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A three-level hierarchical mixture model for classi�cation is presented
that models the following data generation process: (1) the data are gen-
erated by a �nite number of sources (clusters), and (2) the generation
mechanism of each source assumes the existence of individual internal
class-labeled sources (subclusters of the external cluster). The model esti-
mates the posterior probability of class membership similar to a mixture
of experts classi�er. In order to learn the parameters of the model, we
have developed a general training approach based on maximum likeli-
hood that results in two ef�cient training algorithms. Compared to other
classi�cation mixture models, the proposed hierarchical model exhibits
several advantages and provides improved classi�cation performance as
indicated by the experimental results.

1 Introduction

A widely applied method for implementing the Bayes classi�er is based
on obtaining the posterior probabilities of class membership through the
estimation of the class prior probabilities and the class conditional densities
(Duda & Hart, 1973). This is a generative approach to classi�cation since a
model of the joint distribution of the input data and the class labels is pro-
vided. The computationally intensive part of the design of such classi�ers
concerns the estimation of the class conditional densities. The widely used
way to obtain these estimates is independently to apply density estimation
methods to each class-labeled data set. However, such an approach does
not bene�t from the existence of any common characteristics among data of
different classes. For example, the data may arise from differently labeled
clusters that are located in overlapping regions in the data space.

A very general assumption about data generation in a classi�cation prob-
lem which can bene�t from the existence of common characteristics among
differently labeled data is the following: the data are drawn from a �nite
number of sources (clusters), and within each cluster, the data are generated
by labeled sources that form subclusters of the parent cluster. These gener-

Neural Computation 14, 2221–2244 (2002) c° 2002 Massachusetts Institute of Technology



2222 Michalis K. Titsias and Aristidis Likas

ation assumptions can be ef�ciently modeled by a three-level hierarchical
mixture model (Bishop & Tipping, 1998). The �rst generation assumption
is represented at the second level of the hierarchical mixture, and typically
the number of components are unknown and must be inferred by the data.
However, at the third level of the hierarchical mixture, where the second as-
sumption is represented, each submixture (associated with a speci�c parent
component) has precisely as many components as the number of classes.
We refer to the above model as the hierarchical mixture classi�cation model.
In order to learn the parameters of the model, we derive a general training
approach based on the maximum likelihood framework that results in two
fast training algorithms.

The proposed model can be considered as a mixture of experts classi-
�er. Mixtures of experts (Jacobs, Jordan, Nowlan, & Hinton, 1991; Jordan
& Jacobs, 1994) are general models for estimating conditional distributions.
Typically, these models comprise a gating network that divides the prob-
lem into smaller problems and expert networks that solve each subproblem.
In our case, both the gating network units and the specialized experts are
suitably de�ned from the hierarchical mixture.

An additional feature of the hierarchical mixture classi�er is that it pro-
vides class conditional density estimates as �at mixtures.1 Consequently, it
is possible to compare the method directly with two well-known class con-
ditional density estimation techniques based on mixture models. The �rst is
the well-known approach that employs a separate mixture (having its own
components) for representing each class conditional density (McLachlan &
Peel, 2000). This is the most widely used method and has been studied by
Hastie and Tibshirani (1996). The second approach is to assume that the
class conditional densities are modeled by mixtures having common mix-
ture components (Ghahramani & Jordan, 1994; Miller & Uyar, 1996; Titsias
& Likas, 2001). The last is actually similar to using a radial basis function
(RBF) or an RBF-like neural network for solving classi�cation problems.
This is further investigated in Miller and Uyar (1998), where the Bayes de-
cision function of a classi�er that estimates the class conditional densities
by mixtures with common components is shown to be equivalent to the
decision function of an RBF classi�er. In the following, we will refer to the
�rst approach as the separate mixtures model and to the second as the common
components model. The hierarchical mixture classi�er can be thought of as
being an extended and more �exible version of the common components
model. In addition, the proposed model can be also considered as a con-
strained case of a separate mixtures model that employs a certain number
of components. The proposed model exhibits several advantages over these
methods as illustrated in sections 3.2 and 3.3.

1 We use the term �at mixture to refer to the usual mixture density model of the form
p(x) D

PM
jD 1 pjp(x | j, hj), which does not exhibit any hierarchical structure.
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Section 2 provides a unifying description of classi�cation techniques
based on mixture models. In Section 3, the proposed hierarchical mixture
classi�cation model is described along with a training approach based on
maximum likelihood. In addition, we provide illustrative comparisons of
the proposed method with the common components and the separate mix-
tures model. Conclusions drawn from these comparisonsare also supported
experimentally in section 4, where comparativeperformance results are pre-
sented for several well-known data sets. Finally, section 5 provides conclu-
sions and future research directions.

2 Bayes Classi�cation Based on Mixtures

Consider a classi�cation problem with K classes Ck, k D 1, . . . , K. The Bayes
classi�er decides about the class of a data point x by selecting the class label
Ck with the highest posterior probability value P (Ck | x) . Using the Bayes
rule, the posterior probability P (Ck | x) is written as

P (Ck | x) D
p (x | Ck)P (Ck)

PK
`D1 p (x | C`)P (C`)

, (2.1)

where P (Ck) is the class prior probability and p (x | Ck) the corresponding
class conditional density. Each class conditional density p (x | Ck) is esti-
mated by applying density estimation methods using the available data.
In the following, we provide a brief unifying description of some existing
methods for estimating the class conditional densities using mixtures.

