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Abstract

Training in the random neural network (RNN) is generally speci®ed as the minimization of an appropriate error

function with respect to the parameters of the network (weights corresponding to positive and negative connections).

We propose here a technique for error minimization that is based on the use of quasi-Newton optimization techniques.

Such techniques o�er more sophisticated exploitation of the gradient information compared to simple gradient descent

methods, but are computationally more expensive and di�cult to implement. In this work we specify the necessary

details for the application of quasi-Newton methods to the training of the RNN, and provide comparative experimental

results from the use of these methods to some well-known test problems, which con®rm the superiority of the

approach. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The random neural network (RNN) model, in-
troduced by Gelenbe [6,7], has been the basis of
theoretical e�orts and applications during the last
years. An important issue is that the model can be
constructed in conformity to usual neural network
characteristics. Moreover, the output of the model
can be expressed in terms of its steady-state solu-
tion, that is in terms of quantities obtained
through direct numerical computations.

Although the work on the RNN was initially
motivated by the behavior of natural neural

networks, the model can represent general systems
containing processes and resources and supporting
some types of control operations. In fact, the
model is based on probabilistic assumptions and
belongs to the family of Markovian queuing net-
works. The novelty with respect to usual queueing
models lies in the concept of requests for removing
work (negative customers) in addition to classical
requests for performing work (positive customers).
This novel class of models are referred to as G-
networks in queueing network literature and have
been studied extensively during the last years
[8,10,17].

Applications of the RNN model have been re-
ported in several ®elds, including image processing
[1,2,13,14], combinatorial optimization [15] and
associative memory [9,19,22]. In particular, the
bipolar random network [18,19,22] is an extension
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of the original RNN adapted to associative mem-
ory operation. This extended model includes two
types of nodes ± positive and negative ± and pre-
serves the main characteristics of the original
model, which considers one type of nodes.

Many applications of the RNN are based on its
capability of learning input±output associations by
means of an error-correction algorithm [11]. This
algorithm uses gradient-descent of a quadratic error
function to determine the parameters of the net-
work (excitation and inhibition weights). The
solution of a system of linear and a system of non-
linear equations is required for each training in-
put±output pair. Non-linear equations express the
®xed-point solution to the network, whereas linear
equations represent the partial derivatives of the
®xed-point solution with respect to network pa-
rameters. The algorithm is established in terms of
theoretical results concerning existence and
uniqueness of ®xed-point (steady-state) solution to
the RNN [11].

In this paper, we propose a learning algorithm
for the RNN that is also based on the minimiza-
tion of the quadratic error function but employs
more sophisticated optimization techniques com-
pared to simple gradient-descent. More speci®cal-
ly, we use quasi-Newton optimization methods,
which exploit gradient information to approximate
the Hessian matrix of the error function with re-
spect to the parameters of the network. This ap-
proximation matrix is subsequently used to
determine an e�ective search direction and update
the values of the parameters in a manner analo-
gous to Newton's method [5,16,21]. Quasi-Newton
methods are generally considered more powerful
compared to gradient-descent and their applica-
tions to the training of other neural network
methods (multilayer perceptrons) was very suc-
cessful [3,20]. Therefore, it is reasonable to con-
sider these methods as serious alternatives to
gradient methods in the context of RNN training.

In Section 2 we brie¯y present the main char-
acteristics of the RNN, whereas a description of
the gradient-descent learning algorithm is provid-
ed in Section 3. Section 4 provides the details of
the application of the quasi-Newton methods to
RNN training, while Section 5 provides compar-
ative experimental results from the application of

the method to parity problems. Finally Section 6
provides conclusions and some directions for
future work.

2. The RNN model

The RNN is a model that reproduces the pulsed
behavior of natural neural systems. It is based on
probabilistic assumptions and is characterized by
the existence of signals in the form of spikes of unit
amplitude that circulate among nodes. Positive
and negative signals represent excitation and in-
hibition, respectively. The major property of the
model is that it accepts a product form solution,
i.e., the network's stationary probability distribu-
tion can be written as the product of the marginal
probabilities of the state of each node. The sig-
ni®cant feature of the model is that it is analyti-
cally solvable, and therefore computationally
e�cient, since its application is reduced to ob-
taining solutions to a system of ®xed-point equa-
tions. In the remainder of this section we will
provide a brief description of the model. A de-
tailed description, along with analytical derivation
of its main properties, can be found in [6,7,11].

