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Abstract 

An approach is presented for treating discrete optimization problems mapped on the architecture of the Hopfield 
neural network. The method constitutes a modification to the local minima escape (LME) algorithm which has been 
recently proposed as a method that uses perturbations in the network’s parameter space in order to escape from local 
minimum states of the Hopfield network. Our approach (LMESA) adopts this perturbation mechanism but, in addi- 
tion, introduces randomness in the selection of the next local minimum state to be visited in a manner analogous with 
the case of Simulated Annealing (SA). Experimental results using instances of the Weighted Maximum Independent Set 
(MIS) problem indicate that the proposed method leads to significant improvement over the conventional LME ap- 
proach in terms of quality of the obtained solutions, while requirin\cr & g a comparable amount of computational ef- 
fort. 0 1998 Elsevier Science B.V. 
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1. Introduction 

A large class of problems arising from real 
world situations can be formulated as optimiza- 
tion problems and thus qualitatively described as 
a search for the “best” or “optimal” solution 
among a finite or countably infinite number of al- 
ternative solutions. Several interesting combinato- 
rial optimization problems are considered 

*Corresponding author. Fax: +30-l-772-2109; e-mail: andre- 
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computationally intractable, that is, exhaustive 
search algorithms require at least non-determinis- 
tic polynomial time to obtain optimal solutions 
(class NP) [1,2]. Nevertheless, often, what is truly 
desired is a very good solution, computed in a 
short time, and not the nominally best. This ex- 
plains why sub-optimal, polynomial time algo- 
rithms have attracted interest. The HopJieZd 
neural network model [3,4], the Simulated Anneal- 
ing method [5] and closely related models, such 
as the Boltzmann Machine [6], have proved effec- 
tive in providing near-optimal solutions to hard 
optimization problems. 
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The Hopfield network, both discrete and ana- 
log, has been widely used for solving combinatori- 
al optimization problems. The objective (or cost) 
function and the problem constraints are appro- 
priately mapped in an energy function and the net- 
work is expected to find a configuration which 
minimizes this energy function. An important 
property of the Hopfield model is that starting 
from any initial state, it will always settle to a sta- 
ble state. However, the Hopfield model gets easily 
trapped in local minimum states, something that 
decreases its efficiency, especially in problems of 
large size. The current work is focused on the dis- 
crete Hopfield model, where at each step one neu- 
ron is randomly selected and examined for possible 
change of its binary state. 

A significant amount of research has been re- 
ported on improving the performance of the Hop- 
field network. The most successful method has 
been derived from the integration with Simulated 
Annealing [5]. By introducing a probability for 
the acceptance of a new state, the network occa- 
sionally accepts transitions to states with higher 
energy and, thus, it can escape from local minima. 
This combination of the Simulated Annealing al- 
gorithm with the discrete Hopfield network is 
known as the Boltzmann Machine model [6]. As- 
ymptotic convergence to the global minimum state 
has been proved for Simulated Annealing and, 
thus, for the Boltzmann Machine. The Boltzmann 
Machine approach is effective but requires large 
computational time as the problem size increases. 
Parallel versions of the model or closely related 
methods have successfully dealt with this limita- 
tion [7-121. 

A different consideration is made by Peng et al. 
[ 131. Instead of using randomness in the procedure 
of accepting a new state, they use a sophisticated 
method for the generation of a new state. Accord- 
ing to this method, the parameters of the Hopfield 
network, i.e. the connection weights and the 
thresholds, are perturbated (through noise injec- 
tion) and produce a new network that, when it re- 
laxes, provides the original network with a new 
initial state. The original network runs again and 
reaches a possibly new local minimum state which 
is accepted if the corresponding energy value is 
lower than the starting one. Then, the whole pro- 

cedure is repeated from the beginning. This new 
method, called the Local Minima Escape (LME) 
algorithm, provides a mechanism for escaping 
from high energy local minima but may be trapped 
in local minimum states with long basin of attrac- 
tion, that are far from the global minimum state. 
This is not a serious problem for small problem in- 
stances, but it is more clear in the case of large 
problem instances where there are many regions 
of the state space that contain such minima and 
therefore the algorithm may be easily trapped in 
states with high energy values. 