We assume that the data have been generated by M sources (or clusters),
and these clusters can be modeled by the densities p (x | j, hj) , j D 1, . . . , M,
with hj denoting the corresponding parameter vector. We further suppose
that only some of the clusters can generate data of the class Ck; thus, only
a subset Tk of the density models is responsible for generating the data of
class Ck. Consequently, the Ck-class conditional density can be modeled as
the following mixture,

p (x | Ck, Hk) D
X

j2Tk

pjkp (x | j, hj ) , (2.2)

where the parameter pjk represents the probability P ( j | Ck) and Hk is the
total parameters corresponding to class Ck.We assume that any two different
subsets Tk and T` (corresponding to classes Ck and C )̀ may contain common
elements, that is, in general, Tk \ T` 6D ;. The latter implies that the data of
different classes may have been generated from some commondata sources.
According to equation 2.2, it is clear that once we know the component j
from which a data point x has been drawn, then x is independent of class
Ck, that is, p(x | j) D p (x | j, Ck) .

The above choice of the class conditional densities provides as special
cases two well-known approaches. The �rst is the separate mixtures model,
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and its basic property is that the data of each class are a priori assumed to
be generated by clusters that are not common with clusters corresponding
to differently labeled data. This model results from equation 2.2 if the sets
Tk, k D 1, . . . , K are such that Tk \T` D ; for all k 6D .̀ The separate mixtures
model constitutes a widely used method for designing a Bayes classi�er,
and it has been theoretically studied in Hastie and Tibshirani (1996) in the
case of gaussian mixture components. An alternative approach, the com-
mon components model, assumes that all data may arise from any of the M
clusters and results from equation 2.2 by assuming that Tk D f1, . . . , Mg
for each k (Ghahramani & Jordan, 1994; Miller & Uyar, 1996; Titsias &
Likas, 2001). Clearly, the common components model exhibits generality
over the separate mixtures and also over all possible models described
by equation 2.2.

To classify a new data point x based on the Bayes formula 2.1, the class
prior probabilities P (Ck) are also needed, which are represented by intro-
ducing the parameters Pk. Training can be performed based on maximum
likelihood. Assume that we have a set (X, Y) of labeled data where X is the
set of data points and Y the corresponding class labels. The original data
set X can be partitioned according to the class labels into K disjoint subsets
Xk, k D 1, . . . , K. Learning the whole parameter vector H can be performed
by maximizing the following log likelihood L (H) D

PK
kD1

P
x2Xk

log Pk
p (x | Ck, Hk) :

L (H ) D
KX

kD1

|Xk| log Pk C
KX

kD1

X

x2Xk

log
X

j2Tk

p jkp (x | j, hj)

D
KX

kD1

|Xk| log Pk C
KX

kD1

Lk (Hk) , (2.3)

where Lk is the class log likelihood corresponding to the subset Xk. Max-
imization of the �rst term in equation 2.3 gives Pk D |Xk |

|X| , while maxi-
mization of the second term would provide estimates of the class condi-
tional densities. Note that the latter maximization in the case of the separate
mixtures approach splits into K independent problems, each one involv-
ing a class log likelihood Lk. Clearly, the same does not hold for the com-
mon components approach since the parameters of all components appear
in each Lk.

Let Fj be the subset of all classes Ck for which the data can arise from the
component j (j 2 Tk). To �nd out which is the generation process for a pair
(x, Ck) , we need to express the joint distribution of x and Ck. It holds that
p (x, Ck | H ) D Pk

PM
jD1 p jkp (x | j, hj) (where for all j /2 Tk, we assume pjk D 0)

and since Pkp jk D P ( j | H)P (Ck | j, H ) (where P ( j | H ) D
P

k2Fj
p jkPk and
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P (Ck | j, H) D Pkpjk

P( j|H) ), we obtain:

p (x, Ck | H ) D
MX

jD1

P ( j | H )P (Ck | j, H )p (x | j, hj) . (2.4)

Based on this expression we may assume that the labeled data are generated
as follows:

� Select a component j from the set f1, . . . , Mg with probability P ( j | H ) .

� Select a class label Ck, where k 2 Fj, with probability P (Ck | j, H ) , and
draw x from density p (x | j, hj) .

The generative model for the separate mixtures and common components
model is obtained as a special case. More speci�cally, in the separate mix-
tures case, the selection of a component j automatically speci�es the class
of x since in this case the set Fj contains only one element. On the contrary
in the common components case, each Fj contains all classes, and the class
label is selected among by all possible values. According to the second point
above, once the component j has been selected, the label Ck and the data
point x are independently speci�ed. Actually, x and Ck are conditionally
independent given the component variable j.

Finally, if we are interested in the unconditional density of x, this is given
by p (x | H) D

PM
jD1 P ( j | H )p (x | j, hj) , which clearly is a �at mixture.

In the next section, we present a classi�cation model that estimates the
unconditional density of x by a hierarchical mixture.

3 The Hierarchical Mixture Classi�cation Model

We wish to de�ne a generative model realizing the following two assump-
tions: (1) the data are generated by M clusters and (2) within each cluster,
the data are generated by class-labeled sources that form subclusters of
the larger cluster. If a subcluster corresponding to class Ck can be modeled
by the density p (x | Ck, j, hkj ) (where hkj are the corresponding parameters),
then the unconditional density of x can be given by the following three-level
hierarchical mixture model (Bishop & Tipping, 1998) illustrated in Figure 1,

p (x | H ) D
MX

jD1

pj

KX

kD1

Pkjp (x | Ck, j, hkj ) , (3.1)

where the parameter pj represents the probability P ( j) , Pkj the probability
P (Ck | j) , and H denotes the whole set of model parameters.

