx; kÞðxðdÞ � m̂jðdÞÞ
2, (47)

Ẑj ¼
X

k

r̂jk, (48)

r̂jk ¼
X
x2Xk

pðjjx; kÞ. (49)

Sampling with the above procedure gives initial estimates for the
parameters of the PRBF, which in the following we train using
semi-supervised EM. If we repeat this procedure many times we
can construct a committee of PRBF classifiers. In our experiments
we constructed committees with five members.

In order to measure the disagreement between members we
adopt the Kullback–Liebler divergence to the mean, as proposed in
[13]. Given an observation x, each member of the committee defines
a posterior distribution over class labels pmðkjxÞ. Given a committee
with Mc members, we define the mean class distribution as

p̄ðkjxÞ ¼
1

Mc

XMc

m¼1

pmðkjxÞ. (50)

The Kullback–Liebler divergence to the mean is the average of the
divergence dð�k�Þ of each class distribution to the mean class
distribution

1

Mc

XMc

m¼1

dðpmðkjxÞkp̄ðkjxÞÞ. (51)

Using this measure we can quantify the disagreement for each
unlabeled observation, using all the available unlabeled observa-
tions as a pool. We select to ask the label of the observation that
causes the most disagreement, and we estimate again the
parameters of the classifier.

In the following we summarize the QBC algorithm for pool-
based active learning of the PRBF:
Table 1
1.

The number of patterns, features and classes for each data set

Patterns Features Classes
Input: The set X of labeled observations, the set XU of unlabeled
observations, and a degenerate network PRBFM¼1 with one
basis function.
2.

Segmentation 2310 19 7

Waveform 5000 21 3

Optical digits 5620 62 10

Pen-based digits 10 992 16 10
(a) Try to add one node to the network PRBFM to form
PRBFMþ1. If the attempt is unsuccessful go to step 3.

(b) Set PRBFM ¼ PRBFMþ1.
(c) Apply EM until convergence for semi-supervised training

of PRBFM .
3.
 If XU is empty go to step 4, else
(a) For each committee member PRBFðcÞM , where c ¼ 1; . . . ;Mc

do:
(i) Sample the parameters of PRBFðcÞM , according to

(40)–(42).
(ii) Apply EM until convergence for semi-supervised

training of PRBFðcÞM .
(b) Pick the unlabeled observation x̂ that maximizes (51), and

ask its label ŷ.
(c) Update the sets: X ¼ X [ fðx̂; ŷÞg and XU ¼ XUnfx̂g.
(d) Go to step 2.
4.
 Output: Split the nodes of PRBFM to form the final network
PRBFsplit

M .

5. Experiments

For the experimental evaluation of our method we used four
data sets, available from the UCI repository, namely the ‘‘segmen-
tation’’, the ‘‘waveform’’, the ‘‘optical digits’’ and the ‘‘pen-based
digits’’ data set. The characteristics of the data sets are
summarized in Table 1. All the data sets were standardized, so
that all their features exhibit zero mean and unit standard
deviation.

In order to estimate the average generalization error we used
five-fold cross-validation, and for each fold we computed the
percentage of mis-classifications. In all the experiments, we
formed the initial set X of labeled patterns selecting uniformly
50 labeled patterns from the training set, and we treated the rest
as the pool XU of unlabeled patterns. We actively selected 300
more, one at each iteration of the algorithm which we proposed in
Section 4.2.

For comparison, we also estimated the average generalization
error using the QBC method of active learning, which was
described in Section 4.3. The average generalization error for
both methods, after the addition of each label, is illustrated in
Fig. 6. The final generalization error and the standard deviation
after the addition of 300 labels are also summarized in Table 2. In
all the cases, the decrease of the generalization error is rapid at
the first 50 iterations, and the rate of decrease is comparable for
the two methods. Although the proposed method exhibits a
slightly steeper descent, and eventually results in a smaller
generalization error at three cases.
6. Discussion

We have proposed a semi-supervised learning method for the
PRBF network that is based on the EM algorithm for maximization
of the joint likelihood of both the labeled and unlabeled data. The
method uses closed-form update equations for the network
parameters. We have also presented an incremental semi-
supervised training method that is subsequently employed in a
pool-based active learning approach that selects unlabeled points
lying near the decision boundary.
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Fig. 6. The average generalization error w.r.t. the number of added labels, for pool-based active learning using the proposed method (left column) and the QBC method

(right column). The shaded regions show the one standard deviation area. (a) Segmentation, (b) waveform (c) optical digits, (d) pen-based digits.

Table 2
The average generalization error and the standard deviation (in parenthesis) after

the addition of 300 labels

Active PRBF learning QBC

Segmentation 0.115 (0.020) 0.111 (0.016)

Waveform 0.190 (0.005) 0.212 (0.024)

Optical digits 0.132 (0.031) 0.190 (0.018)

Pen-based digits 0.070 (0.020) 0.150 (0.046)
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The experimental results are encouraging, since, using only a
small percentage of the labeled data, the active learning method
achieves classification performance comparable to that obtained
when all labels are known in advance. Further research work
could focus on studying the case where a bunch of unlabeled
observations are selected and labeled at each iteration (instead of
a single one). Another issue concerns the development and
evaluation of other selection criteria for the active acquisition of
class information. Also we plan to consider the problem of new
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class discovery, as an analogous problem that we would like to
tackle. Finally, we aim to apply the method in real world active
learning applications, such as for example spam e-mail detection,
and perform comparison with active learning methods that
employ SVMs.
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