In the RNN, each node accumulates signals
that either arrive from the outside of the network
or from other nodes. External positive and nega-
tive signal arrivals to each node i are considered
Poisson with rates K�i� and k�i�, respectively. If the
total signal count of a node at a given time instant
is strictly positive, the node ®res and sends out
spikes to other nodes or to the outside of the
network. The intervals between successive ®ring
instants at node i are random variables following
an exponential distribution with mean 1=r�i�.
Nodes accumulate and emit only positive signals.
The role of negative signals is purely suppressive,
i.e., they simply cancel positive signals if there are
any.

Connections between nodes can be positive or
negative, so that a signal leaving a node can move
to another node as a signal of the same or the
opposite sign, respectively. More speci®cally, a
signal leaving node i arrives to node j as a positive
signal with probability p��i; j� and as a negative
signal with probability pÿ�i; j�. Also, a signal
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leaving node i departs from the network with
probability d�i�. Obviously, for a network with n
nodes we shall haveXn

j�1

�p��i; j� � pÿ�i; j�� � d�i� � 1;

for i � 1; . . . ; n.
As already stated, the above described

Markovian network has product form solution.
This property has been shown in [6] for the origi-
nal version of the RNN and in [22] for the ex-
tended version including positive and negative
nodes (bipolar random network). Results con-
cerning the existence and uniqueness of the solu-
tion can be found in [7,11]. Additional properties
of the RNN model have been established in [12].

The steady-state characteristics of the RNN can
be summarized as follows. Considering a network
with n nodes its stationary probability distribution
is given by p�k̂� � limt!1 Prob�K̂�t� � k̂�, whenever
this limit exists, where K̂�t� is the state vector at
time t representing the signal count at each node of
the network, and k̂ � �k1; . . . ; kn� denotes a par-
ticular value of the vector. The ¯ow of signals in
the network can be described by the following
equations in terms of the arrival rates k��i� and
kÿ�i� of positive and negative signals to node i:

k��i� � K�i� �
X

j

qjr�j�p��j; i�; �1�

kÿ�i� � k�i� �
X

j

qjr�j�pÿ�j; i�; �2�

where

qi � k��i�
r�i� � kÿ�i� : �3�

It can be shown [7] that, if a unique non-negative
solution fk��i�; kÿ�i�g exists to the above equa-
tions such that qi < 1, then the steady-state net-
work probability distribution has the form

p�k̂� �
Yn

i�1

�1ÿ qi�qki
i :

Clearly, qi is the steady-state probability that
node i is excited and is the key quantity associated

with application of the model. It represents the
level of excitation as an analog rather than as a
binary variable, thus leading to more detailed in-
formation on system state. In a sense, each node
acts as a non-linear frequency demodulator, since
it transforms the frequency of incoming spike
trains into an `amplitude' value qi. We take
advantage of this feature when employing the
steady-state solution of the network. An analytical
solution of the set of Eqs. (1)±(3) is not always
feasible. However, necessary and su�cient condi-
tions for the existence of the solution can be
established [7,11].

An analogy between usual neural network
representation and the random neural network
model can be constructed [6,11]. Considering
neuron i, a correspondence of parameters can be
established as follows:

w��i; j� � r�i�p��i; j�P 0;

wÿ�i; j� � r�i�pÿ�i; j�P 0;

r�i� �
X

j

�w��i; j� � wÿ�i; j��;

where the quantities w��i; j� and wÿ�i; j� represent
rates (or frequencies) of spike emission, but clearly
play a role similar to that of synaptic weights.
Nevertheless, these weight parameters have a
somewhat di�erent e�ect in the RNN model than
weights in the conventional connectionist frame-
work. In the RNN model, all the w��i; j� and
wÿ�i; j� are nonnegative, and for a given pair �i; j�
it is possible that both w��i; j� and wÿ�i; j� be
positive, therefore they must both be learned.

3. The RNN learning algorithm

We now provide a concise presentation of the
algorithm developed in [11] for determining the
network parameters in order to learn a set of
input±output pairs.

