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Abstract 

In a previous article we have shown how one can employ Artificial Neural Networks (ANNs) in order to solve 
non-homogeneous ordinary and partial differential equations. In the present work we consider the solution of eigenvalue 
problems for differential and integrodifferential operators, using ANNs. We start by considering the Schrodinger equation 
for the Morse potential that has an analytically known solution, to test the accuracy of the method. We then proceed with 
the Schr6dinger and the Dirac equations for a muonic atom, as well as with a nonlocal Schrijdinger integrodifferential 
equation that models the n + a system in the framework of the resonating group method. In two dimensions we consider the 
well-studied Henon-Heiles Hamiltonian and in three dimensions the model problem of three coupled anharmonic oscillators. 
The method in all of the treated cases proved to be highly accurate, robust and efficient. Hence it is a promising tool for 
tackling problems of higher complexity and dimensionality. @ 1997 Elsevier Science B.V. 

PACS: 02.6O.Lj; 02.60.Nm; 02.70.Jn; 03.65.Ge 
Keywords: Neural networks; Eigenvatue problems; Schrodinger; Dirac; Collocation; Optimization 

1. Introduction 

In a previous work [l] a general method has been presented for solving both ordinary differential equations 
(ODES) and partial differential equations (PDEs) . This method relies on the function approximation capabilities 
of feedforward neural networks and leads to the construction of a solution written in a differentiable, closed 
analytic form. The trial solution is suitably written so as to satisfy the appropriate initial/boundary conditions 
and employs a feedforward neural network as the main approximation element. The parameters of the network 
(weights and biases) are then adjusted so as to minimize a suitable error function, which in turn is equivalent 
to satisfying the differential equation at selected points in the definition domain. 

There are many results both theoretical and experimental that testify for the approximation capabilities of 
neural networks [ 3-51. The most important one is that a feedforward neural network with one hidden layer can 
approximate any function to arbitrary accuracy by appropriately increasing the number of units in the hidden 
layer [4]. This fact has led us to consider this type of network architecture as a candidate model for treating 
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differential equations. In fact, the employment of neural networks as a tool for solving differential equations 
has many attractive features [ I] : 
l The solution via neural networks is a differentiable, closed analytic form easily used in any subsequent 

calculation with superior interpolation capabilities. 
l Compact solution models are obtained due to the small number of required parameters. This fact also results 

in low memory demands. 
l There is the possibility of direct hardware implementation of the method on specialized VLSI chips called 

neuroprocessors. In such a case there will be a tremendous increase in the processing speed that will offer 
the opportunity to tackle many difficult high-dimensional problems requiring a large number of grid points. 
Alternatively, it is also possible for the proposed method to be efficiently implemented on parallel architectures. 
In this paper we present a novel technique for solving eigenvalue problems of differential and integrodifferen- 

tial operators in one, two and three dimensions, that is based on the use of MLPs for the parametrization of the 
solution, on the collocation method for the formulation of the error function and on optimization procedures. 

All the problems we tackle come from the field of Quantum Mechanics, i.e. we solve mainly Schriidinger 
problems and we have applied the same technique to the Dirac equation that is reduced to a system of coupled 
ODES. In addition, for the Schriidinger equation one can employ the Raleigh-Ritz variational principle, where 
again the variational trial wavefunction is parametrized using MLPs. For the two-dimensional Hennon-Heiles 
potential [ 21, we compare the resulting variational and the collocation solutions. 

A description of the general formulation of the proposed approach is presented in Section 2. Section 3 
illustrates several cases of problems where the proposed technique has been applied along with details concerning 
the implementation of the method and the accuracy of the obtained solution. In addition, in a two-dimensional 
problem, we provide a comparison of our results with those obtained by a solution based on finite elements. 
Finally, Section 4 contains conclusions and directions for future research. 

2. The method 

Consider the following differential equation: 

HP(r) = f(r), in D, (1) 

W(r) =O, on aD, (2) 

where H is a linear differential operator, f(r) is a known function, D C R3 and c?D is the boundary of D. 
Moreover, we denote D = D U JD. We assume that f E C(D) and the solution p(r) belongs to Ck(n), the 
space of continuous functions with continuous partial derivatives up to k order inclusive (k is the higher order 
derivative appearing in the operator H, HP(r) E C(D) ) . The set of the admissible functions 

{P(r) E cm, r E D c R3, P(r) =0 on JD} 

forms a linear space. In the present analysis we also assume that the domain under consideration D is bounded 
and its boundary dD is sufficiently smooth (Lipschitzian) . 

