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Abstract

We present an approach for the estimation of probability density functions (pdf) given a set of observations. It is based on the
use of feedforward multilayer neural networks with sigmoid hidden units. The particular characteristic of the method is that the
output of the network is not a pdf, therefore, the computation of the network’s integral is required. When this integral cannot
be performed analytically, one is forced to resort to numerical integration techniques. It turns out that this is quite tricky when
coupled with subsequent training procedures. Several modifications of the original approach (Modha and Fainman, 1994) are
proposed, most of them related to the numerical treatment of the integral and the employment of a preprocessing phase where
the network parameters are initialized using supervised training. Experimental results using several test problems indicate that
the proposed method is very effective and in most cases superior to the method of Gaussian mixtures. 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Probability density function estimation from a given
set of observations constitutes an important computa-
tional problem with applications to many areas of ex-
perimental physics (high energy, spectroscopy, etc.).
Parametric techniques for probability density function
(pdf) estimation assume a model of suitable functional
form with parameters to be adjusted so that it approx-
imates the distribution of the data. This adjustment
is usually achieved through the maximization of the
likelihood of the data with respect to the parameters
of the model. The most widely used parametric ap-
proach for density estimation is based onGaussian
mixtures, which has been shown to exhibit the univer-
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sal approximation property and efficient procedures
for likelihood maximization have been developed for
this model (EM algorithm) [2–4]. It must be noted that,
in analogy with the case of Gaussian mixtures, most
parametric approaches assume that the model function
is a pdf by construction.

In [1] the use of feedforward neural networks with
sigmoid hidden units called multilayer perceptrons
(MLPs) as models for pdf estimation is proposed,
along with a training procedure for adjusting the pa-
rameters of the MLP (weights and biases) so that the
likelihood is maximized. Moreover, theoretical results
are presented in [5], concerning the rate of conver-
gence of such techniques. In this work we elaborate
on the use of MLPs as models for pdf estimation. Our
model pdf is written asN(x,p)/

∫
S N(z,p)dz, where
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N(x,p) � 0 (x ∈ S) is the output of an MLP with pa-
rameter vectorp for a given inputx.

It is well known that the Gaussian mixture approach
encounters difficulties in approximating the uniform
distribution. This is not the case for the MLP model.
We conducted experiments that demonstrate the adapt-
ability of the MLP model and its superiority in ap-
proximating the uniform distribution. However, MLPs
do not integrate analytically and, hence, numerical
quadrature has to be employed. This is a disadvan-
tage and in addition, as it will be shown, incorporates
salient difficulties in the optimization procedure that is
used for training.

We propose first a preprocessing stage where super-
vised training is used to obtain a coarse approximation
of the unknown pdf and force the network output in
the domain of interest. For the quadrature we propose
a moving grid approach. This is very important since,
if a constant grid is used instead, it amounts to weight-
ing the importance of the grid points in the optimiza-
tion procedure and hence producing artifacts. We will
see this point in detail, since to the best of our knowl-
edge, it has not been discussed in the literature, most
likely because it went by unobserved due to its salient
character.

It must also be noted that except for the ordinary
approaches to density estimation that are based on the
maximization of the data likelihood, a very interest-
ing different approach has been suggested that em-
ploys classification neural networks [6]. To approxi-
mate the unknown densitypdata(x) this approach uses
artificially generated data drawn from a known (user
specified) pdfpref(x). Then a feedforward classifica-
tion neural network is trained to determine whether
a samplex has been drawn from the unknown den-
sity pdata(x) or from the known densitypref(x). Fi-
nally, using the Bayes rule the outputs of the neural
network can be used to compute the value ofpdata(x).
From this brief description it is clear that this method
is fundamentally different from the proposed one. The
Garrido and Juste method transforms the density esti-
mation problem to a classification problem, while our
method treats the density estimation method in the reg-
ular way as a maximization problem of the data likeli-
hood. Due to this crucial difference, many other differ-
ences between the two methods also arise that concern
the network architecture, the objective function to be

optimized and the numerical treatment and implemen-
tation of the training methods.

The remainder of the paper is organized as follows:
Section 2 describes the basic approach to pdf estima-
tion using MLPs, while Section 3 deals with issues of
numerical integration. The proposed approach is de-
scribed in detail in Section 4. Section 5 provides com-
parative experimental results with the Gaussian mix-
ture method on several test problems and, finally, Sec-
tion 6 provides conclusions and future research direc-
tions.