For convenience we can use the notation

N�i� �
X

j

qjw��j; i� � K�i�;

D�i� � r�i� �
X

j

qjwÿ�j; i� � k�i�;
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and write

qi � N�i�=D�i�: �4�
The training set �i; Y � consists of K input±output

pairs, where i � fi1; . . . ; iKg denotes successive in-
puts and Y � fy1; . . . ; yKg are successive desired
outputs. Each input is a pair ik � �Kk; kk� of positive
and negative signal ¯ow rates entering each neuron:
Kk � �Kk�1�; . . . ;Kk�n��, kk � �kk�1�; . . . ;kk�n��. Each
output vector yk ��yik; . . . ;ynk� has elements yik 2
�0;1� that correspond to the desired values of each
neuron. The desired output vectors are approxi-
mated in a manner that minimizes a cost function

E �
XK

k�1

Ek; �5�

where

Ek � �1=2�
Xn

i�1

ai�qi ÿ yik�2; ai P 0: �6�

The aim is to let the network learn the two
n� n weight matrices W �

k � fw�k �i; j�g and
W ÿ

k � fwÿk �i; j�g, by computing new values of the
matrices, after presentation of each input ik, using
gradient-descent.

The rule for weight update can take the generic
form

wk�u; v� � w�kÿ1��u; v� ÿ g
Xn

i�1

ai�qik ÿ yik�

� �oqi=ow�u; v��k; �7�

where g > 0 is a learning coe�cient, and the term
w�u; v� denotes any weight in the network (either
wÿ�u; v� or w��u; v�).

To compute the partial derivatives let us ®rst
de®ne the vector q � �q1; . . . ; qn� and the n� n
matrix

W � f�w��i; j� ÿ wÿ�i; j�qj�=D�j�g; i; j � 1; . . . ; n:

Also, de®ne the n-vectors c��u; v� and cÿ�u; v� with
elements

c�i �u; v�

�
ÿ1=D�i� if u � i; v 6� i;

�1=D�i� if u 6� i; v � i;

0 for all other values of �u; v�;

8><>:

cÿi �u;v�

�

ÿ�1�qi�=D�i� if u� i; v� i;

ÿ1=D�i� if u� i; v 6� i;

ÿqi=D�i� if u 6� i; v� i;

0 for all other values of �u;v�:

8>>><>>>:
Using the above notation, we can derive from

Eq. (4) the following vector equations:

oq=ow��u; v� � oq=ow��u; v�W � c��u; v�qu;

oq=owÿ�u; v� � oq=owÿ�u; v�W � cÿ�u; v�qu;

which can be written equivalently

oq=ow��u; v� � c��u; v�qu�Iÿ W �ÿ1; �8�

oq=owÿ�u; v� � cÿ�u; v�qu�Iÿ W �ÿ1
; �9�

where I denotes the n� n identity matrix.
The complete learning algorithm can now be

sketched. Starting from some appropriately chosen
initial values for the matrices W �

0 and W ÿ
0 , we

proceed with successive presentation of input val-
ues ik � �Kk; kk�. For each k, ®rst solve the system
of nonlinear Eqs. (1)±(3) and then, using the ob-
tained results, solve the system of linear Eqs. (8)
and (9). Through substitution in (7) update the
matrices W �

k and W ÿ
k .

In [11], di�erent technical options are consid-
ered as to the exact procedure of implementing the
algorithm. Also, as we are seeking for nonnegative
weights, appropriate alternatives are prescribed in
case a negative term is obtained during the itera-
tion.

In the approach presented in this paper, to
ensure nonnegativity of the weights, we have in-
troduced the variables u��i; j� and uÿ�i; j� de®ned
such that w��i; j� � �u��i; j��2 and wÿ�i; j� �
�uÿ�i; j��2. The parameters u��i; j� and uÿ�i; j�
constitute the actual adaptable parameters of the
network and their derivatives are given by

oq=ou��i; j� � 2u��i; j�oq=ow��i; j�; �10�

oq=ouÿ�i; j� � 2u��i; j�oq=owÿ�i; j�: �11�
The complexity of the learning algorithm can

be considered in terms of the complexity of each
weight update. The complexity of solving the
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system of nonlinear Eqs. (1)±(3) is O�mn2� if a
relaxation method with m iterations is used. The
main computational task in solving the system of
linear Eqs. (8) and (9) is to obtain �Iÿ W �ÿ1

, which
can be done in time complexity O�n3� (or O�mn2� if
a relaxation method is adopted).

