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Abstract 

An original parallel algorithm is presented that stems from a suitable physical metaphor by considering each edge 
of the graph as a cell that is attracted by the corresponding vertices and finally moves towards the one of them that 
wins the competition. 
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1. Introduction 

The minimum weighted vertex cover problem 
is defined as follows [2]: 

I/’ has the smallest cost, i.e., Xi, v, ci is mini- 
mum. The integer linear formulation of the prob- 
lem can be stated as: 

Let G = (V, E) be an undirected graph, where 
V=(l,..., n} represents the set of vertices and 
E 5 {(i, j) I i, j E V} represents the set of edges. 
Let also m= IEl and n= IL’1 the number of 
edges and vertices respectively and A = (aJ the 
vertex-edge incidence matrix of G (i = 1,. . . , n, 
j=l 7..., m), where aij = 1 if edge j is incident to 
vertex i, otherwise aij = 0. In addition there is a 
cost ci associated with each vertex i (i = 1,. . . , n). 
A minimum weighted vertex cover of G is a set 
I/’ c V such that (i) for each edge (i, j) E E, at 
least one of the vertices i and j belongs to v’, 
i.e., v’ couers E, and (ii) among all covers of E, 

minimize f: cixi, 
i=l 

subject to 5 aijxi > 1 ( j = 1,. . . , m) 
i=l 

andxiE(O,l} (i=l,..., n). 

* Corresponding author. 

Finding a minimum weighted vertex cover of 
an arbitrary graph G is an NP-complete problem 
[2,5]. For this reason, heuristics have been de- 
vised that require polynomial time but lead to 
suboptimal solutions. A sequential “greedy” algo- 
rithm of this kind is presented in [5]. Also con- 
nectionist approaches have been developed that 
are based on the Boltzmann Machine method [lo] 
and on the Competitive Activation method [1,7-91. 
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In the first approach, the solution is obtained 
indirectly as complementary to the solution of the 
maximum independent set problem that is actu- 
ally solved. The main disadvantage of the Boltz- 
mann Machine approach is that the update of 
each unit in the network is performed sequen- 
tially and thus the method cannot be efficiently 
parallelized. Moreover, as stated in [lo], the par- 
ticular characteristics of this problem make more 
convenient a connectionist approach based on 
the competitive activation mechanism. The latter 
method has also the advantage that it can be 
expressed in terms of a system of differential 
equations and can be parallelized efficiently. 

In the competitive activation approach, each 
vertex of G corresponds to a processing element 
(node) of the network and each edge to a com- 
munication channel between two nodes. Initially, 
the activation level ai of each node i is set to 
zero. The evolution of the network respects the 
following dynamics for each node i: 

where in, = Cjoutij and A > 0. The output from 
node j to node i is outij = (1 + a,A/c,Xl - aj). It 
can be shown that, under the above dynamics, the 
network converges to an equilibrium state with 
either a, = 1 or ai = 0 for each node i. If ai = 1 
then node i is incorporated in the solution set. 
The equilibrium state has the property that, if 
there is a connection between nodes i and j, then 
these nodes cannot be both deactivated. This 
means that equilibrium states correspond to fea- 
sible solutions of the vertex covering problem. 

The algorithm proposed in this paper deals 
directly with the vertex cover problem and is also 
expressed in terms of a system of differential 
equations that can be solved iteratively and in 
parallel. We prove that the iterative procedure 
reaches an equilibrium state which indicates a 
feasible solution to the problem. In this ap- 
proach, the vertices of a given graph compete for 
the allocation (covering) of the resources (edges) 
associated with them, and this competition can be 
simulated in terms of a physical metaphor that is 
described in the next section. 