Clearly the second level of the hierarchical mixture (see Figure 1) pro-
vides information on how the data are generated by the M components
ignoring the class labels. In this level, each component density is obtained
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Figure 1: Estimation of the unconditional density of x by the hierarchical mix-
ture classi�cation model.

by marginalizing out the class labels—p (x | j, H) D
PK

kD1 Pkjp (x | Ck, j, hkj ) .
At the third level of the hierarchy, information is provided about the data
along with their class labels. Note that since we have K classes, K subcom-
ponents correspond to each component j of the second level.

We are particularly interested in exploiting the use of this model for
solving classi�cation problems.Therefore, the posteriorprobabilities of class
membership P (Ck | x) must be computed:

P (Ck | x, H ) D

PM
jD1 p jPkjP (x | Ck, j, hkj )

p (x | H )
. (3.2)

Although the above expression results directly by the model, an equivalent
and more useful expression is

P (Ck | x, H ) D
MX

jD1

P ( j | x, H)P (Ck | x, j, H ) , (3.3)

where

P ( j | x, H ) D
p jp (x | j, H)

p(x | H )
(3.4)
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and

P (Ck | x, j, H) D
Pkjp (x | Ck, j, hkj )

p(x | j, H )
. (3.5)

Expression 3.3 explicitly denotes that the model estimates the posterior
P (Ck | x) as a mixture of experts model. The mixture of experts network
was originally introduced in Jacobs et al. (1991) and extended to a hierar-
chical structure in Jordan and Jacobs (1994). A mixture of experts network
consists of several expert models that estimate the input-dependent dis-
tribution of the output in different regions of the input space. The output
of the model is computed using an input-dependent gating network that
probabilistically combines the estimates of the experts. In our case, the gat-
ing network units correspond to P ( j | x, H) provided by equation 3.4, while
the estimates of the experts correspond to the locally computed posterior
probabilities of class membership P (Ck | x, j, H) provided by equation 3.5.

Several useful quantities such as the class prior probability and the class
conditional density can be easily expressed as

P (Ck | H ) D
MX

jD1

Pkjpj (3.6)

and

p (x | Ck, H ) D
MX

jD1

P ( j | Ck, H )p (x | Ck, j, hkj ) , (3.7)

respectively, where

P ( j | Ck, H ) D
Pkjp j

P (Ck | H)
. (3.8)

Accordingto the hierarchical mixture classi�cationmodel, the generation
of a data pair (x, Ck) proceeds as follows:

� Select a component from the set f1, . . . , Mg with probability pj.

� Select a class label Ck, where k 2 f1, . . . , Kg, with probability Pkj, and
then draw x according to the probability density p (x | Ck, j, hkj ) .

Note that according to equation 3.7, each class-conditional density ex-
hibits a �at mixture form. This suggests that we can contrast the proposed
model against the mixture model classi�ers described in section 2. In the
hierarchical mixture classi�er case, the class label Ck and the data x are not
conditionally independent given the component j, which yields the latter
to be in principle different from the other classi�cation mixture models.
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In addition, the hierarchical mixture classi�cation model with M compo-
nents in its second level can be considered as an extension of the common
components model that employs M components in total. Particularly, the
common components model assumes that all data points generated by the
component j, and possibly corresponding to different classes, are explained
by the same density model p (x | j, hj) . In contrast, the hierarchical mixture
classi�cation model assumes that the data generated by the component j
are explained in a way that depends on their class labels (for each class Ck,
a different probability model p(x | Ck, j, hkj ) is provided). In section 3.2 we
explain how this additional �exibility resolves a serious data representation
drawback of the common components model and improves classi�cation
performance signi�cantly. Compared to the separate mixtures model, the
proposed model can be derived by setting special constraints to a separate
mixtures model with KM components in total in which each class condi-
tional density is modeled by a mixture with M components. The imposed
constraints are that M groups of K components (each belonging to different
class conditional densities) must be formed, and the components of each
group must explain a common input subspace as discussed in section 3.

3.1 Training the Hierarchical Mixture Classi�cation Model. In the fol-
lowing, we assume that all the probability models p(x | Ck, j, hkj ) follow the
same parametric form taken from the exponential family. The log likelihood
of the labeled data set (X, Y) is

L (H ) D
KX

kD1

X

x2Xk

log
MX

jD1

p jPkjp (x | Ck, j, hkj ) . (3.9)

It is possible to maximize the above quantity using the expectation-maxi-
mization (EM) algorithm. However, such a maximization would cause the
whole model to collapse to one equivalent to a separate mixtures model
(with M components employed by each class conditional density model),
which means that hierarchy is lost. Therefore, in order to maintain the hi-
erarchical nature of the model, we cannot rely on direct optimization of the
above log likelihood.

According to the assumption of the hierarchical mixture classi�cation
model, the missing information is related to the way that the data points are
generated by the components of the second level. On the other hand, there
is no missing information in the third level of the hierarchy (where class la-
bels are taken into account), and the probability model that generated a data
point is explicitly indicated by its class label. In order to express the second-
level missing information, we introduce for each x an M-dimensional binary
vector z(x) indicating the component that generated x. The resulting com-
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plete data log likelihood is

LC (H) D
KX

kD1

X

x2Xk

MX

jD1

zj (x) logpjPkjp (x | Ck, j, hkj ) . (3.10)

However, since each variable z (x) is unknown, we should expect to employ
only an approximation of zj (x) provided by its expected value. In our case,
two methods exist to obtain the expected value of zj (x) . In the �rst method,
class labels are ignored, and the expected value of zj (x) is equal to the prob-
ability P ( j | x) . The second type of expectation takes into account the class
label Ck of x and corresponds to the probability P ( j | x, Ck) .2 If hj (x) denotes
either P ( j | x) or P ( j | x, Ck) , then

PM
jD1 hj (x) D 1, and the expected value of

the complete data log likelihood LC is

Q(H ) D
KX

kD1

X

x2Xk

MX

jD1

hj (x) logp jPkjp (x | Ck, j, hkj ) . (3.11)