4. Training using quasi-Newton methods

Once the derivatives of the error function with
respect to the weights w have been computed, it is
possible, instead of using naive gradient-descent,
to minimize the training error using the more so-
phisticated quasi-Newton optimization methods.
These methods exploit the derivative information
to approximate the Hessian matrix required in the
Newton optimization formulas. Among the several
quasi-Newton methods we have selected to im-
plement two quasi-Newton variants, the BFGS
(named for its inventors Broyden, Fletcher,
Goldfarb and Shanno) method and the DFP
(named for Davidon, Fletcher and Powell) method
described below [5,16].

In analogy with most neural network models,
the problem of training the RNN to perform static
mappings from the input space to the output space
can be speci®ed as a parameter optimization
problem of the error function E (Eq. (4)) with the
values of u��i; j� and uÿ�i; j� as adjustable pa-
rameters. This error function is continuous and
di�erentiable with respect to the parameters, i.e.,
the gradient of the error function with respect to
any of the parameters can be analytically speci®ed
and computed. Once the gradients have been
speci®ed, the most straightforward approach for
error minimization is gradient-descent, where at
each point the update direction of the parameter
vector is the negative of the gradient at this point.
This approach, due to its simplicity, has several
drawbacks, as for example the zig-zag behavior
and the well-known problem related to the speci-
®cation of the value of the learning rate parameter.
Moreover, it is very slow, usually requiring a large
number of training steps. To alleviate these prob-
lems, several modi®cations of the basic gradient
descent strategy have been proposed [4], mainly in

the context of training multilayer perceptrons
(MLPs), but none of them has received widespread
acceptance and use.

Apart from simple gradient-descent, several
more sophisticated optimization techniques have
been developed for the minimization of a function
with known derivatives. A popular category of
techniques of this kind are quasi-Newton methods
[5,16], which have been shown to perform signi®-
cantly better than gradient-descent methods in
many optimization problems. They have also been
examined in the context of MLP training yielding
results of better quality (in terms of error function
minimization) in less training steps [3]. For this
reason, we consider quasi-Newton optimization
methods as tools for training recurrent random
neural networks and examine their e�ectiveness
compared with the gradient descent method con-
sidered so far [11].

Let the generic vector p contain the adjustable
parameters u��i; j� and uÿ�i; j� of the RNN ac-
cording to the speci®cation described in the pre-
vious section and let p�k� denote the value of the
parameter vector at step k of the optimization
process.

Let also g�k� be the gradient vector at the point
p�k�, that is the lth component of vector g is
gl � oE=opl. Let also H �k� be the Hessian matrix of
the RNN at step k of the optimization process,
that is h�l;m� � oE=oplopm. In case this matrix can
be computed analytically, the Newton method
suggests that the new parameter vector p�k�1� be
given by

p�k�1� � p�k� � s�k�; �12�
where s�k� is Newton's direction obtained by solving
the system

H �k�s�k� � ÿg�k�: �13�
Since in most cases it is di�cult and expensive

to compute the exact matrix H, quasi-Newton
methods have been developed which, instead of
directly computing the Hessian matrix H, consider
at each iteration k an approximation B�k� of H �k�

that is suitably updated at each step. More spe-
ci®cally, quasi-Newton methods suggest at each
step k the following operations:
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1. Compute a search direction s�k� by solving the
system B�k�s�k� � ÿg�k�.

2. Perform line search along the direction s�k� to
select a new point p�k�1�. This means that we
perform one dimensional minimization with re-
spect to the parameter k to minimize the error
E�p�k� � ks�k�� along the direction s�k�. If kI is
the value provided by line search, we set
p�k�1� � p�k� � kIs�k�.

3. Compute the new gradient vector g�k�1� at the
point p�k�1�.

4. Update B�k� to B�k�1� using an appropriate for-
mula.

5. Check the termination criteria (such as maxi-
mum number of steps, minimum value of error
function, convergence to a local minimum etc.).
If they are not satis®ed set k :� k � 1 and return
to step 1.