In order to solve this problem we have proposed a technique [ l] that considers a trial solution of the form 
pt;( r) = A(r) + B( r, A) N( r, p) which employs a feedforward neural network with parameter vector p (to be 
adjusted). The parameter vector h should also be adjusted during minimization. The specification of functions 
A and B should be done so that p, satisfies the boundary conditions regardless of the values of p and A. 

To obtain a solution to the above differential equation, the collocation method has been employed [6] 
which assumes a discretization of the domain D into a set points ri. The problem is then transformed into a 
minimization one with respect to the parameter vectors p and A, 
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min 
PA c [H*t(ri) - f(ri) I*. (3) 

i 

If the obtained minimum has a value close to zero, then we consider that an approximate solution has been 
recovered. 

Consider now the case of the following general eigenvalue problem: 

HP(r) = @P(r), in D, (4) 

W(r) =O, on iID. (5) 

In this case a trial solution may take the form p,(r) = B(r, A)N(r,p), where B(r, h) is zero on dD, for a 
range of values of A. By discretizing the domain, the problem is transformed to minimizing the following error 
quantity, with respect to the parameters p and A: 

Enor(p 
, 

Al = Ci[Hpf(ri9P9h) -EWt(ri,PYA)12 
.wt12dr ’ 

where E is computed as 

(7) 

A method similar in spirit has been proposed long ago by Frost et al. [7] and is known as the “Local 
Energy Method”. In the proposed approach the trial solution pt employs a feedforward neural network and 
more specifically a multilayer perceptron (MLP) . The parameter vector p corresponds to the weights and biases 
of the neural architecture. Although it is possible for the MLP to have many hidden layers we have considered 
here the simple case of single hidden layer MLPs, which have been proved adequate for our test problems. 

Consider a multilayer perceptron with n input units, one hidden layer with m sigmoid units and a linear 
output unit (Fig. 1) . The extension to the case of more than one hidden layers can be obtained accordingly. For 
a given input vector r = (II,. _ , r,) the output of the network is N = CE, Uia( zi), where zi = cy=i Wijrj + Ui, 
wij denotes the weight from the input unit j to the hidden unit i, Ui the weight from the hidden unit i to the 
output, Ui the bias of hidden unit i and V(Z) the sigmoid transfer function: (T(Z) = l/( 1 + exp( -z)). It is 
straightforward to show that [ l] 

where ci = u(zi) and u(k) denotes the kth order derivative of the sigmoid. Moreover, it is readily verifiable 
that 

(9) 

where 
” 

and A = Cy,i Ai. 
Once the derivative of the error with respect to the network parameters has been defined, it is then straight- 

forward to employ almost any minimization technique. For example it is possible to use either the steepest 
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Fig. 1. Feedforward neural network with one hidden layer. 

descent (i.e., the backpropagation algorithm or any of its variants), or the conjugate gradient method or other 
techniques proposed in the literature. We used the MERLIN optimization package [8,9] for our experiments, 
where many algorithms are available. We mention in passing that the BFGS method has demonstrated outstand- 
ing performance. Note that for a given grid point the calculation of the gradient of each network with respect 
to the adjustable parameters lends itself to parallel computation. 

Using the above approach it is possible to calculate any number of states. This is done by projecting out 
from the trial wavefunction the already computed levels. 

IfI~o)o),l~l),... , IPk) are computed orthonormal states, a trial state ]?P,) orthogonal to all of them can be 
obtained by projecting out their components from a general function I!@,) that respects the boundary conditions, 
namely 

3. Examples 

3.1. Schriidinger equation for the Morse Potential 

The Morse Hamiltonian for the Zz-molecule in the atomic units system is given by 

H = -f -$ + V(x) ) 
P 

where V(x) = D [ e-2ax - 2eeax + 1 ] and D = 0.0224, CY = 0.9374, ,X = 119406. 
The energy levels are known analytically [ 131, and are given by E,, = (n + i) ( 1 - (n + $)/c)&, with 

5 = 156.047612535 and 5 = 5.741837286 x 10P4. The ground state energy is l a = 0.286171979 x 10d3. We 
parametrize as 

cf+(x) = e -PxZN(X,U,W,V), p > 0, 

with N being a feedforward artificial neural network with one hidden layer and m sigmoid hidden units, i.e. 

j=l 
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We solve the problem in the interval -1 < r 5 2 using 150 equidistant grid points with m = 8. We minimize 
the quantity 

Id?:x)dx~ [Wt(Xi) - EMXi)12, 

where E = J #+(x)H&(x) &/J&(x) dx. We find for the ground state energy the value 0.286171981 x 10e3 
which is in excellent agreement with the exact analytical result. 