In the approach presented in this paper we 
adopt the parameter perturbation mechanism in- 
troduced by the LME algorithm, but provide an 
integration of this approach with the Simulated 
Annealing methodology, which is applied at the 
new state acceptance part of the search process. 
The synergy of weight perturbation with the prob- 
abilistic acceptance of new local minimum states 
leads to a more flexible search procedure that is 
able to explore the state-space more adequately, 
due to the capability of easily escaping from flat 
shallow local minima. Experimental results with 
difficult large instances of the Weighted Maximum 
Independent Set problem enforce this consider- 
ation. 

Section 2 provides a brief summary of the Hop- 
field-type models that are commonly used. The 
LME algorithm is described in Section 3, while 
our approach (called LMESA), which is a modi- 
fied version of the LME algorithm, is presented 
in Section 4. Experimental results obtained from 
the application of our method to the Weighted 
Maximum Independent Set problem are discussed 
in Section 5. Finally, conclusions and ideas for 
further research are contained in Section 6. 

2. The Hopfield and related models 

The basic idea in the Hopfield model is to en- 
code the objective function and the problem con- 
straints in terms of an appropriate energy 
function which can be minimized by the network 
architecture. 

The discrete Hopfield network performs local 
search in the discrete space (0, 1)“. The energy 
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function that corresponds to a discrete Hopfield 
neural network with m units, connection weights 
wij (with wii = 0) and threshold values Bi has the 
form 

where 3 = (~1, . . . , u,) is the state of the network 
and ui E (0, 1). The network operates sequentially, 
that is, at each time instant one unit is selected ran- 
domly and the difference in the network’s energy, 
that will result if the selected unit i changes state, 
is computed. Assuming symmetrical weights 
(wii = wji) this energy difference can be written as 

(4 

If 6Ei(ij) < 0, then the change is accepted, other- 
wise it is rejected. For symmetrical weights it is en- 
sured that the network will settle into a state 
corresponding to a local minimum of the energy 
function [3], where 6Ei(g) > 0 for all i = 1,. . . , m. 
This final state of the network, however, rarely 
happens to coincide with or be near the global 
minimum state, due to the locality of the search. 
Therefore, research effort is turned to the develop- 
ment of local minima escape techniques. 

Simulated Annealing (SA) is a stochastic opti- 
mization technique, inspired from condensed mat- 
ter physics. It uses a stochastic hill-climbing 
algorithm with the added ability to escape from lo- 
cal minima in the state-space [5], where conven- 
tional methods usually get trapped. At each step 
a new state is considered randomly and the cost 
difference, that the state transition would cause 
in the objective function, is computed. Let 6C be 
the difference of the cost of current state and 
new state, that is K=newcost - oldcost. The 
probability that a candidate move is accepted is 
determined by either the logistic or the Metropolis 
criterion. In the logistic case the change is accepted 
at temperature T with probability pnew = 
l/(1 + exp(GC)/T), while in the Metropolis case 
the change is accepted with the above probability 
pnew only if 6C 2 0, otherwise it is accepted with 
probability 1 [14]. We shall use the term trial to de- 
note the operations of next state generation and 

the computation of 6C and pnew. The acceptance 
of a suggested transition, will be referred to as 
an update. Hence, depending on the acceptance 
probability, a trial may be eventually followed by 
an update. The acceptance probability is con- 
trolled by a temperature parameter, T. At the be- 
ginning of the process the value of T is high, 
thus allowing state transitions that lead to increase 
of cost. As the algorithm proceeds, T is decreased 
according to a cooling schedule, so that the proba- 
bility for such transitions finally tends to zero and 
the algorithm converges to a stable state. SA is 
commonly described as a sequence of Markov 
chains, each corresponding to a temperature value. 
Every computational step of a chain starts only af- 
ter the previous step has been completed, thus the 
operation of SA is strictly sequential. 