Initially we consider B�0� � I.
The two steps that need to be speci®ed in the

above scheme are the update formula for B�k� (step
4) and the details of line search (step 2).

We shall describe two popular formulas for
updating B�k�, the BFGS update formula and the
DFP update formula [5,21]. Let d � p�k�1� ÿ p�k�

and c � g�k�1� ÿ g�k�. To implement the update of
B�k�, ®rst a Choleski factorization is required to
compute the matrix L: B�k� � LL>. Then we pro-
ceed as follows depending on the applied update
formula.
· The BFGS update formula requires the compu-

tation of the quantities a (scalar) and v (vector)
as

a2 � d>c

d>Bd

and

v � aL>d;

from which we obtain

M � L� �cÿ Lv�v>
v>v

: �14�
· For application of the DFP update formula,

®rst the quantity b must be computed as

b2 � d>c
c>Bÿ1c

:

The next step is the solution of the linear system

Lw � bc;

yielding the vector w, from which we obtain

M � Lÿ c�d>Lÿ w>�
d>c

: �15�

Finally, the new approximation B�k�1� to the Hes-
sian is given by

B�k�1� � MM>; �16�
using the matrix M from Eq. (14) or (15) according
to the selected approach.

In what concerns line search implemented in
step 2, minimization is performed with respect to k
using a procedure which requires only function
evaluations (computations of E) and no additional
gradient computations (only the already computed
gradient g�k� is used). The exact implementation of
the line search method is described in [21, p. 237].

Given the parameter vector p � �p1; . . . ; pM�
(namely the parameters u��i; j� and uÿ�i; j�), we
summarize below the operations required to per-
form a function evaluation (i.e., computation of
the total error E) and a gradient evaluation (i.e.
computation of the vector g, where gl � oE=opl).
· Set E � 0 and gl � 0 for all parameters

l � 1; . . . ;M (M is the number of parameters
u��i; j� and uÿ�i; j�).

· For k � 1; . . . ;K (K number of training pat-
terns)
1. Specify the values Kk�i� and kk�i� for each

network node i (i � 1; . . . ; n) and the desired
outputs yik for the output nodes.

2. Solve the system of non-linear equations
(1)±(3) to obtain the values qik �i � 1; . . . ; n�.

3. Compute the matrix �Iÿ W �ÿ1
.

4. Compute the gradients oqik=opl for
i � 1; . . . ; n and l � 1; . . . ;M .

5. Compute the error

Ek � �1=2�
Xn

i�1

ai�qik ÿ yik�2:

6. Compute for l � 1; . . . ;M ;

oEk

opl
� 2pl

Xn

i�1

ai�qik ÿ yik� oqik

opl
:
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7. Set E :� E � Ek.
8. Update for l � 1; . . . ;M ;

gl :� oE
opl
� oEk

opl
:

5. Experimental results

To assess the e�ectiveness of the proposed
learning algorithms for the RNN, we have imple-
mented the BFGS and the DFP quasi-Newton
techniques following the speci®cations described in
the previous section. For the purpose of compar-
ison we have also implemented the gradient-
descent method, where at step k each adjustable
parameter pl is updated as follows:

pk�1
l � pk

l ÿ g
oE
opl

; �17�

g being the learning rate.
This approach constitutes in essence a batch

version of the training algorithm proposed in [11]
with the additional characteristic that the adjust-
able parameters are the u��i; j� and uÿ�i; j� to en-
sure nonnegativity of the actual network weights
w��i; j� and wÿ�i; j�.

The experiments were conducted on classi®ca-
tion problems, speci®cally on parity datasets with
the input dimension ranging from b � 2 (XOR
problem) to b � 7 (7-bit parity problem). In these
problems the inputs are considered to be binary
(0 or 1) and the output is the parity bit of the b
inputs. For each value of b, the number of training
pairs is equal to 2b. The objective of training is the
construction of networks that correctly yield the

value of the parity bit for all 2b input combina-
tions. It is well known that, as the value of b in-
creases, the corresponding mappings are di�cult
to implement by neural architectures.