3.2. Schriidinger equation for muonic atoms 

The s-state equation for the reduced radial wavefunction 4(r) = rR( r) of a muon in the field of a nucleus 
is 

with 4(r = 0) = 0 and 4(r) N epkr, k > 0 for a bound state. p is the reduced muon mass given by 
1 /,u = l/m, + (Zm, + Nm,), where mp is the muon mass and mp, m, the masses of the proton and neutron 
respectively. Z is the number of protons and N the number of neutrons for the nucleus under consideration (in 
our example we calculate the muonic wavefunction in s2Pb2’*). 

The potential has two parts, i.e. V(r) = V,(r) + V,(r), where 

V,(r) = -e2 
s 

,,r”:,,, d3r’ 

is the electrostatic potential, p(r) is the proton number-density given by 

p(r) = A/( 1 + e(r-b)‘c) , 

with A = 0.0614932, b = 6.685 and c = 0.545 and 

is the effective potential due to vacuum polarization [ lo] with cy = l/137.037, the fine-structure constant, 

Q(r)=-27rfjp(r’)r’{ir-r’i[ln(C/r-r’jl,) -11 - (r+r’)[ln(C(r+r’)/A, - 11) dr’, 
0 

with C = 1.781 and A, the electron Compton wavelength divided by 27r. 
We parametrized the trial wavefunction as 

+f(r) = re-@‘N(r,u,w,u), /I > 0, 

where again N is again a feedforward artificial neural network with one hidden layer having 8 sigmoid hidden 
units. 

The energy eigenvalue is calculated as 

e= Jr$(r)dr 
[~[(~~dr+~V(r)&(r)dr] . 
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Fig. 2. Ground state of (a),(b) the Dirac and (c) the Schrijdinger equation for muonic atoms. Fig. 2. Ground state of (a),(b) the Dirac and (c) the Schrijdinger equation for muonic atoms. 

have been calculated using the Gauss-Legendre rule. We used 80 points in the range have been calculated using the Gauss-Legendre rule. We used 80 points in the range The integrals 
quantity 

[0,40]. The 

is being minimized with respect to IL, w, U. 
We used for pi the same points as in the Gauss-Legendre Integration. We obtained for the energy E = 

- 10.47 MeV. The radial wavefunction C#I( r) /r is shown in Fig. 2c. 

3.3. Dirac equation for muonic atoms 

The relativistic Dirac s-state equations for the small and large parts of the reduced radial wavefunction of a 
muon bound by a nucleus are [ 1 I] 

with ,u and V(r) being as in the previous example. 
The total energy E is calculated by 

m 

V(r)b?(r)-f2(r)ldr . 

We parametrized the trial solutions f,(r) and gt( r) as 

fdr) =re +‘N(r,uf,Wf,vf), P > 0, 

g,(r) = reCp’ N(r,u,,w,,u,), P > 0, 
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and minimized the following error quantity: 

-yi{ [ Ly + Ly - d-yrl) g(ri)]2 + [ 4y - ky _ Pc2+yl) fcr,)]2} 

.l,“[g*tr) + f2(r>l dr 

The binding energy is given by E = E - ,uc 2. We find E = -10.536 MeV. The small and the large parts of 
the radial wavefunction f( T)/Y and g(r)/r are shown in Fig. 2a and 2b, along with the Schriidinger radial 
wavefunction (Fig. 2~). The integrals and the training were performed using the same points as in the previous 
example. 