2. The parallel algorithm 

2.1. A natural metaphor 

The proposed algorithm is based on the fol- 
lowing natural metaphor. Consider that each ver- 
tex i of the graph corresponds to a still body i 
and each undirected edge (i, j) corresponds to a 
cell p(i, j). Since every edge is undirected, the 
symbols p(i, j) and p( j, i) refer to the same cell. 
There is a kind of antagonistic attraction over 
each cell p(i, j) which accepts opposite forces 
from the two bodies i and j, each of which tries 
to attract the cell towards its own site. The cell is 
moving in the direction of the greater force. The 
strength of the force imposed by a body i upon 
its associated cells p(i, j) is determined by the 
potential of the body, which depends upon the 
cost of the corresponding vertex in the graph and 
on the positions of the cells p(i, j). In case a cell 
p(i, j) is moving towards body i (i.e., the poten- 
tial of body i is greater than the potential of body 
j), then the potential of i is further increased 
while the potential of j is further decreased. This 
is reasonable since, once body i seems to win the 
competition over body j for the cell p(i, j), its 
potential should be increased in order to be able 
to compete for the other associated cells p(i, k) 
with increased probability of success. On the other 
hand, the reduction in the potential of body j can 
be justified by the fact that a vertex that is losing 
a competition for a cell should be discouraged 
from allocating other cells, since this may lead to 
inefficient solutions from the minimality point of 
view. In this way, the competition among bodies 
for the allocation of cells is carried out indirectly 
through the positions of the cells relatively to the 
corresponding body sites. 

The cells are initially located at positions of 
equal finite distance from the associated bodies. 
Due to the imposed forces, each cell begins to 
move and, at the end, every cell will have arrived 
at the one of the two bodies having the greater 
final potential. In case a body has obtained at 
least one cell, the corresponding vertex should be 
included in the solution set of the vertex covering 
problem, since it has the responsibility for cover- 
ing at least one edge. Otherwise, the vertex is 
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considered as a loser of the competition and is 
not incorporated in the solution set of the prob- 
lem. 

2.2. Formulation of the algorithm 

To each edge (i, j) of the undirected graph, 
we associate a cell p(i, j). Thus, the number of 
cells is equal to the number of existing undirected 
edges. Such a cell can move along the line deter- 
mined by the coordinates of vertices i and j. The 
position of the cell p(i, j) along this line is ex- 
pressed in terms of the quantities rij and rii, 
which are specified as follows. If a cell p(i, j) is 
positioned in the middle of the line segment 
connecting vertex i to vertex j, then rij = 0 and 
rji = 0. In the case where the cell p(i, j) is closer 
to vertex i then rij > 0 and rji < 0. The opposite 
holds in the case where the cell p(i, j) is closer to 
vertex j. With respect to cell p(i, j), vertex i is 
considered as the point with rjj = r,,,,, and rji = 

-rmax7 where r,,, > 0. Similarly, vertex j is con- 
sidered as the point with rji = rmax and rij = 

A constraint imposed by the algorithm is 
thk% every time instant r.. = -r... Fig. l(a) 
presents an initial system con$gurati& with each 
cell p(i, j) positioned at rij = rji = 0. Fig. l(b) 
displays a possible final system configuration, 
where the marked vertices are those that belong 
to the solution set (i.e., those that have been 
assigned at least one cell). 

The potential of vertex i (i = 1,. . . , n) at each 
time instant t is determined as follows, 

Q(t) = Crik(t) - ci, (1) 
k 

where the summation concerns all cells p(i, k) 
that are associated with vertex i. The motion 
equation of each cell p(i, j) is 

duij(t) ui(t) q.(t) -= --- 
dt si ’ j 

(2) 

and 

rij(t) = r,,,f (uijtt)). (3) 

In these equations we denote by Si (i = 1,. . . , n> 
the number of cells corresponding to vertex i, or, 
equivalently, the degree of vertex i. Also, we 
denote by f the sigmoid function 

f(x) = tanh( ax) (4) 

which constrains its values to the interval [ - 1, 11. 
The constant (Y > 0 is a parameter that serves to 
adjust the slope of the sigmoid. 