The Boltzmann Machine (BM) is based on an 
integration of the dynamics of the discrete Hop- 
field model with the SA methodology [6]. The ob- 
jective function to minimize is the energy E of the 
discrete Hopfield network. At each step a new state 
is considered by randomly selecting a unit i of the 
discrete Hopfield network and computing the dif- 
ference SC = 6E = (2Ui - l)(~~!, WijUj +8i). An 
update takes places according to either the logistic 
or the Metropolis criterion. Since the BM optimiz- 
er constitutes a special case of the SA method, the 
results concerning asymptotic convergence to the 
global minimum point under certain assumptions, 
that have been proved for SA [5], carry over to 
the BM case too [6]. The same holds for the finite 
time implementations of the algorithm that at- 
tempt to approximate the global minimum. The 
operation of the BM is strictly sequential and 
may require large computation time as the size of 
the problem grows. Moreover, in order for the an- 
nealing to be effective, the stationary distribution 
(or at least a quasi-equilibrium distribution) must 
be restored at each temperature, thus, sufficient 
state transitions must take place and consequently 
a large number of trials are required. 

3. The local minima escape method 

The LME algorithm was introduced in [13] as 
an algorithm for improving the exploration 
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capability of the Hopfield network and avoiding 
the problem of local minima. As described in Sec- 
tion 2, the Hopfield network operates as a local 
search algorithm. Given an initial state, it will sta- 
bilize at a local minimum state nearby. In order to 
locate the global minimum of the energy, an initial 
state must be found that happens to be within the 
basin of attraction of the global minimum state. In 
the LME approach, the mechanism for escaping 
from a local minimum state is based on the search 
for an initial state that lies out of the basin of at- 
traction of the current local minimum. Such an ini- 
tial state will finally lead to a new local minimum 
state which may be of lower energy than the pre- 
vious one. If this happens, the new state is adopted 
as current state of the search, otherwise we search 
for another promising initial state. The search for 
appropriate initial states is performed through 
suitable perturbations of the parameters of the net- 
work, i.e. weights and thresholds. Therefore the 
LME algorithm can be considered as a combina- 
tion of a network disturbing technique and the 
Hopfield network’s local search property. 

Let us consider a Hopfield network H and as- 
sume it has relaxed at some local minimum state. 
Through random perturbation of the connection 
weights and thresholds [13], a new Hopfield net- 
work H’ can be obtained: 

8:=(1+~Z~?Z~)8i+/3~n~, l<i<m, (4) 

where CC”, fl”‘, 01~ and @ are positive constants 
which control the strength of disturbance, while 
n; and nf are standard Gaussian noises. To ensure 
the symmetry of connection weights after distur- 
bance, we consider nz = n;. Since the networks 
H’ and H have the same architecture, the states 
of the two networks can be easily mapped to each 
other, unit by unit. 

At each iteration of the LME algorithm a new 
disturbed network H’ is randomly specified using 
the above equations and the current local mini- 
mum state of H is set as the initial state of H’. 
The network H’ converges to a stable state. This 
stable state of H’ is then used as the new initial 
state of H, which operates and converges to a pos- 

sibly new local minimum state. If the new local 
minimum of H is of lower energy than the previous 
one, it is considered as the new current local min- 
imum state. Otherwise the former local minimum 
state of H is kept. Iterations are repeated until a 
prespecified maximum number of iterations are ex- 
ceeded or if no state better than the current one is 
discovered for a certain number of consecutive it- 
erations. Moreover, in order for the method to 
be effective, an appropriate choice of the parame- 
ters aw, bw, a0 and as controlling the strength of 
the perturbation must be made (experimentally). 

4. LME search augmented by simulated annealing 

Both the LME method and the BM approach 
suggest ways of escaping from local minimum 
states of the Hopfield network. They differ in 
two basic aspects. The first is in new state genera- 
tion from the current state. In the basic BM for- 
mulation the new state is generated by randomly 
selecting one unit and changing its state. In the 
LME case there is sophistication in new state gen- 
eration resulting from the perturbation in the net- 
work’s parameter space (weights and thresholds). 
This leads to new states that may be far from the 
current one, thus allowing the network to escape 
from local minima. 