2. The basic MLP approach to pdf estimation

The probability density function approximation ca-
pabilities of general multilayer feedforward neural
networks have been established by White [7]. A train-
ing approach for multilayer perceptrons based on the
minimization of the negative log-likelihood is de-
scribed in [1]. For problems defined inRd , the net-
work architecture consisted ofd input units, one hid-
den layer withH hidden units having the logistic acti-
vation function and of one output unit with exponential
activation function:

N(x,p) = exp

(
H∑
i=1

viσ (oi)

)
, (1)

where

oi =
d∑

j=1

wij xj + ui (2)

and

σ(z) = 1/
(
1+ exp(−z)

)
is the logistic (sigmoid) activation function. The mod-
el’s adjustable parameterswij , ui andvi (i = 1, . . . ,H ,
j = 1, . . . , d) are collectively denoted as a vectorp.
Training is performed through minimization of the
negative log-likelihood of the data with respect to the
network parameterspi [1].

More specifically, letxk ∈ Rd, (k = 1, . . . , n) be a
set ofn data points drawn independently according to
an unknown densityg(x) that we want to approximate.
We assume that the density function is defined on a
compact subsetS ⊂ Rd . The function:

pN(x,p) = N(x,p)∫
S N(z,p)dz

(3)
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constitutes the model pdf with parameter vectorp that
must be adjusted so as to minimize the negative log-
likelihood of the data.

For a given parameter vectorp the negative log-
likelihood of the set ofn observationsxk is given by

L(p) = −
n∑

k=1

logpN(xk,p) (4)

which using Eq. (3) is also written as

L(p) = −
n∑

k=1

logN(xk,p) + n log
∫
S

N(x,p)dx. (5)

For notational convenience let us denote

I (p) =
∫
S

N(x,p)dx.

Training the neural networkN(x,p) means find-
ing the optimum parameter vectorp� so thatL(p�)

is minimum. This can be accomplished using gradi-
ent descent methods (e.g., backpropagation or any of
its variants), quasi-Newton methods, conjugate gradi-
ent methods, etc. [8,9]. In [1] the on-line backpropa-
gation algorithm is employed. The above minimiza-
tion approaches require the computation of the gra-
dient ∂L/∂pi with respect to the network parameters
pi . This gradient computation naturally splits into two
parts:
(i) the computation of the gradient of the first term in

theL(p) formula, which requires the well-known
and easily computed gradients∂N(xk,p)/∂pi ,
and

(ii) the computation of the gradient∂I (p)/∂pi , which
depends on the numerical method used for com-
puting the integral and will be described next. It
must be noted that neitherI (p) nor ∂I (p)/∂pi

depend on the data pointsxk.

3. Numerical integration issues

In numerical integration techniques, the value of
the integralI (p) is approximated by a weighted sum
Î (p):

Î (p) =
M∑
l=1

alN(yl,p), (6)

where the pointsyl ∈ S are theintegration pointsand
in general are distributed over the whole domainS,
while the parametersal are theintegration coefficients.
The integration points can be considered as forming a
multidimensionalgrid covering the domainS. Bothyl

andal depend onS, the grid density (specified by the
user) and the selected numerical integration technique.
In the following we assume thatS is a hyperrectangle
in Rd with minimum and maximum value along each
dimensioni smini

andsmaxi , respectively. Among the
various techniques for numerical integration we have
selected theequidistant point trapezoidal rule, due to
its simplicity.

Combining Eqs. (6) and (5) the negative log-likeli-
hood to be minimized takes the form:

L̂(p) = −
n∑

k=1

logN(xk,p)

+ n log

(
M∑
l=1

alN(yl,p)

)
. (7)

The gradient ofL̂(p) with respect to every parameter
pi is given by:

∂L̂(p)

∂pi

= −
n∑

k=1

1

N(xk,p)

∂N(xk,p)

∂pi

+ n

Î (p)

M∑
l=1

al
∂N(yl,p)

∂pi

. (8)

Note that in Eq. (7) the choice ofyl should not affect
the result (to within reasonable numerical accuracy),
since these are points used to estimate the integral
and are not part of the original problem. However,
due to the numerical quadrature, the objective function
L̂(p) does depend on the choice ofyl . We will next
describe a procedure that essentially removes this
dependency. The main idea is to use different sets of
{yl} points each time we have to estimate the integral
I (p) and its gradient. Hence, the objective function
will not depend on any particular set of points, but
a to plethora of them, which amounts to essentially
removing any particular dependence. We call this
technique themoving gridprocedure and it is taken
up in Section 4.2.
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4. The proposed technique