From Eq. (2) it is apparent that dujj/dt = 
-du,,/dt. Thus, based on the fact that f is odd, 
we come to the conclusion that, if initially uij(0) 
= -ujJO), then at each time instant we will have 
uij(t) = -uji(t) and rij(t) = -rji(t>. Moreover, it 
is clear that the larger the values of rij and the 
smaller the value of ci, the greater the probability 
that duij/dt is positive, i.e., that cell p(i, j> is 
moving towards vertex i. Eqs. (l)-(3) describe the 

pq 

(4 

0 vertex 
+ 

0 cell + 

B + 
04 

Fig. 1. (a) An initial system state. (b) A final system state and the corresponding solution set. 
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basic relations governing the evolution of the 
system (the quantities uii and rij) over time. 

The specification of the parallel algorithm is 
based on Eqs. (l)-(3) and can be stated as fol- 
lows: 

1. 

2. 

3. 

4. 

5. 

6. 

Set t = 0, and initialize to small near-zero val- 
ues: uij(0) = -uji(0) = 6 and rij(0) =f(uij(0)), 
where for each cell the value 6 is randomly 
chosen in the interval (- 10P4, 10P4). 
For each time instant t and for all cells p(i, j), 
use Eqs. (1) and (2) to compute Auij(t). 
For all cells p(i, j) compute uij(t + At) on the 
basis of the first-order Euler approximation: 

uij( t + At) = uij( t) + Auij( t)At. (5) 

Then set uji(t + At) = - uij(t + At). 
For all cells p(i, j) compute rij(t + At): 

rij(t +At) = tanh(auij(t +At)). (6) 

Also, set rJf + At) = -rrij(t + At). 
Increment t by At. Terminate iterative proce- 
dure (go to step 6) if I rij(t + At) - rij(t) I < E 
for all cells p(i, j), where E is a very small 
positive constant, otherwise go to step 2. 
For each cell p(i, j), such that rij > 0, incor- 
porate vertex i to the final solution set I/‘. 

In practice, upon termination of the algorithm, 
we have that I rij I is essentially equal to r,,, for 
all cells. As a matter of fact, if the slope of the 
sigmoid is sufficiently large, the system is ex- 
pected to reach an equilibrium state in which all 
cells will have moved to one of the ends of the 
corresponding edge. 

2.3. Proof of convergence 

In order to prove that the above described 
dynamical system converges to an equilibrium 
state, it is sufficient to show that there exists a 
quantity E(t) (called energy in the context of 
neural networks [3,4]), which constitutes a Lia- 
punov function for the given system, i.e., has the 
property that dE/dt G 0. 

Proposition 1. The function 

E(t) = -bC Crijtt) 

i j 
i CrikCt) - i CrjlCt) 

1 k J t 

constitutes a Liapunov function of the dynamical 
system described by Eqs. (l)-(3). 

Proof. The following holds, 

(8) 

where drij/duij = dtanh(cuuij)/duij = a(1 - 
(tanh(auij))*). It is obvious that drij/duij > 0 and 
drij/duij = drji/duji. 

Taking into account that rij(t) = - rji(t), it can 
be verified using Eqs. (11, (2) and (7) that 

duij 6E 6E 
-- -- 

dt 7?rij *rji ’ 

Using this result Eq. (8) takes the form 

dE 

dt=- 

(9) 

and finally 

(11) 

since drij/duij > 0 as stated previously. q 
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3. Experimental results and performance consid- 
erations 

Comparative experiments have been per- 
formed in order to examine the performance of 
the algorithm against the competitive activation 
approach that is considered very effective for this 
particular problem (especially in the cardinality 
case) and outperforms the “greedy” sequential 
heuristic. 

In particular, we used randomly constructed 
graphs of sizes varying between 20 and 80 ver- 
tices. For the construction of each graph, edge 
(i,j) was included in the graph with probability 
p = 0.1. (This rather small probability value was 
selected so that relative sparse graphs were con- 
structed.) If, at the end of the construction proce- 
dure, a vertex with no connections were found, an 
edge was added in the graph connecting this 
particular vertex with another randomly selected 
vertex. For each graph size three cases were 
considered that are characterized by increasing 
difficulty: (a) cardinality problems (where the cost 
of each vertex is equal to l), (b) “regular” cost 
problems, where the cost of each vertex was an 
integer value randomly chosen in the range from 
1 to 4, and (c) “irregular” cost problems, where 
half of the vertices were assigned cost values 
randomly chosen in the range from 1 to 4, while 
the cost values assigned to the remaining vertices 
were randomly chosen in the range from 1 to 40. 

