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Abstract-A dynamical model based upon a physical metaphor is described, and a parallel algorithm 
inspired from the model is developed for approximately solving maximum weight independent set 
problem. Our model treats an independent set as an attraction game, where vertices of the graph are 
considered as still bodies and edges as cells attracted by the still bodies corresponding to its 
extremities. In addition, we discuss how, by using an analogous model, an approximation algorithm 
can be developed for the minimum set covering problem. 

1. INTRODUCTION 

Consider a graph G = (V, E) of order n. An independent set is a subset of S c V such 
that there is no pair of nodes in S linked by an edge in G and the maximum independent 
set problem (IS) is to find an independent set of maximum size. This problem admits a 
natural generalization, in the case where we associate positive weights (costs) wi, i = 1, 
. . .) iz, to the vertices of its instance, and then the objective becomes to maximize the sum 
of the weights of the vertices of an independent set. (In what follows, we denote by WIS 
the weighted version of the maximum independent set problem.) 

WIS constitutes one of the most famous NP-complete problems and, in addition, even its 
constant approximability in polynomial time is NP-complete also [l]. For this reason, a 
number of sequential [2-41 or parallel [5,6] heuristics have been developed for IS (both 
the weighted and unweighted cases). 

In this paper inspired by [7] where a dynamical system and a parallel algorithm have 
been developed for the minimum weighted vertex covering problem, we propose a model 
for WIS. This model, based upon a magnetism metaphor, is described by a dynamical 
system giving rise to a parallel algorithm approximately solving WE. Moreover, it seems 

739 



740 M. AFIF et al. 

that the proposed model is well-adapted to the problem since, as is proved below, the 
dynamical system converges to an equilibrium state corresponding to a feasible WE 
solution. 

Moreover, we show that, by extending the proposed approach, it is possible to define an 
analogous model for approximately solving the minimum set covering problem. Given a 
collection 9’ (191 = n) of subsets of a finite set C (/Cl = m), a cover is a subcollection 
7 & Y such that Us,Ey” S, = C, and the minimum set covering problem (SC) is to find a 
cover of minimum size. By associating weights w,, i = 1, . . . , II, to the sets of Y. we obtain 
WSC (weighted set covering), a generalization of SC. The objective of WSC is to minimize 
the total weight of a set covering, this weight being the sum of the weights of the sets in 
the covering. In [8], Hifi et al. propose a Boltzmann machine architecture, treating SC as a 
particular instance of the minimum vertex covering problem. In this paper, we propose a 
natural model for WSC fairly similar to the one for WIS, and we prove that the dynamical 
system describing the WSC model reaches stability; however, as we can see, this model has 
1:he drawback of not always providing feasible solutions. 

In what follows, given an undirected graph G = (V, E) of order ~1, we denote by r( ri,) 
and w, the neighbour set and the weight of each vertex u, (u, E V); also, we denote by h, 
the cardinality Ir(~,)l (the degree of u,). 

2. THE DYNAMICAL SYSTEM AND THE DEDUCED PARALLEL APPROXIMATION 
ALGORITHM FOR THE WEIGHTED INDEPENDENT SET 

The natural metaphor we have used to model and solve WIS is the following. Consider 
the vertex set V as a set of still bodies placed on a bi-dimensional space, and the edge set 
E as a set of cells located between pairs of still bodies, each cell being likely to be 
attracted by one of the still bodies that lie on the extremities of the corresponding edge.” 
Once a vertex’ succeeds to attract one of the edges incident to it, then it immediately 
attracts all of its incident edges and wins in the competition over its neighbours, this victory 
entailing the inclusion of the winner in the WIS solution and the corresponding exclusion of 
its neighbours. 

A potential U,(t) is associated to every vertex ui E V, for any instant t. The motion of a 
cell cU (corresponding to the edge UiU,), located between ui and Uj, is described at any 
instant t by a function xii(t). It holds that .x;,(t) -+ ~0 whenever cti is located close to u,, 
xl,(f) -+ ---CO whenever cij is located close to Ui, while whenever c;j lies in the middle of the 
distance between ui and Uj, xii(t) = 0. Finally, since G is undirected, we consider that the 
cell cji is identical to the cell Cij. 

Cell ci, moves towards the body argmax,,t,,EE{ L’i(t)t uj(t)} with velocity 

Ir-ij(t) = Uj(t) - Ui(t), vivj E E. (1) 

Moreover, we define the following transformation r(l) which constraints the values of xlj(t) 
within the interval [-1, + 11: 

rij(t) = tanh (r~q(t)), u,u, E E (2) 

where y is a positive constant (parameter of the system) that allows the adjustment of the 
hyperbolic tangent’s slope. Based on the above transformation, we have rii(t) + +1 

- 
*Of course, we suppose that the cells are initially located at positions equidistant from the associated bodies: 

moreover, these distances are finite. 
*From here on we shall treat the terms still body and vertex as equivalent; we do the same for the terms cell 

and edge, respectively. 
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whenever c,, is located close to “j, r~j(t) + - 1 whenever cli is located close to uI, while 
whenever cj, lies in equal distance from U, and ui, rJt) = 0. Let us note that, since 
hyperbolic tangent function, tanh, is odd, we have yi,( t) = - rji(t) for every instant t. 