In analogy to the case of unsupervised hierarchical mixture training (Bishop
& Tipping, 1998), we consider that hj (x) have been computed in a previous
stage and remain constant. In this case, the maximization of Q with respect
to the parameters H yields

Opj D
1

|X|

KX

kD1

X

x2Xk

hj (x) (3.12)

OPkj D

P
x2Xk

hj (x)
PK

`D1
P

x2X`
hj (x)

(3.13)

Ohkj D arg max
hkj

X

x2Xk

hj (x) log p(x | Ck, j, hkj ) . (3.14)

Since p(x | Ck, j, hkj ) is chosen from the exponential family, Ohjk can be analyt-
ically obtained by solving the equation

X

x2Xk

hj (x)rhkj log p(x | Ck, j, hkj ) D 0 (3.15)

with respect to hkj.

2 In the �rst case, the expected value is E[zj (x) | X] D P(zj (x) D 1 | x) D P(j | x), while
in the second case, it holds that E[zj (x) | X, Y] D P(zj (x) D 1 | x, Ck) D P(j | x, Ck).
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In the gaussian case, the solution of equation 3.15 can be analytically
obtained. Assume that each probability model p (x | Ck, j, hkj ) is a gaussian
of the general form

p(x | Ck, j, hkj ) D
1

(2p ) d/2 |Skj |1/2

£ exp
»

¡1
2

(x ¡ m kj ) T S¡1
kj (x ¡ m kj )

¼
. (3.16)

Then the solution for each parameter vector hkj D fm kj, Skjg takes the form

Om kj D

P
x2Xk

hj (x)x
P

x2Xk
hj (x)

(3.17)

OSkj D

P
x2Xk

hj (x) (x ¡ Om kj ) (x ¡ Om kj ) T

P
x2Xk

hj (x)
. (3.18)

Note that these two estimates are provided only if OPkj > 0, since otherwise
the component j does not represent data of the class Ck.

Obviously, in order to obtain the parameter solution described by equa-
tions 3.12 through 3.14, we must �rst specify the values of hj (x) , that is, es-
timate the probabilities P ( j | x) or P ( j | x, Ck) . An approximation of P ( j | x)
can be obtained by running a mixture model with M components using
the data set X and ignoring class labels. Similarly, an approximation of
P ( j | x, Ck ) can be obtained by applying the common components model
to the labeled data set (X, Y) . Therefore, two different approaches can be
applied for obtaining an estimate of hj (x):

� Algorithm 1: Unsupervised case (hj (x) D P ( j | x)). We introduce the
mixture model p (x | W ) D

PM
jD1 pjp(x | j, wj ) where p (x | j, wj) typically

has the same parametric form as p (x | Ck, j, hkj ) . We maximize the log
likelihood considering the unlabeled data X using the EM algorithm
and obtain the parameter solution OW (see section A.1). Then we replace
hj (x) by

P ( j | x, OW) D
Opjp(x | j, Owj)

PM
iD1 Op ip(x | i, Ow i)

. (3.19)

� Algorithm 2:Supervised case (hj (x) D P ( j | x, Ck) ). We introduce the com-
mon components model p (x | Ck, Wk ) D

PM
jD1 pjkp (x | j, wj) and obtain

a parameter solution OWk for each k by maximizing the log likelihood
2.3 using the EM algorithm (see section A.2). Then we replace hj (x) by

P ( j | x, Ck, OWk) D
Opjkp (x | j, Owj)

PM
iD1 Op ikp (x | i, Owi )

. (3.20)
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Figure 2: The two-dimensional data points of a three-class problem and the
parameter solutions for the models p (x | Ck, j, hkj ) , which were assumed to be
gaussians (solid lines). The dashed lines represent the parameter solution ob-
tained by the intermediate training stage (approximation of hj (x) ). Note that for
the cluster on the right, there exist only two subclusters (solid lines). This is
because this data region contains data from two classes only (C’s are missing);
thus, the density model of the third class is automatically pruned.

Once we have obtained the parameter solution for the hierarchical mixture
classi�cation model, several useful quantities can be estimated. The class
priorprobability given by equation 3.6 would essentially be P (Ck | OH ) D |Xk |

|X | ,
where equations 3.12 and 3.13 are used. The class conditional density can
be estimated using equation 3.7, where

P ( j | Ck, OH ) D
1

|Xk|

X

x2Xk

hj (x) . (3.21)

In Figure 2, a three-class data set is illustrated along with the parameter
solution of the models p (x | Ck, j, hkj ) (solid lines), which were chosen to be
gaussians. The model employs two components at the second level of the
hierarchy. In this example, the same solution is obtained at the intermediate
training stage (represented with dash lines) using either a mixture model
or the common components model. Although the two algorithms provided
the same parameter solutions in this example, this is not expected to hold in
general. This can be explained by the fact that the application of a mixture
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Figure 3: A two-class problem where the true decision boundary is linear (dot-
ted line). (a) The solution found by the common components model with �ve
components. (b) The solution of the hierarchical mixture classi�er found based
on the common components solution (a different line style is used for the com-
ponents of each class).

model constitutes an unsupervised learning task, while the application of
the common components model is a supervised task.

3.2 Comparison with the Common Components Model. The hierar-
chical mixture classi�cation model is a more �exible model compared to
the common components model. In this section, we investigate this issue
and explain how the increased �exibility yields an improvement in data
representation in regions close to the decision boundaries.