4.1. Preprocessing

In order to apply the pdf estimation method, the
input domainS must be specified first. Since the only
available information is the set of training pointsxk, it
is natural to specify first the hyperrectangleRX where
these points lie, i.e. we compute the values mini =
mink xki and maxi = maxk xki and defineRX = {x =
(x1, . . . , xd)

	 ∈ Rd, mini � xi � maxi ,∀i}. Then we
expand the spaceRX in every dimension by a quantity
δ, and define the domainS as

S = {
x = (x1, . . . , xd)

	 ∈ Rd,

mini −δ � xi � maxi +δ,∀i}.
OutsideS we assume that the pdf is zero (since no
training points exist) and the space betweenRX andS

gives the pdf the necessary room to fade out.
A fundamental problem related with the use of

MLPs is that, at the beginning of training (where the
parameterspi take small random values in(−1,1)),
the output of an MLP is not alocal function. This
means that the network output is not local and may
have nonzero values everywhere inRd . As a result,
it is very difficult for the minimization procedure to
force the output of the network to be zero at the
boundary ofS. To overcome this problem and to
locate a good starting point (in terms of parameter
valuespi ) for the minimization of the likelihood̂L(p),
we first performsupervised trainingof the MLP by
constructing a training set using somenon-parametric
technique for pdf estimation. This means that, for each
integration pointyl (l = 1, . . . ,M), we use the training
pointsxk to estimate the pdf̂p(yl) by a non-parametric
technique. More specifically we have selected the
Parzen estimation method based on Gaussians [8]:

p̂(yl) = 1

N

n∑
i=1

1

(2π)1/2σ
exp

(
−|xi − yl |2

2σ 2

)
, (9)

where the only parameter to be adjusted is the value
of σ .

Using the above non-parametric specification, a
training set withM pairs (yl, p̂(yl)) (l = 1, . . . ,M)

is constructed and is subsequently used to train the

MLP through the normal minimization procedure of
the error function:

E(p) =
M∑
l=1

(
N(yl,p) − p̂(yl)

)2
. (10)

This preprocessing stage offers two benefits:
(i) the network output is constrained to the input

domainS sincep̂(yl) � 0 foryl near the boundary
of S and

(ii) a good initial point is provided for the minimiza-
tion of the negative log-likelihood, since the net-
work output after this training phase resembles the
unknown pdf to a degree depending on the accu-
racy of the employed non-parametric pdf estima-
tion method.

4.2. Intelligent integration point selection

A thing that must be emphasized is the competition
between the training points and the integration points
in the computation of the objective function̂L. The
minimization ofL̂ drives the network outputN(x,p)

to be high at the training pointsxk and, at the same
time, to be low (close to zero) at the integration points
yl . If many training points exist inside a cell of the
integration grid, then high peaks may be formed inside
this cell, due to the above mentioned tendency of the
minimization procedure to maximize the network at
training points and minimize it at the grid points.
Such intermediate peaks do not contribute to the
integral computation since the integral depends on
the values of the network at the grid points only.
Therefore the likelihood function is falsely computed
and obtains large negative values. An example of such
an artifact is depicted in Fig. 1 for the case where a
uniform one-dimensional pdf is approximated. This
behavior is encountered frequently in the case where
the integration grid is sparse (low density), but will
also happen even if the grid is dense, as long as there
are training points inside the integration cell.

We conducted also the following one dimensional
experiment in order to verify the source of the artifact.
We considered as grid points all the distinct training
points and used a non-equidistant trapezoidal rule of
integration. Indeed no peaks were created since there
were no training points in-between two successive
grid points. However, extending this to more than one
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Fig. 1. An unacceptable approximation to the uniform pdf that is due to erroneous numerical integration.

dimension is troublesome and, hence, we proceeded
by investigating alternative approaches.

A way to tackle the above problem that can be
expanded in more than one dimension is to use an
intelligent selection scheme for the integration points.
We call this selection scheme themoving grid method,
since at each epocht of the minimization algorithm
we consider that the grid is moving by random offsets.
This means that at each epocht every integration
point yl(t) = (yl1(t), . . . , yld(t))

	 is translated from
its original positionyl(0) by setting:yli(t) = yli(0) +
di(t), where for eachi the displacementsdi(t) are
randomly selected in(−hi/2, hi/2) (hi being the grid
step in dimensioni). It must be noted that, at each
epocht , the values ofdi(t) are selected once for every
i and are used to update all pointsyl(t). Therefore,
for eacht , the whole integration grid is offset bydi(t)

along each dimensioni. Consequently, the relative
distances among integration pointsyl(t) remain fixed,
thus the integration parametersal remain the same
throughout the calculation.