The second difference lies in the way of per- 
forming the transition from the current state to 
the new generated state. In the BM case a transi- 
tion is accepted according to the SA methodology, 
i.e. transitions are allowed that may lead to energy 
increase. On the contrary, the acceptance mecha- 
nism for the LME method is deterministic, i.e. a 
new state is accepted only if the corresponding en- 
ergy is lower than the energy of the current state. 
This may lead to local minimum states that are lo- 
cally optimal in the sense that, although the energy 
of these states may be far from the global energy 
minimum, the perturbation mechanism of the 
LME method fails to locate a new state of lower 
cost. 

The approach proposed here is an extension 
to the LME method based on an acceptance 
mechanism that incorporates randomness and 
provides greater flexibility in the exploration of 
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the problem state-space, by allowing transitions 
that lead to energy increase. This is obtained 
by augmenting the LME method through the in- 
corporation of an SA scheme operating at a 
higher level. 

As already described in Section 3, in each iter- 
ation of the LME method, relaxation takes place 
twice: first for the perturbated network and then 
for the original network, which is initialized at 
the stable state of the former. Let AE denote 
the energy difference between the stable state at- 
tained by the original network on the last relax- 
ation and the state of the original network at 
the end of the previous iteration (from which 

started the relaxation of the last perturbated net- 
work). If A,? < 0, i.e. the network has settled to a 
better local minimum, then this state is accepted 
and becomes the current state of the network. If 
AE 2 0, i.e. a state of lower quality has been ob- 
tained, the new state is not rejected, as is the case 
in the original LME method, but is accepted with 
probability p = l/l + em\EIT. This probability is 
controlled by the temperature parameter T. As 
T is initially high, the probability p may take high 
values, so many transitions that lead to energy in- 
crease are accepted. This leads to a more effective 
examination of the state-space, since it is possible 
to follow many alternative paths in the solution 

?? Map problem on Hopfield network H. 

?? Initialize temperature T. 

?? Initialize output vector v’(0) to random binary values. 

?? Let network H relax and evaluate the stable state 6&&e(O). 

0 t=1. 

?? Repeat steps l-7 until terminating criterion is satisfied: 

1. Perturbate network H and produce H’. 

2. Set the current stable state of H as initial state of H’ 
(i.e. J(t) = &&e(t - 1)) and let network H’ relaz. 

3. Set the stable state of H’ as initial state of H 
(i.e. v’(t) = r?&&(t)), let network H relax and 
evaluate the new stable state &,,,r(t). 

4. Set AE = Energy(&,, (t)) - EnergY(&,b~,(t - 1)). 

- ZfAE<O then 
set &oble(t) = &rnp(t). 

- IfAE>O then 
with probability p = l+e&T set &a&(t) = ‘Utemp(t) 
or with probability 1 - p set &&e(t) = c&&(t - 1). 

5. Update the best found configuration &.t. 

6. Periodically update control parameter T, according 
to cooling schedule. 

7. t=t+1 

a Output best configuration &,t. 

Fig. 1. The LMESA algorithm. 
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space and discover local minimum states of better 
quality. As the algorithm proceeds, T is decreased 
according to a cooling schedule, so as to allow 
the algorithm to settle to a promising region of 
the solution space. 

It is interesting to note that the states consid- 
ered during the annealing process are all stable 
states of the network since they are produced 
through relaxation of the discrete Hopfield model. 
Hence, at the higher level, we move only in the 
space of local minimum states, i.e. in a confined 
state-space. This allows us to consider as solution 
not the final stable state but the best stable state at- 
tained by the network during execution of the algo- 
rithm. The role of the annealing process in our case 
is to provide a second level of perturbations and, 
thus, enhance state-space exploration. The pro- 
posed LME algorithm augmented by Simulated 
Annealing (LMESA) is summarized in Fig. 1. 

5. Experiments 

5.1. Problem formulation 

The effectiveness of the proposed approach has 
been tested on instances of the Weighted Maxi- 
mum Independent Set (MIS) problem. The MIS 
constitutes an important discrete optimization 
problem and the solution of many other problems 
(for example Set Partitioning, Set Packing, Set 
Covering etc. [15]) can be reduced to the solution 
of this one. 