In what concerns the topology of the employed
RNN, we ®rst considered fully recurrent networks
with no self-feedback (i.e., w�ii � wÿii � 0). For a
network with n nodes, the ®rst b of them were
considered as input nodes, and the last of them
was considered as output node, i.e. ai � 0 for
i � 1; . . . ; nÿ 1 and an � 1. For each training
pattern k, input representation was speci®ed as
follows. For an input value of 0 we set Kk�i� � 0
for the corresponding input node, while for a value
of 1 we set Kk�i� � 1. For all other network nodes,
except the input nodes, we set Kk�i� � 1. Also, we
set kk�i� � 0 for all nodes i of the network. In what
concerns the output node, if the desired output is 0
we set ynk � 0:1, while for desired output 1 we set
ynk � 0:9. For a given input pattern, the output of
the network was considered to be 1 if qn > 0:5 and
0 if qn < 0:5. Experiments using the fully recurrent
architecture yielded very poor results, indepen-
dently of the method that was used for training.
This means that fully recurrent random networks
are di�cult to train on parity problems. For this
reason we have considered feedforward architec-
tures and speci®cally a feedforward RNN with b
input nodes, one hidden layer with 15 hidden
nodes and ®nally one node in the output layer. The
same architecture was used in all experiments. The
speci®cations of the values of Kk�i� and kk�i� were
the same as described above for the recurrent
network case.

Table 1 summarizes results concerning the
training e�ectiveness of the three examined learn-

Table 1

Comparative results of the three training methods on parity problems

b Gradient-descent BFGS DFP

Steps E Wrong Steps E Wrong Steps E Wrong

2 2140 5� 10ÿ5 0 152 2� 10ÿ20 0 175 5� 10ÿ10 0

3 3138 0.015 0 283 8� 10ÿ4 0 350 3� 10ÿ4 0

4 5673 0.530 1 952 7� 10ÿ4 0 1220 6� 10ÿ3 0

5 5832 1.34 3 3682 0.17 0 3986 0.13 0

6 7421 4.42 10 3543 1.56 3 4012 2.1 4

7 8733 10.38 18 3755 3.21 8 3905 4.12 10
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ing algorithms. For each algorithm we specify:
(i) the ®nal error value E (local minimum), (ii) the
number of input patterns that the network was not
able to learn and (iii) the required number of
training steps (epochs). In all methods, the com-
plexity of each step stems mainly from the com-
putation of the gradient method. Due to line
search and additional computations, each step of
the quasi-Newton methods is slightly more com-
putationally intensive compared to gradient-
descent.

As Table 1 indicates, quasi-Newton techniques
are superior to simple `batch' gradient-descent and
lead to signi®cantly better solutions requiring
fewer training steps. Therefore, they constitute
serious alternatives to gradient-descent methods.
In addition, these methods do not su�er from the
problem related to the speci®cation of the learning
rate parameter which is crucial for the perfor-
mance of the gradient-descent method. On the
other hand, a drawback of quasi-Newton methods
is that they are di�cult to implement. A solution
to this problem is the exploitation of powerful
software packages for multidimensional minimi-
zation. Such packages provide a variety of opti-
mization techniques that the user may employ to
solve minimization problems. In our work we used
the Merlin optimization package [21] that we had
also employed previously for e�ective training of
multilayer perceptrons [20]. Another drawback of
the quasi-Newton methods is that they cannot
be used for on-line learning problems, since they
operate in a `batch' mode.

As far as the relative performance of the two
quasi-Newton methods is concerned, the BFGS
technique seems to be faster, although both
methods ®nally lead to solutions of comparable
quality. Finally, it must be stressed that all ex-
periments were conducted using the same number
of hidden nodes. By increasing the number of
hidden nodes it is expected that training will lead
to perfect classi®cation.

6. Conclusions

A new method is proposed for training the
RNN that is based on quasi-Newton optimization

techniques. Such techniques exploit derivative
information as happens with gradient-descent
methods, but are more sophisticated since at each
step they compute an approximation to the Hes-
sian matrix. This approximation is subsequently
used to obtain a search direction using Newton's
method and, ®nally, the new point in parameter
space is located through line search along this di-
rection. As expected, this training method is more
powerful compared to gradient-descent but has the
drawback that it is more di�cult to implement.
Moreover, it is a batch technique requiring a pass
through all training patterns before an update
takes place. Therefore it cannot be used for
problems requiring on-line learning. As a future
work, one may consider other optimization tech-
niques as training alternatives, as for example the
well known family of conjugate gradient methods
and the Levenberg±Marquardt method [16].