The advantage of using the moving grid approach
is that, since the integration pointsyl are constantly
moving around their original position, the formation
of the undesirable peaks is avoided. Therefore, the
proposed technique leads to correct solutions even
with sparse integration grids, in cases where the pdf
to be approximated is relatively smooth.

Summarizing all the above issues, the proposed
method for pdf estimation using MLPs is specified as
follows:
1. Initialization: Set t := 0, specify the domainS,

the density of the integration grid (hi values)
and compute the integration pointsyl(0) and the
integration coefficientsal (l = 1, . . . ,M).

2. Preprocessing:
• Computep̂(yl) using Eq. (9).
• Train the MLP to minimize the error function

E(p) (Eq. (10)).
3. Repeat

• Sett := t + 1.
• Compute displacementsdi(t) selected uniformly

in (−hi/2, hi/2), i = 1, . . . , d .



172 A. Likas / Computer Physics Communications 135 (2001) 167–175

• Compute the new integration points:yli(t) =
yli(0) + di(t) for l = 1, . . . ,M, i = 1, . . . , d .

• Compute the integral

Î (p) =
M∑
l=1

alN(yl(t),p).

• Compute the gradients for each parameterpi :
∂N(xk,p)/∂pi (k = 1, . . . , n) and∂N(yl(t),p)/

∂pi (l = 1, . . . ,M).
• For each parameterpi set:

∂L̂

∂pi

= −
n∑

k=1

1

N(xk,p)

∂N(xk,p)

∂pi

+ n

Î (p)

M∑
l=1

al

∂N(yl(t),p)

∂pi

.

• Using the gradient information, update the pa-
rameter vectorp using either steepest descent,
quasi-Newton or conjugate gradient methods.

4. Until some termination criterion is satisfied.

5. Examples

To assess the effectiveness of our approach we have
conducted experiments with data drawn independently
from known distributions, which in turn we tried to ap-
proximate with the proposed approach using an MLP
with 10 sigmoid hidden units. After training, we tested
the accuracy of the obtained solution with respect to
the one used to generate the data. We have also com-
pared our approach with results obtained from the use
of the Gaussian mixture technique (with 10 kernels)
trained using the Expectation-Maximization (EM) al-
gorithm. The latter constitutes the most popular para-
metric technique for pdf estimation [2,4,8].

MLP training in both the preprocessing stage and
the likelihood minimization phase was performed us-
ing thequasi-Newton BFGSmethod [9], which is pro-
vided by the MERLIN [10] optimization environment
and has been found to be superior to gradient descent
for MLP training [11].

In all problems we have considered a training set
with n = 5000 data points drawn independently from
the corresponding pdf to be approximated. More-
over, the value of parameterσ used in nonparamet-
ric estimation was set equal to 0.1 in all cases. It

must be noted that we have also tested the Monte-
Carlo method for numerical integration using points
selected from the initial pdf obtained after the pre-
processing stage, but the number of required integra-
tion points to achieve satisfactory accuracy was ex-
tremely high.

In all experiments, since the original pdfg(x) is
known, we computed the theoretically optimal log-
likelihoodL̃(x1, . . . , xn) for the specific set of samples
xk (k = 1, . . . , n) that we have used in every problem:

L̃(x1, . . . , xn) =
n∑

k=1

log
(
g(xk)

)
. (11)

5.1. Example 1

In this experiment we have generated samples using
the following pdf which is a mixture of two Gaussian
and two uniform kernels:

g(x) = 0.25N(−7,0.5)+ 0.25U(−3,−1)

+ 0.25U(1,3)+ 0.25N(7,0.5)

with L̃ = −10477. We considered a one-dimensional
integration grid withM = 50 equidistant points in
[−12,12]. As Fig. 2 indicates, the MLP approach
provides very good approximation tog(x) (L =
−10 492) and is more effective compared to the
Gaussian mixture model (L = −10 631).

5.2. Example 2

In this experiment the unknown pdf was the same as
the one used in [1]:

g(x) =




0

if x < 0 orx � 3+ √
2,

(2− x/2)/6.5523

if 0 � x < 2,(
2− (x − 3)2)/6.5523

if 2 � x < 3+ √
2

(12)

with L̃ = −7166. We considered a one-dimensional
integration grid withM = 50 equidistant points in
[−1,6]. Fig. 3 displays the solutions obtained us-
ing the Gaussian mixture and the MLP approach.
It is clear that the MLP method is more effective
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Fig. 2. The approximation of the mixture pdf of Example 1.