The formulation of the MIS problem (weighted 
case) is the following: Consider an undirected 
graph G = (V,E) where V (with 1 VI = m) is the 
set of vertices and E denotes the set of edges. Let 
also A denote the adjacency matrix of graph G, 
i.e., aij = 1 if (i,j) E E, otherwise aij = 0. An inde- 
pendent set V’ of this graph is a subset of V that 
contains vertices not connected to each other. If 
c: V --f R+ is a cost function assigning a cost to 
each vertex, the MIS problem is to find the inde- 
pendent set V’ of maximum cost, where the cost 
of the set V’ is defined as fc( V’) = xkcr,, ck. 

A neural network architecture suitable for the 
MIS consists of n nodes with the following specifi- 
cation of weights wii and threshold values 0i [6,15]: 

tli = Ci, 

Wij = 

-t 

-{maX(t 0,) + E}aij if i # j, 

0 if i = j, 

where e is a very small positive value (which is set 
equal to 0.5 in our experiments). This specification 
of weights and thresholds ensures that every one- 
change local minimum state corresponds to an 
independent set of the graph. Each such set is max- 
imal in the sense that no other vertex can be added 
to it without violating the disjointness constraint. 
Moreover, the resulting energy function is order 
preserving [6] in the sense that the lower the final 
energy value, the better the cost of the final solu- 
tion. 

5.2. Performance evaluation 

For our experiments we considered four graphs 
with 100, 200, 500 and 1000 vertices, respectively, 
that were constructed by deciding with probability 
0.1 for each pair of vertices whether there would be 
an edge connecting the vertices of this pair. The 
cost of each vertex was an integer value specified 
through uniform selection in the range between 
20 and 50. 

Experiments were conducted for both the LME 
and LMESA models. We considered CI~ = ~1% = 0.5 
and /3” = /I0 = 0.1 for all tests. These values were 
empirically found to give the best results. 

The annealing schedule that was used in the 
tests with the LMESA model has the following 
logarithmic form: 

lk- I 

Tk = 1 + logf(k) ’ 

where f(k) = f(k - l)( 1 + r) (with f(0) = 1) and 
TO = 25, r = 0.0001 denote the initial temperature 
and the reduction rate respectively. We considered 
that one trial is performed at each temperature 
step and the annealing terminates if no new state 
has been accepted for 50 consecutive iterations or 
if a maximum number of 1000 iterations has been 
reached. 

For the LME algorithm we adopted at first ex- 
actly the same termination condition (algorithm 
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LMEso). Since the quality of the obtained solu- 
tions was not very good, we tried to increase the 
exploration time by increasing the number of al- 
lowed consecutive iterations without update to 
100 (algorithm LMElm). This has resulted in im- 
provement of the solution quality. It must also 
be noted that any further increase in the number 
of allowed iterations did not lead to solutions of 
significantly better quality, hence no further per- 
formance improvement of the LME method could 
thus be expected. 

The results of our experiments are summarized 
in Tables 1 and 2. Table 1 displays average values 
obtained from 20 runs for each problem instance 
while the results in Table 2 are the best and worst 
cases obtained in these 20 runs. Table 1 depicts the 
improvement in solution quality provided by the 
proposed method, compared to the basic LME ap- 
proach under both termination conditions. 
Table 2 shows that the LMESA algorithm exhibits 
better performance in terms of the worst and the 
best solutions found for each problem size. It must 
be noted that there is significant superiority of the 
LMESA algorithm in terms of the quality of the 
worst solution found, hence the method exhibits 
considerable robustness and reliability. 

Finally, it is interesting to compare the behav- 
ior of the two methods when they start from exact- 
ly the same state. We carried out experiments for 
each method and for the graphs of 500 and 1000 
vertices, recording the decrease of the network’s 
energy. Figs. 2 and 3 clearly illustrate that by al- 
lowing the acceptance of transitions that lead to 
energy increase, solutions of better quality are fi- 
nally obtained. In these figures LME stands for 
the LMEim variant. 