For each graph size, 20 instances were ran- 
domly constructed and tested. To each con- 
structed graph, both the method developed here 
and the competitive activation method were ap- 
plied and the costs of the resulting covers were 

Table 1 
Comparative results 

compared. Moreover, for graph instances of size 
up to 40 the optimal solution was found using 
exhaustive search. (For larger graphs the compu- 
tational cost of exhaustive search is excessively 
high.) 

Table 1 summarizes the main results obtained 
from the three kinds of experiments with P and 
C denoting the cost of the parallel algorithm and 
of the competitive activation approach respec- 
tively. For each type and size of problem, the 
entries of the table indicate the percentage of 
instances for which the condition of the corre- 
sponding column holds. 

The main conclusions that can be drawn from 
the experiments are the following. In the case of 
the cardinality problem, the methods exhibit 
equivalent performance, yielding near-optimal 
vertex covers, with the competitive activation 
method sometimes resulting in covers of slightly 
lower cost. It must be noted that, in all tested 
cases, the corresponding solutions either were 
equal or differred by only one unit. 

As far as graphs with regular cost are con- 
cerned, the displayed results make clear the supe- 
riority of our method in most of the cases. This 
superiority becomes total in the case of difficult 
problems with irregular cost values, where our 
method provided a better solution in almost all of 
the tested cases with a significantly lower cost. 

Another metric of the quality of a solution 
obtained for a given problem instance I is the 
approximation ratio which is defined as 
h(Z)/opt(Z), where h(l) denotes the cost of the 
obtained solution and opt(Z) denotes the cost of 
the optimal solution [61. Table 2 displays the 
average approximation ratio achieved by the par- 

Size 

20 
30 
40 
50 
60 
80 

Cardinal& Regular cost Irregular cost 

P<C P=C P>C P<C P=C P>C P<C P=C P>C 

7% 86% 7% 60% 13% 27% 87% 0% 13% 
26% 60% 14% 54% 13% 33% 93% 6% 0% 
13% 74% 13% 33% 13% 54% 87% 0% 13% 
20% 47% 33% 60% 0% 40% 87% 0% 13% 
20% 50% 30% 60% 20% 20% 100% 0% 0% 
25% 40% 35% 75% 25% 0% 100% 0% 0% 
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Table 2 

Quality of obtained solutions 

Size Approximation ratio 

20 

30 

40 

Cardinality Regular cost Irregular cost 

1.01 1.09 1.17 

1.06 1.12 1.19 

1.06 1.14 1.22 

allel algorithm for problems of moderate size. 
The results suggest that the method can provide 
solutions of high quality. 

An additional important feature is that our 
algorithm does not require the adjustment of any 
parameters in order to work properly. This is an 
advantage over all known connectionist ap- 
proaches to combinatorial optimization that re- 
quire, in general, experimentation and tuning of 
some critical parameters in order to be effective. 
On the other hand, it must be noted that the 
competitive activation algorithm is characterized 
by better behaviour in terms of execution time. 
This is due to the fact that, in the connectionist 
case, complexity is determined by the number of 
graph vertices, while in our case complexity de- 
pends on the number of edges. 

The algorithms were implemented and tested 
on a sequential computer and, specifically, on a 
SPARC workstation. An implementation aiming 
to reveal the full potential of our approach (in 
terms of execution speed), should exploit the 
inherent parallelism of the algorithm. A parallel 
implementation on a transputer-based parallel 
machine and the examination of its behaviour on 
large-scale problems (graphs containing thou- 
sands of vertices) constitute an objective of future 
research. 

Another objective is related to the application 
of the antagonistic attraction mechanism intro- 
duced here to other covering and packing prob- 
lems such as the set covering, set partitioning and 
set packing problems [2,6]. Such a task is not 
straightforward and an adaptation of the algo- 
rithm is required in order to deal effectively with 
the particular characteristics of each problem. 
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