Figure 3 displays the data of an arti�cial classi�cation problem of two
classes. The problem is so constructed that the true decision boundary is
linear corresponding to the vertical dot line in the �gure. Figure 3a displays
the parameter solution found by the common components model with M D
5. The common components model places three components on the decision
boundary, thus leading to a decrease in classi�cation performance. We also
applied the hierarchical mixture classi�er with M D 5 using algorithm 2;
the solution is displayed in Figure 3b. More speci�cally, the hierarchical
mixture classi�er re�nes the solution found by the common components
model by taking the probabilities P ( j | x, Ck, OWk) and approximating the
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local class-labeled clusters within the previous �ve clusters. As shown in
Figure 3b, the �nal parameter solution of the model approximates quite
ef�ciently the true decision boundary. If we compare the two solutions, we
can see that they differ only in regions close to the decision boundary (i.e.,
in the subspace relevant to classi�cation), while in subspaces irrelevant to
classi�cation, the representation is exactly the same.3 Thus, the hierarchical
mixture classi�er (trained using algorithm 2) can be considered as taking
the common components solution as input and improving it in subspaces
that are critical for classi�cation ef�ciency. In the following, we discuss more
formally this property of the solutions found by the proposed model.

Once a hierarchical mixture classi�cation model has been constructed
using algorithm 2, it is natural to compare the two classi�cation methods
in terms of the values of the corresponding solution parameters. Assume
that OH is the parameter solution for the hierarchical mixture classi�cation
model provided by equations 3.12 through 3.14, where hj (x) is computed as
P ( j | x, Ck, OWk) obtained by the common components model with param-
eters OWk, k D 1, . . . , K. We wish to compare the classi�er provided by the
hierarchical mixture classi�cation model with parameters OH with the cor-
responding common components model with parameters OWk, k D 1, . . . , K.
To achieve this, it is suf�cient to compare the class conditional density esti-
mate p (x | Ck, OH) D

PM
jD1 P ( j | Ck, OH )p(x | Ck, j, Ohkj ) with the corresponding

p (x | Ck, OWk) D
PM

jD1 Op jkp (x | j, Owj ) .

It can be shown that the solution p(x | Ck, OH) is better than p (x | Ck, OWk )
in terms of the corresponding log-likelihood values. More speci�cally, the
following proposition holds:

Proposition 1. Let OH be the parameter solution for the hierarchical mixture clas-
si�cation model provided by equations 3.12 through 3.14, where hj (x) is computed as
P ( j | x, Ck, OWk ) , the solution provided by the common components model. Also as-
sume that for each j, the density models p(x | j, wj) and p (x | Ck, j, hkj ) , k D 1, . . . , K
have the same parametric form, which is such that the maximum of equation 3.14
occurs for a unique value of the parameters.

If for a class Ck it holds that rWkLk ( OWk ) 6D 0, where Lk is the Ck-class log
likelihood de�ned in equation 2.3, then the estimate p (x | Ck, OH) provides higher
class log-likelihood value than the estimate p(x | Ck, OWk) , that is,

X

x2Xk

log
MX

jD1

P ( j | Ck, OH )p (x | Ck, j, Ohkj ) >
X

x2Xk

log
MX

jD1

Op jkp (x | j, Owj) . (3.22)

3 Subspaces relevant to classi�cation are considered to be all the data clusters contain-
ing data from more than one class.
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If for a class Ck it holds that rWkLk ( OWk ) D 0, then the estimates p (x | Ck, OH)
and p (x | Ck, OWk) are identical.4

The proof is given in appendix B.
Proposition 1 states that for each Ck, the estimate p(x | Ck, OH ) can be such

that either the class log-likelihood value would be higher than the log likeli-
hood computed using p (x | Ck, OWk) , or it would be identical to p(x | Ck, OWk) .
The second case occurs when the parameter values OWk locally maximize the
class log-likelihood Lk, which means that the p(x | Ck, OWk) is already a lo-
cally optimum estimate for the conditional density of class Ck. On the other
hand, the assumption in the �rst case implies that OWk does not constitute a
local optimum of the class log-likelihood value Lk. The �rst case occurs fre-
quently in practice. To explain this, consider that since each OWk is obtained
from the maximization of the log likelihood equation 2.3 (corresponding to
the common components model case) using the EM algorithm (Dempster,
Laird, & Rubin, 1977), we may assume that it constitutes a stationary point
of the log likelihood. This implies that each Opjk and Owj satisfy

Op jk D
1

|Xk |

X

x2Xk

P ( j | x, Ck, OWk) , (3.23)

KX

kD1

X

x2Xk

P ( j | x, Ck, OWk)rwj log p(x | j, Owj) D 0 (3.24)

or

KX

kD1

rwj Lk ( OWk) D 0. (3.25)

Although Opjk will always correspond to a stationary point of the class log-
likelihood Lk, equation 3.25 explicitly points out that Owj may not correspond
to a stationary point of Lk for all k unless the component represents data of
only one class. In order for Owj to be a stationary point of Lk, it must hold that

rQjLk ( OWk) D
X

x2Xk

P ( j | x, Ck, OWk)rwj log p (x | j, Owj) D 0. (3.26)

The situation where Owj satis�es equation 3.24 without satisfying equa-
tion 3.26 for every k occurs when the component j represents data of dif-

4 We mean that P(j | Ck, OH) D Opjk and p(x | Ck, j, Ohkj ) D p(x | j, Owj) for each j D 1, . . . , M
and x.
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ferent classes that do not overlap signi�cantly.5 In real-world classi�cation
problems (with class overlapping), it is almost certain that there would be
some wj for which the condition 3.26 will not be true for all k.6 For such a
Owj, we expect the corresponding data subspace (represented by the compo-
nent j of the common components model) to be close to the true decision
boundaries. This is because the component j essentially represents data of
more than one class that overlap or lie very close to each over. All these Owj

will result in some rWkLk ( OWk) 6D 0, and the �rst case of proposition 1 would
be applicable. Subsequently, the speci�c estimates p (x | Ck, OH ) will improve
the corresponding p (x | Ck, OWk) , and this improvement will be observed in
subspaces relevant to classi�cation. The latter can be considered very ben-
e�cial from the classi�cation point of view. An illustrative example is in
Figure 3.