References

[1] V. Atalay, E. Gelenbe, N. Yalabik, The random neural

network model for texture generation, International Jour-

nal of Pattern Recognition and Arti®cial Intelligence 6

(1992) 131±141.

[2] V. Atalay, E. Gelenbe, Parallel algorithm for colour

texture generation using the random neural network

model, International Journal of Pattern Recognition and

Arti®cial Intelligence 6 (1992) 437±446.

[3] E. Barnard, Optimization for training neural nets, IEEE

Transactions on Neural Networks 3 (2) (1992) 232±240.

[4] C. Bishop, Neural Networks for Pattern Recognition,

Oxford University Press, 1995.

[5] R. Fletcher, Practical Methods of Optimization, Wiley,

New York, 1987.

[6] E. Gelenbe, Random neural networks with negative and

positive signals and product form solution, Neural Com-

putation 1 (1989) 502±510.

[7] E. Gelenbe, Stability of the random neural network model,

Neural Computation 2 (1990) 239±247.

[8] E. Gelenbe, Product form queueing networks with negative

and positive customers, Journal of Applied Probability 28

(1991) 656±663.

[9] E. Gelenbe, A. Stafylopatis, A. Likas, Associative memory

operation of the random network model, in: T. Kohonen,

et al. (Eds.), Arti®cial Neural Networks, vol. 1, North-

Holland, Amsterdam, 1991, pp. 307±312.

[10] E. Gelenbe, G-Networks with triggered customer move-

ment, Journal of Applied Probability 30 (1993) 742±748.

[11] E. Gelenbe, Learning in the recurrent random neural

network, Neural Computation 5 (1993) 154±164.

338 A. Likas, A. Stafylopatis / European Journal of Operational Research 126 (2000) 331±339



[12] E. Gelenbe, Hop®eld energy of the random neural

network, in: Proceedings of the IEEE International Con-

ference on Neural Networks, vol. VII, Orlando, FL, June

1994, pp. 4681±4686.

[13] E. Gelenbe, Y. Feng, K. Ranga, R. Krishnan, Neural

network methods for volumetric magnetic resonance

imaging of the human brain, Proceedings of the IEEE 84

(1996) 1488±1496.

[14] E. Gelenbe, M. Sungur, C. Cramer, P. Gelenbe, Tra�c and

video quality with adaptive neural compression, Multime-

dia Systems 4 (1996) 357±369.

[15] E. Gelenbe, A. Ghanwani, V. Srinivasan, Improved neural

heuristics for multicast routing, IEEE Journal on Selected

Areas in Communications 15 (1997) 147±155.

[16] P. Gill, W. Murray, M. Wright, Practical Optimization,

Academic Press, New York, 1997.

[17] W. Henderson, Queueing networks with negative custom-

ers and negative queue lengths, Journal of Applied

Probability 30 (1993) 931±942.

[18] A. Likas, A. Stafylopatis, An investigation of the analogy

between and the random network and the Hop®eld

network, in: Proceedings of the ISCIS VI, North-Holland,

1991.

[19] A. Likas, A. Stafylopatis, High capacity associative mem-

ory based on the random neural network model, Interna-

tional Journal of Pattern Recognition and Arti®cial

Intelligence 10 (1996) 919±937.

[20] A. Likas, D.A. Karras, I.E. Lagaris, Neural network

training and simulation using a multidimensional optimi-

zation system, International Journal of Computer Math-

ematics 67 (1998) 33±46.

[21] D.G. Papageorgiou, I.N. Demetropoulos, I.E. Lagaris,

Merlin 3.0, a multidimensional optimization environment,

Computer Physics Communications 109 (1998) 227±249.

[22] A. Stafylopatis, A. Likas, Pictorial information retrieval

using the random neural network, IEEE Transactions on

Software Engineering 18 (1992) 590±600.

A. Likas, A. Stafylopatis / European Journal of Operational Research 126 (2000) 331±339 339