3.4. Non-local Schriidinger equation for the n + a system 

We consider here the nonlocal Schrijdinger equation 

co 

t; s(r) + V(r)+,(r) + /Ko(r,r’)4(r’) dr’ = e+(r) , -- 

0 

with V(r) = -VOe-Pr2, where Vo = 41.28386, j? = 0.2751965 and i&( r, r’) = -Ae-y(r2+r”)(e2krr’ - e-2krr’) 
with A = -62.03772 , y = -0.8025, k = 0.46. This describes the n + LY system and is derived in the framework 
of the Resonating Group Method [ 121, /A is the system’s reduced mass given by 1 /,u = 1 /m, + l/ ( 2m, + 2m,). 

We parametrized the trial wavefunction as 

q&(r) = re-@N(r,u,w,v), p > 0, 

where the neural architecture is the same as in the previous cases and minimized the following error quantity: 

Ci {-J$ $&(ri) + V(ri)+,(ri) + sp Ko(ri,r’)$,(r’) dr’ - E&(ri)}* 

~,“&tr) dr 

where the energy is estimated by 

E= ~S,“t~)2dr+SoOOV(r)~:(r)dr+S,“S,”OKotr,r’)~,tr)~,(r’)drdr’ 
s,“&(r) dr 

We have considered 100 equidistant points in [ 0, 121 and the computed ground state is depicted in Fig. 3, while 
the corresponding eigenvalue was found equal to -24.07644, in agreement with previous calculations [ 21. 

3.5. Two-dimensional Schriidinger equation 

We consider here the well-studied [2] example of the Henon-Heiles potential. 
The Hamiltonian is written as 

H=-; ($+$) +V(x,y), 

with V(n,y) = i(x* +y*) + &(xy2 - i..$). 
We parametrize the trial solution as 
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Fig. 3. Ground state of the nonlocal SchrCidinger equation for the n + a system (e = -24.07644). 

h(-LY) =e- *(xZ+y2)N(X, y, u, w(x), w(y), U)) A>O, 

where N is a feedforward neural network with one hidden layer (with m  = 8 sigmoid hidden units) and two 
input nodes (accepting the x and y values), 

N(x, ~9 U, w(‘), w(‘), U) = 2 u,~cT(xw~‘) f J’Wj’) + Uj) . 
j=l 

We have considered a grid of 20 x 20 points in [ -6,6] x [ -6,6]. The quantity minimized is 

C,j[H$,(xivYj) -E4h(Xi~Yj)l 2 

J_“,.f?“~XdY&(X,Y) ’ 
(11) 

where the energy is calculated by 

For this problem we calculate not only the ground state but a few more levels. The way we followed is the 
extraction from the trial wavefunction of the already computed levels as described in Section 2. If for example 
by C#JO ( X, y) we denote the normalized ground state, the trial wavefunction to be used for the computation of 
another level would be 

where 4, (x, y) is parametrized in the same way as before. 
Note that +J, (x, y) is orthogonal to &0(x, y) by construction. Following this procedure we calculated the 

first four levels for the Henon-Heiles Hamiltonian. Our results are reported in Figs. 4-7. 
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Fig. 4. Ground state of the Henon-Heiles problem (E = 0.99866) 

Fig. 5. First excited state of the Henon-Heiles problem (6 = 1.990107) 

Fig. 6. Fig. 7 

Fig. 6. Second excited state (degenerate) of the Henon-Heiles problem (E = 1.990107). 

Fig. 7. Third excited state of the Henon-Heiles problem (E = 2.957225) 

We also calculated the variational ground state wave-function for this problem by minimizing the expectation 
value of the Hamiltonian, using an identical neural form. In Figs. 8, 9, we plot the pointwise error, i.e. the 
(normalized) summand of I$. ( 11) for the collocation and the variational wavefunctions, respectively. 

3.6. Three coupled anharmonic oscillators 

As a three-dimensional example we consider the potential for the three coupled sextic anharmonic oscilla- 
tors [18], 

V(x,y,z)=V(x)+Vty)+V(z)+xy+xz+yz, 

where 

V(x) = $2 + 2x4 + &x6. 

The trial solution r$r ( X, y. z ) is parametrized as 

r$r(x,y,z) = e-h(X*+v2+z2)N(x,y,z,u,W(*),W(y),~(Z),~), A > 0, 
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Fig. 8. Fig. 9 

Fig. 8. Pointwise normalized error for the collocation wavefunction. 