3.3 Comparison with the Separate Mixtures Model. As we previously
noted, the hierarchical mixture classi�er can be considered a constrained
version of a separate mixtures model with a total of KM components (M
components for each class conditional density). An important advantage
over separate mixtures is the ability to adjust the number of active com-
ponents automatically. More speci�cally, the hierarchical mixture model
avoids over�tting because it is able to prune7 class density models at the
third level of hierarchy based on the distribution of the data. For this reason,
the active (not pruned) number of density models can be any number in the
range [M, KM] and is learned from the data. For example, in the problem
of Figure 2, six density models are assumed initially; however, after train-
ing, only �ve remain active (precisely as many as the problem requires).
Similarly, in the data of Figure 3, only eight density models remain active,
while originally 10 such models were assumed. These results indicate that
the hierarchical mixture classi�er is able to avoid over�tting by pruning
density models during learning. This also makes the method to be robust
with respect to the choice of M; even if M is overestimated, it is still possible
to �nd an ef�cient solution. In order to verify this issue experimentally, we
applied the hierarchical mixture classi�er to the problem of Figure 2 for the

5 An illustrative example is displayed in Figure 2, where each component of the com-
mon components model (dashedlines) represents simultaneously data clusters of different
classes that clearly do not have the same means and variances. For this reason, the class
log likelihoods are not maximum. Note that the class log likelihoods would all be simul-
taneously maximized if the class subclusters had precisely the same means and variances.

6 Note that if for a speci�c Owj there exists a class Ck such that rwjLk ( OWk) 6D 0, then in
order for equation 3.24 to be satis�ed, there must also be at least one different class C` for
which rwj L`( OW`) 6D 0.

7 If a parameter Pkj becomes zero (or very close to zero), the corresponding density
model p(x | Ck, j, hkj ) is pruned.
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Figure 4: Displays the same data set as in Figure 2. (a–d) The solution of the
hierarchical mixture classi�er for M D 2, 3, 4, 5, respectively. (e, f) The solution
obtained using the separate mixtures model with two and three components
per class conditional density, respectively. A different line style is used for the
density model of each class.

values of M D 2, 3, 4, 5. The obtained solutions are displayed in Figures 4a
through 4d, where it is shown that the hierarchical mixture classi�cation
model �nds exactly the same solution for M D 2, 3, 4 (with �ve active com-
ponents), while for M D 5, six active components are used, but the solution
is very similar to the previous cases. The higher the value of M becomes,
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the greater the number of pruned components; thus, the model is not prone
to over�tting. We also measured the log-likelihood value achieved in a test
data set; it was ¡757.8 for the �rst three cases and ¡758.12 for the last case.
On the other hand, the separate mixtures model cannot avoid over�tting,
because when we increase the number of components in a mixture model,
the likelihoodvalue always increases. InFigures 4e and 4f, we display the so-
lutions of the separate mixtures model when each class conditional density
is modeled using a mixture with two and three components, respectively. It
can be observed that all components remain active, resulting in data over-
�tting. The log-likelihood value in test data was now ¡759.46 and ¡764.1,
respectively. It must also be noted that analogous results are obtained if four
or �ve components are used.

Another advantage of the hierarchical mixture classi�er over separate
mixtures is that it is more ef�cient in classi�cation problems with small
data sets. In order for the separate mixtures model to be ef�cient, we have
to infer the number of mixture components corresponding to each class.
For example, in the problem of Figure 2, in order to obtain the optimal
solution, we have to assume two components for the two class conditional
densities and one component for the third one. We can apply model selection
techniques, such as cross validation, in order to determine the number of
components; however, any model selection method is unreliable when few
data are available. Moreover, in case of problems with many classes (K > 10)
and few available data for each class (compared to the data dimensionality),
the separate mixtures model is not applicable. On the contrary, this is not a
problem for our approach, since the speci�cation of M components at the
second level of the hierarchy is performed based on all data from all classes,
and, in addition, we are allowed to overestimate M.

4 Experiments

We conducted a series of experiments using gaussian components and com-
pared the proposed model with the common components model and the
separate mixtures model. We considered �ve well-known data sets: the
Clouds, Satimage, and Phoneme from the ELENA database and the Pima
Indians and Ionosphere from the UCI repository (Blake & Merz, 1998). De-
tails of these data sets are provided in Table 1. We have performed experi-
ments for several values of M, where M denotes the number of components
at the second level of the hierarchical mixture classi�cation model and also
the total number of components of the common components model. In
the case of separate mixtures, M denotes the number of components used
by each class-conditional mixture density. To obtain average and standard
deviation error values, we applied the �ve-fold cross-validation method.
The results for all algorithms and all data sets are presented in Tables 2
and 3.
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Table 1: Data Sets Used in the Experiments.

Data Set Features Classes Number of Data

Satimage 5 6 6,435
Phoneme 5 2 5,404
Clouds 2 2 5,000

Pima Indians 8 2 768
Ionosphere 35 2 351

Table 2: Generalization Error and Standard Deviation Values for All Tested
Algorithms Using the Satimage, Phoneme, and Clouds Data Sets.