5.3. Parallelization issues 

The execution of the above experiments showed 
that both methods (as any other method treating 
problems of this size) require a rather large 
amount of computational time. The usual remedy 
to excessive computational time has been the par- 
allelization of the slow algorithms. This has been 
successful for SA and related techniques [7-121. 
Some of them [l 1,121 can be directly applied to 
the proposed LMESA algorithm, as they are gen- 
eral methods for the parallelization of SA. 

In particular, in [ 1 l] two techniques are present- 
ed. According to the first one, each processor is al- 

Table 1 
Average comparative results for the LME and LMESA methods 

Method Graohs 

100 vertices 

her. cost 

200 vertices 

her. cost 

500 vertices 

Iter. cost 

1000 vertices 

Iter. cost 

LMEso 115 1053 120 1428 128 1792 170 2081 
LMBIOO 204 1066 270 1442 290 1918 298 2135 
LMESA 462 1077 488 1497 361 1983 238 2194 

Table 2 
Best and worst case cost comparative results for the LME and LMESA methods 

Method Graphs 

100 vertices 200 vertices 500 vertices 1000 vertices 

Best Worst Best Worst Best Worst Best Worst 

LMEs,, 1085 907 1534 1248 1969 1593 2221 1958 
LMBNN 1085 926 1544 1308 2036 1789 2331 2016 
LMESA 1085 994 1544 1411 2042 1894 2371 2029 
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Fig. 2. Comparison of energy evolution for graph with 500 vertices. 
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Fig. 3. Comparison of energy evolution for graph with 1000 vertices. 

lowed to evaluate only one move and waits until 
all the other processors complete their evaluation. 
Then one of the accepted moves is chosen random- 
ly, the processors’ memories are updated with the 

new configuration and the next evaluation step 
takes place. According to the second one, which 
is especially effective at low temperatures, the pro- 
cessors perform trials in parallel, until one of the 
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processors in use accepts a move. When an accept- 
ed move is adopted, the processors are synchro- 
nized, their memories are updated with the new 
configuration and the next evaluation step takes 
place. An alternative to the above approaches 
could be the selection of the best new state among 
the ones generated by the processors in use. 

In [12] the technique of generalized speculative 
computation is introduced. The method is based 
on the concurrency technique of speculative com- 
putation, in which work is performed before it is 
known whether or not it is needed. Each proces- 
sor receives a loop index at runtime and performs 
three steps: generate next state, evaluate it and 
decide to accept it or not, according to the state 
that is presumed to be current. At the end of 
the three steps it raises a flag to indicate its deci- 
sion result. The decision results are then collected 
and the decision result of the lowest numbered 
loop index is selected to initiate the next level. 
To ensure that the parallel version generates the 
same decision sequence as sequential SA, the 
same sequence of seeds is used to generate pseu- 
do-random numbers. 

Preliminary experiments on the application of 
the techniques presented in [l l] (and some variants 
of them) suggest that it is possible to obtain solu- 
tions of good quality in a much smaller number of 
iterations, therefore significant benefits in terms of 
execution time can be expected. 

6. Conclusions 

A discrete optimization approach has been 
presented, which is based on the Hopfield neural 
network. The parameter perturbation mechanism 
introduced by the LME algorithm was adopted 
and augmented through the integration with the 
SA methodology. The new method LMESA con- 
stitutes a more flexible search procedure and is 
able to explore the state-space more adequately 
than the original LME model, as it is shown by 
the experimental results on instances of the MIS 
problem. In particular, these results indicate that 
the proposed method leads to significant im- 
provement over the conventional LME approach 
in terms of quality of the obtained solutions, not 

only on average but also in the best and worst 
case. 

Future research concerning this method can fol- 
low various directions. Modified versions of the 
method can be implemented on parallel machines 
and speed up the LME and LMESA algorithms. 
Alternative functions could be investigated to allow 
for a more intelligent perturbation of the Hopfield 
network. Of interest is also a theoretical analysis 
of the method as far as convergence to the global 
optimum is concerned. Finally, consideration must 
be given to the parameters that control perturba- 
tion, which might improve exploration ability if 
they are not constant. Work on the above topics 
is currently in progress. 
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