Fig. 3. The approximation of a non-smooth pdf.



174 A. Likas / Computer Physics Communications 135 (2001) 167–175

Fig. 4. Contour plots of the solution provided by the MLP model for a two-dimensional uniform pdf in[0,0.2] × [0,0.2].

Fig. 5. Contour plots of the solution provided by the Gaussian mixture model for a two-dimensional uniform pdf in[0,0.2] × [0,0.2].

in approximatingg(x). The likelihood of the ob-
tained solutions was−7195 for the Gaussian mix-
ture model and−7171 (almost optimal) for the MLP
model.

5.3. Example 3

The pdf to be approximated was a two-dimensional
uniform pdf defined on the domain[0,0.2] × [0,0.2].
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We considered a two-dimensional integration grid
with M = 225 grid points obtained by dividing the
interval [−0.1,0.3] on the x-axis and the interval
[−0.1,0.3] on they-axis using 15 equidistant points
for each axis.

Figs. 4 and 5 display the contour plots of the ob-
tained solutions using the MLP and the Gaussian mix-
ture method respectively. The values corresponding to
the contours are normalized by dividing with the max-
imum pdf value which is equal to 25. It is obvious that
the Gaussian mixture method provides a solution of
poor quality. On the other hand, the MLP approach
is very effective and is able to approximate the uni-
form pdf with very good accuracy. The value ofL̃

was −16 094 and the likelihood of the obtained so-
lutions was−15 532 for the Gaussian mixture model
and−15 953 for the MLP model.

6. Conclusions

We have presented an effective approach based on
artificial neural networks to pdf estimation from a
given a set of samples. We found that this method
for low-dimensional problems has superior estimation
capability compared to the widely used Gaussian
mixtures approach. The disadvantage, that limits the
method to low dimensions is that the normalizing
integral cannot be computed analytically and one has
to resort to numerical quadrature. However, up to
three or four dimensions the method is a serious
alternative tool for pdf estimation and problems of this
dimensionality are frequently encountered in physics
and other sciences.

For problems in higher dimensions, the only ap-
plicable quadrature schemes belong to the Monte-
Carlo class [12], which raise the computational load
excessively. Therefore, for high dimensional problems
it might be preferable to employ Gaussian mixture
models (where the integral is computed analytically),
perhaps by sacrificing to some degree the accuracy of
the model.

Future research may focus on the use of techniques
for model selection, such as incremental construc-

tion of the neural network architecture or pruning for
reducing the number of parameters. We also study
techniques for constructing adaptive integration grids,
based on the estimated density from the preprocessing
stage. Such techniques may also prove useful in the
case where Monte-Carlo integration is used. Another
future research issue is the hardware implementation
of the method, either on parallel machines or on neu-
roprocessors. Such an implementation is particularly
interesting in our case, due to the high computational
load required by the numerical quadrature at higher di-
mensions.

Acknowledgements

The author would like to thank Dr. N. Vlassis of the
University of Amsterdam, both for fruitful discussions
and for providing the EM code for the Gaussian
mixture technique, and also Prof. I.E. Lagaris of the
University of Ioannina for illuminating discussions
and encouragement.

References

[1] D.S. Modha, Y. Fainman, IEEE Trans. on Neural Networks 5
(1994) 519.

[2] A.P. Dempster, N.M. Laird, D.B. Rubin, J. Roy. Statist. Soc.
B 39 (1977) 1.

[3] R. Redner, H. Walker, SIAM Rev. 26 (1984) 195.
[4] N.A. Vlassis, G. Papakonstantinou, P. Tsanakas, Neural

Process. Lett. 9 (1999) 63.
[5] D.S. Modha, E. Masry, Neural Comput. 8 (1996) 1107.
[6] L. Garrido, A. Juste, Comput. Phys. Comm. 115 (1998) 25.
[7] H. White, Mathematical Perspectives on Neural Networks,

P. Smolensky, M. Mozer, D. Rumelhart (Eds.), Erlbaum
Associates, 1992.

[8] C. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, 1995.

[9] R. Fletcher, Practical Methods of Optimization, Wiley, New
York, 1987.

[10] D.G. Papageorgiou, I.N. Demetropoulos, I.E. Lagaris, Com-
put. Phys. Comm. 109 (1998) 227.

[11] A. Likas, D.A. Karras, I.E. Lagaris, Int. J. Comput. Math. 67
(1998) 33.

[12] F. James, Rep. Prog. Phys. 43 (1980) 1145.