Fig. 9. Pointwise normalized error for the variational wavefunction. 

where N is a feedforward neural network with one hidden layer (with m = 25 hidden units) and three input 
nodes (accepting the values of x, y and z), 

N(X, Y, Z, U, Wcx), IV(‘), IV(‘)* U) = 2 UjCT(XWj’) + YW~“’ + ZWj’) + Uj) . 
j=l 

We have considered a 28x28~28 grid in the [ -4,4] x [ -4,4] x [ -4,4] domain both for computing the 
integrals and calculating the following error quantity that was minimized: 

Ci,j,k[H4t(Xi9YjJk) -E4t(Xi~Yj~Zk)12 

s_“,s_“,s_“,~:(x,Y,z)dxdYdz ’ 

where the energy is calculated by 

E= ~~~~_q$~~~~t(x~~~z)H~t(x,y,z)dxdydz 
./-?./:mf~&(~,~,z) dxdydz ’ 

The ground state was computed and the corresponding eigenvalue was found equal to 2.9783, in agreement 
with the highly accurate result obtained by Kaluza [ 181. 

4. Finite element approach 

The two-dimensional Schrondiger equation for the Henon-Heiles potential was also solved using the finite 
element approach in which the solution is expressed in terms of piecewise continuous biquadratic basis functions, 

(I/ = C @i@i(S9 n> , (12) 
i=l 

where @i is the biquadratic basis function and +i is the unknown at the ith node of the element. The physical 
domain (x, y) is mapped on the computational domain (5, n) through the isoparametric mapping 

x= c Xi@i(<v n) 9 (13) 
i=l 
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Y =CYi@i(5,n) 7 (14) 
i=l 

where 5 and n are the local coordinates in the computational domain (0 5 5, n < 1) and xi, yi the ith node 
coordinates in the physical domain for the mapped element. 

The Galerkin Finite Element formulation calls for the weighted residuals Ri to vanish at each nodal point 
i= l,...,N, 

Ri= (H~-e~)~idet(J)d5dn=O, 
.I 

(15) 
n 

where J is the Jacobian of the isoparametric mapping with 

(161 

These requirements along with the imposed boundary conditions constitute a system of linear equations which 
can be written in a matrix form as 

K@=EM+, (17) 

where K is the stiffness and M is the mass matrix. The stiffness matrix in its local element form is 

&(x)‘Z - lx3)@i@j (18) 

The matrix M obtained above in its local element form is 

./ 
@i@j det(J) d(dn. (19) 

R 

Due to the Dirichlet boundary conditions zeros appear in the diagonal. Thus the mass matrix is singular and the 
total number of zeros in the diagonal of the global matrix is equal to the number of nodes on the boundaries 
and its degree of singularity depends on the size of the mesh. 

4.1. Extracting eigenvalues and eigenvectors 

For the problem under discussion only the eigenvalues of the generalized eigenvalue problem with the smallest 
real parts are needed. The eigenvalue problem is a symmetric generalized eigenvalue problem but for generality 
purposes it is solved as a nonsymmetric one. Due to the size of the problem (from 1000-4000 unknowns in 
our solution) direct methods are not suitable. 

We use Arnoldi’s method as it has been implemented by Saad [ 14-161, which is based on an iterative deflated 
Arnoldi’s algorithm. Saad proposes an iterative improvement of the eigenvectors as well as a Schur-Wiedland 
deflation to overcome cancellation errors in the orthonotmalization of the eigenvectors at each step due to the 
finite arithmetic. 

If K is nonsingular, a simple way to handle the generalized eigenvalue problem is to consider the “reciprocal” 
problem 

M@=kW, (20) 

where p = l/e. The infinite valued eigenvalues are transformed into zero eigenvalues. However, due to computer 
round-off errors, the infinite-valued eigenvalues actually correspond to very large values in the calculations, 
which are turned into very small valued eigenvalues and not to exact zeros in the reciprocal problem. 
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Table 1 
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Computed eigenvalues of the Henon-Heiles Hamiltonian using the FEM approach for various mesh sizes 

5x5 7x7 11x11 16x16 21 x21 29x29 

1.0075 0.9997 1.0015 0.9994 0.9989 0.9986 
2.1988 2.0852 2.0037 1.9930 1.9911 1.9901 
2.2001 2.0862 2.0037 1.9930 1.9911 1.9901 
3.2495 3.0159 2.9761 2.9648 2.9593 2.9571 
3.2878 3.0515 3.0065 2.9943 2.9885 2.9857 
4.4347 4.1139 3.9868 3.9433 3.9323 3.9262 