Satimage

M=6 M=12 M=18 M=24

Algorithm Error S.D. Error S.D. Error S.D. Error S.D.

hj (x) D P(j | x) 12.0 0.5 10.7 0.4 10.7 0.8 10.4 0.9
hj (x) D P(j | x, Ck) 11.9 1.1 11.5 1.0 10.9 0.9 10.6 0.9

Common components model 17.1 0.4 12.9 0.2 12.2 0.3 11.4 0.5
Separate mixtures 11.2 0.5 11.2 1.0 11.7 0.9 12.5 0.5

Phoneme

M=8 M=10 M=12 M=14

Algorithm Error S.D. Error S.D. Error S.D. Error S.D.

hj (x) D P(j | x) 15.5 1.1 15.2 1.2 15.4 0.8 14.9 1.2
hj (x) D P(j | x, Ck) 15.8 1.1 14.7 1.0 14.0 0.9 14.5 1.0

Common components model 22.0 1.1 20.6 1.9 19.9 1.1 21.3 1.2
Separate mixtures 16.3 1.5 15.9 1.0 15.9 1.4 15.5 1.1

Clouds

M=4 M=6 M=8 M=10

Algorithm Error S.D. Error S.D. Error S.D. Error S.D.

hj (x) D P(j | x) 16.7 2.5 12.9 0.9 12.6 1.0 12.5 0.9
hj (x) D P(j | x, Ck) 13.1 0.9 11.3 1.0 10.9 0.9 10.8 0.9

Common components model 13.1 0.9 11.4 0.9 10.9 0.9 10.8 0.8
Separate mixtures 12.2 0.6 11.9 0.8 11.1 1.3 10.8 0.8

Note: Numbers in boldface type indicate best performance among the tested algorithms.

The hierarchical mixture classi�cation model was trained using the two
algorithms described in section 3.1. Experimental results are displayed in
Tables 2 and 3, where bold numbers indicate best performance among the
tested algorithms. The two algorithms are denoted as hj (x) D P ( j | x) and
hj (x) D P ( j | x, Ck) , respectively. Moreover, since the training of the hierar-
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Table 3: Generalization Error and Standard Deviation Values for All Tested
Algorithms Using the Pima Indians and Ionosphere Data Sets.

Pima Indians

M=6 M=8 M=10 M=12

Algorithm Error S.D. Error S.D. Error S.D. Error S.D.

hj (x) D P (j | x) 26.0 1.1 24.7 2.5 24.8 2.7 25.0 2.5
hj (x) D P (j | x, Ck) 24.3 1.8 24.8 1.7 24.6 2.5 24.8 2.8

Common components model 28.6 3.6 29.5 2.9 28.1 3.7 26.9 2.6
Separate mixtures 27.1 2.8 27.1 3.0 26.3 3.6 28.9 2.3

Ionosphere

M=6 M=8 M=10 M=12

Algorithm Error S.D. Error S.D. Error S.D. Error S.D.

hj (x) D P (j | x) 13.7 3.0 10.0 3.1 9.4 2.6 7.4 3.6
hj (x) D P (j | x, Ck) 12.6 4.0 12.0 3.6 7.4 3.2 7.4 1.3

Common components model 17.7 4.0 16.3 3.4 12.0 3.4 9.5 3.3
Separate mixtures 12.1 2.6 12.3 3.3 8.9 3.4 8.8 2.7

Note: Numbers in boldface type indicate best performance among the tested algorithms.

chical mixture classi�cation model for the case hj (x) D P ( j | x, Ck) requires
the construction of the common components model, we have also obtained
a solution for the common components model at no additional effort.

The experimental results indicate the following:

1. Both algorithms for training the hierarchical mixture classi�cation
model provide better generalization results than the separate mix-
tures and the common components model in most of the runs.

2. The algorithm that uses hj (x) D P ( j | x, Ck) provides a classi�er that
signi�cantly improves the corresponding common components clas-
si�er obtained at the intermediate training stage. For example, in the
case of the phoneme data set, the improvementis impressive. This con-
stitutes an experimental justi�cation of the discussion in section 3.2.
In the case of the Clouds data set, the two classi�ers provide approxi-
mately the same class conditional density estimates (the second case of
proposition 1 is applicable), and thus the two methods exhibit almost
equal performance.

3. According to all results, the hierarchical mixture classi�er is quite
robust regarding the number of components M, and its classi�cation
performance is typically improved as we increase M. On the other
hand, the performanceof the separate mixturesmodel isvery sensitive
to the choice of M. For example, in the Satimage data set, this method
clearly cannot avoid over�tting as we increase M.
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5 Discussion

A hierarchical mixture classi�cation model has been presented that exhibits
a three-level structure. This structure provides at the higher level an unsu-
pervised representation of the data and then at a lower level information
about the classes having generated the data. The proposed model can be
considered as a mixture of experts classi�er, since the components at the
second level of the hierarchy partition the data space into subspaces, while
the probability models at the third level form the experts that solve the
classi�cation problem in each subspace.

The proposed hierarchical mixture classi�er exhibits several attractive
features compared to conventional mixture models for classi�cation. Specif-
ically, compared to the common components model, it improves data rep-
resentation in subspaces relevant to classi�cation. Also, the model exhibits
robustness with respect to the number M of components at the second
level, and this constitutes a great advantage over the separate mixtures
model.

For future research, several interesting directions may be followed. Any
advanced method for mixture density estimation (Ormeneit & Tresp, 1996;
Ueda, Nakano, Ghahramani, & Hinton, 2000; Vlassis & Likas, 2002) can be
incorporatedat the �rst stage (computation of hj (x) ) of the proposed training
algorithm of the hierarchical mixture classi�cation model. Though such
methods can be directly applied where hj (x) D P ( j | x) , slightly modi�ed
versions are needed for the case where hj (x) D P ( j | x, Ck) . Also in the
proposed approach, the probability models p (x | Ck, j, hkj ) are assumed to
be unimodal densities taken from the exponential family; however, other
models may be used, such as factor analyzers (Everitt, 1984), or each p (x |
Ck, j, hkj ) may itself be a mixture model.

Appendix A: Speci�cation of hj (x) for Gaussian Components

A.1 Approximation of hj (x) by P ( j | x) . We assume that the mixture
model employed for determining the probabilities P ( j | x) has gaussian
components of the form 3.16. We can obtain an estimation of P ( j | x) by
iteratively applying until convergence the following update equations:

P ( j | x, W (t) ) D
p (x | j, m

(t)
j , S

(t)
j )p (t)

j
PM

iD1 p (x | i, m
(t)
i , S

(t)
i )p (t)

i

(A.1)

m
(tC1)
j D

P
x2X P ( j | x, W (t) )xP
x2X P ( j | x, W (t) )

(A.2)
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S
(tC1)
j D

P
x2X P ( j | x, W (t) ) (x ¡ m

(tC1)
j ) (x ¡ m

(tC1)
j ) T

P
x2X P ( j | x, W (t) )

(A.3)

p
(tC1)
j D

1
|X|

X

x2X

P ( j | x, W
(t) ) , (A.4)

where equation A.1 holds for each x 2 X and j and equations A.2 through
A.4 for each j.

A.2 Approximation of hj (x) by P ( j | x, Ck) . We assume that the common
components model employed for determining the probability P ( j | x, Ck)
employs gaussian components. The EM algorithm for maximizing the log
likelihood 2.3 gives the following update equations (Titsias & Likas, 2001):

P ( j | x, Ck, W
(t)
k ) D

p
(t)
jk p(x | j, m

(t)
j , S

(t)
j )

PM
iD1 p

(t)
ik p(x | i, m

(t)
i , S

(t)
i )

(A.5)

m
(tC1)
j D

PK
kD1

P
x2Xk

P ( j | x, Ck, W
(t)
k

)x
PK

kD1
P

x2Xk
P ( j | x, Ck, W

(t)
k )

(A.6)

S
(tC1)
j D

PK
kD1

P
x2Xk

P ( j | x, Ck, W
(t)
k ) (x¡m

(tC1)
j ) (x¡m

(tC1)
j ) T

PK
kD1

P
x2Xk

P ( j | x, Ck, W
(t)
k )

(A.7)

p
(tC1)
jk D

1
|Xk|

X

x2Xk

P ( j | x, Ck, W
(t)
k ) (A.8)

where all equations holds for each j, while equation A.8 holds additionally
for each k and equation A.5 for each k and x 2 X.

Appendix B: Proof of Proposition 1

For the parameter solution OH, the conditional density estimate of the class
Ck is

p (x | Ck, OH ) D
MX

jD1

P ( j | Ck, OH )p (x | Ck, j, Ohkj ) , (B.1)

where according to equations 3.21 and 3.14,

P ( j | Ck, OH ) D
1

|Xk|

X

x2Xk

P ( j | x, Ck, OWk) (B.2)

and

Ohkj D argmax
hkj

X

x2Xk

P ( j | x, Ck, OWk) log p (x | Ck, j, hkj ) , (B.3)
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respectively. Also, the corresponding class conditional estimate provided
by the common components model is given by

p(x | Ck, OWk ) D
MX

jD1

Op jkp (x | j, Owj) . (B.4)

Assume the Ck-class log likelihood corresponding to the data set Xk:

Lk (Wk ) D
X

x2Xk

log
MX

jD1

pjkp(x | j, wj) . (B.5)

If we apply one EM iteration to maximize the above log likelihood starting
from W

(0)
k D f Ow1, . . . , OwM, Op1k, . . . , OpMkg, the parameter value W

(1)
k is obtained

by maximizing the function

Q (Wk | W
(0)
k ) D

X

x2Xk

MX

jD1

P ( j | x, Ck, W
(0)
k ) logpjkp (x | j, wj) , (B.6)

which yields

p
(1)
jk D

1
|Xk|

X

x2Xk

P ( j | x, Ck, W
(0)
k ) (B.7)

and

w
(1)
j D argmax

wj

X

x2Xk

P ( j | x, Ck, W
(0)
k ) log p(x | j, wj) . (B.8)

Now clearly from equations B.2 and B.7, it holds that P ( j | Ck, OH ) D p
(1)
jk .

Also since p (x | j, wj) has the same parametric form with p(x | Ck, j, hkj ) , w
(1)
j

and Ohkj are obtained by maximizing the same quantity (see equations B.3

and B.8). Thus, it holds that Ohkj D w
(1)
j and the class conditional estimates

p (x | Ck, W
(1)
k ) and p(x | Ck, OH ) are identical. Now, one of the following two

cases holds:

1. rWkLk ( OWk) 6D 0:The convergence propertyof the EM algorithm implies
that if for the log likelihoodL (H) of interest it holds that rHL (H (t) ) 6D 0,
then at the next EM iteration, it will hold that L (H (tC1) ) > L (H (t) ) (Wu,
1983; McLachlan & Krishnan, 1997). Thus, in our case, we �nd that

X

x2Xk

log
MX

jD1

P ( j | Ck, W
(1)
k )p(x | j, w

(1)
j )

>
X

x2Xk

log
MX

jD1

p
(0)
jk p (x | j, w

(0)
j ) (B.9)

which proves inequality 3.22.
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2. rWkLk ( OWk ) D 0: Since the EM algorithm converges to a stationary
point (Wu, 1983), it holds that W

(1)
k D W

(0)
k . Consequently, since p (x |

Ck, OH ) is identical to p (x | Ck, W
(1)
k ) , it will also be identical to p(x |

Ck, OWk) .
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