“06 3 

Fig. 10. Convergence of the first eigenvalue as a function of the mesh size (number of unknowns) 

An alternative method would require the elimination of the rows with zero diagonal in the mass matrix, 
which are the rows corresponding essentialy to the boundary conditions. This scheme requires a number of 
manipulative operations on K and M which are prohibitive for large systems. The method is called the ‘reduced 
algorithm’ and requires the storage of the stiffness and the mass matrix. Other techniques have been proposed 
and mainly are transformations of the generalized eigenvalue problem that map the infinite eigenvalues to one 
or more specified points in the complex plane [ 171. The Shift-and-Invert transformation maps the infinite 
eigenvalues to zero. In the problem under discussion we have used the transformation 

C=(M-cK)-lK (21) 

and problem (20) is transformed to the problem 

c+ = p’* , (22) 

whose eigenvalues are related to those of Eq. (20) through the relation ,u’ = I/( ,LL - a), where CT is a real 
number called shift. This transformation favors eigenvalues with real part close to the shift. The eigenvalues E 
of the original problem are then given by E = p’/ ( 1 + (T,u’) . 

The generalized eigenvalue problem was solved on a rectangular domain. Figs. 10 and 11 shows the evolution 
of the first and second eigenvalues as the number of equidistributed elements of the mesh and consequently the 
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Fig. 11. Convergence of the second eigenvalue as a function of the mesh size (number of unknowns) 

number of unknowns increases. Convergence occurs for a grid of equal elements (29 x 29) which results in a 
system of 3481 unknowns. The convergence of the first six eigenvalues is also shown in Table 1. It is obvious 
that in order to get accurate eigenvalues, dense PEM meshes must be used and this limits the application of 
the method. 

5. Conclusions 

We presented a novel method appropriate for solving eigenvalue problems of ordinary, partial and integrodif- 
ferential equations. We checked the accuracy of the method by comparing to a result that is analyticaly known, 
i.e. the ground state energy of the Morse Hamiltonian. We then applied the method to two realistic and interest- 
ing problems, namely to the Schriidinger and to the Diruc equations for a muonic atom. In these equations we 
take account of the finite protonic charge distribution as well as of the Vacuum Polarization effective potential. 
Preliminary calculations using a proton density delivered by Quasi-WA have also been performed [ 191. Since 
both the Schrijdinger and the Diruc equations can be solved analyticaly in the case of a point charge nucleus 
(ignoring also the vacuum polarization correction), we conducted calculations (not reported in this article) 
and determined the energies for the 4f and 5g levels to within 1 ppm [20]. The wide applicability of the 
method is shown by solving an integrodifferential problem, coming from the field of Nuclear Physics. The 
two-dimensional benchmark, namely the Henon-Heiles Hamiltonian, that has been considered by many authors 
and solved by a host of methods, was considered as well. Here we obtained not only the ground state, but 
also some of the higher states, following a projection technique to supress the already calculated levels. Our 
results are in excellent agreement with the ones reported in the literature. We solved this problem also by a 
standard finite element technique and we compared the computational resources and effort. It is clear that the 
present method is far more economical and efficient. Also, as we have previously shown [ l] for the case of 
non-homogeneous equations, its interpolation capabilities are superb. Coming to an end, we solved a three- 
dimensional problem that imposes a heavier load. Again the results for the three-coupled anharmonic sextic 
oscillators are in agreement with the high precision ones obtained in [ 181 by a semi-analytical method. The 
examples treated in this article are essentially single particle problems. (In example 3.4 the few-body nature 



14 I.E. Laguris et d/Computer Physics Communications 104 (1997) l-14 

is embeded in the nonlocal kernel). Many-body problems will impose a much heavier computational load, and 
hence the fast convergence property of the sigmoidal functions [ 211, as well as the availability of specialized 
hardware, become very important. Few-body problems may be handled by extending the method in a rather 
straightforward fashion. However, for many-body problems it is not clear as of yet how to find a tractable 
neural form for the trial wavefunction. The method is new and of course there is room for further research 
and development. Issues that will occupy us in the future are optimal selection of the training set, networks 
with more than one hidden layers, radial basis function networks few-body systems and implementation on 
specialized neural hardware. 
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