It remains now to define the potential of each vertex. This is defined in such a way that 
U,(t) E [ - w, , + wJ, ui E V. Let us remark that a natural definition of such potential would 
be u,(t) = (wl/Wc o EV~,i( t), but whenever G contains isolated vertices then the potential 
of these vertices wou d be undefined; so, we set i 

U;(t) = &[( o,~L,,~j~(f)) + l]O. E v. (3) 

It is easy to see that in the case where 6, = 0, Ui(t) = Wi. 
The system of differential equations induced by expressions (l)-(3) describes the 

evolution of the dynamical system over time. 
Based on these expressions, we can define a WIS solution S in the following way: 

s = {Ui E v: ui = pir ui(t) = w,}. (4) 

Proposition 1. The set S defined by expression (4) is feasible for WIS. 

Proof. Let US suppose that there exists an edge ViUj E E such that {Ui, Uj} c S. Since 
ui E S, Ui = Wi and from expression (3), we get C U,Er(Uijr,i(t) = 6i; this last expression 
implies that, for all u,uk E E, rki = 1; SO, rji = 1. If we follow the same arguments for the 
fact that u, E S, we can also find that ri, = 1, which is a contradiction since, by the 
definition of the model, ri,(t) = - r,i(t) for every t. n 

Let us note that the quantity xi,(t) can be written as xii(t) = xc(to) + (:,l(dxi,(s)/ds)ds. 
So, by discretization, we obtain 

’ dx. (s) 
X*j(t + dt) = Xii(fo) + dt C II, 

s=t"(dt) ds 
(5) 

By means of expressions (l)-(5), we can specify the WIS Algorithm 1. It must be noted 
that only quantities computed at instant t are necessary for the computations at instant 
f f dt . Therefore, Algorithm 1 can very easily be implemented on a parallel machine. 

It remains now to show that the described dynamical system (and, consequently, 
Algorithm 1 based upon this system) converges to an equilibrium state. To do this, it is 
sufficient to show that there is a function E(t) constituting a Lyapunov function for the 
system or, in other words, admitting the property i < 0. 

Proposition 2. The function 

E(t) = k c C’ij(l)&xrik(t) + c c &r,(t) 
u, 0, I Ok I’, 0, 1 

begin 
fix constants y, E, E; 
fix a time-step dt; 
t+--0 
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for all UiUj E E do 

xq(0) + E; 
rii(0) t tanh (yxii(0)) 

od 
repeat 

for 
for 

all Ui E V do vi(t) + (Wi/ai + l)[(Co,t~(~:,)rji(t)) f 11 od 

all UiU, E E do 
x,(t + dt) +xV(~) + dt(Uj(t) - Ui(t)); 
rii(t -t dt) ctanh(yxU(t + dt)); 
ttt+dt 

od 
until lrij(t) - l/ d E 
S = {Ui E VI lim,,, ui(t) = Wi} 

end. 

Algorithm 1 

constitutes a Lyapunov function for the system described by expressions (l)-(3). 

Proof. Let US recall that rii(t) = -rji(t), for every t; also Xi,(t) = -Xii(t) and, by 
model definition, 
Cwd6t + l)(C 

i-ii(t) = -iji(t), drij/dXij = drji/dxjl. It holds that dE/dr, = 
u,ukeErik + 1) = Ui (by expression (3)), independently of Uj. Moreover, 

E(t) = cII,cU ,jci(dE/dr, - dE/drji)(dr,/dx,)~i-,(t), this expression yielding k(t) = 
--Co,Co,,j<i(dj - ui)2(drv/dXq) c 0. n 

3. EXPERIMENTAL RESULTS 

We have tested Algorithm 1 considering two performance criteria: execution time (in 
seconds) and approximation ratio. j In fact, concerning the latter criterion, we have 
estimated the quantity p = (~Ipl)/lSl, where pz is the approximation ratio of the 
algorithm on an IS instance I and 1411 is the number of the produced graphs. Moreover, in 
order to have some comparative performance information, we have implemented the 
natural greedy algorithm 2 for IS, and we have tested it following the same performance 
criteria. Finally, in order to find the optimal solutions of the tested instances, we have 
implemented a branch-and-bound method adapted to IS. 

begin 
St0 

repeat 
u, + argmax u,E~ { w,/6j) ; 
S+S U {Ui}; 

v + v\({“~) u r(“i)) 

until V = 0 
end. 

Algorithm 2 

- 
*In polynomial approximation theory, a usual criterion of the performance of a heuristic on an instance of an 

h’P-complete problem is the ratio ‘size (value in the weighted case) of the solution provided by the heuristic over 
site (or value) of the optimal solution of the instance’. 
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We have generated randomly 161 graphs, 89 among them being regular and 72 irregular. 
The orders of the generated graphs vary between 15 and 100, and the numbers of their 
edges between 20 and 200. For the regular graphs, the degrees of the vertices vary between 
2 and 7, while for the irregular ones the degrees vary between 1 and 7. Both methods have 
been executed twice on each instance: one time for the unweighted case and one time by 
considering integer weights on the vertices, these weights being randomly chosen from the 
set (1, . . . 30). The tests have been executed on a 33 MHz 486 PC; the execution times for 
Algorithm 1 concern this sequential implementation. 

3.1. A summary of the performance of the two algorithms 

We present in this section a summary of the performance (concerning average case ratios 
and average execution times) of the proposed approach (Algorithm 1) and the greedy 
heuristic (Algorithm 2), respectively. Table 1 summarizes the performance of the two 
heuristics for the case where all of the weights are equal to 1 (for this case, the selection 
performed at each step of Algorithm 2 becomes a simple minimum degree vertex choice), 
while in Table 2, weighted cases are considered. 

Since Algorithm 1 uses the parameters E, y and dt, the performance of the algorithm, 
concerning both approximation ratios and execution times, depends on the values of these 
parameters. In this section, we present the parameter values allowing us to obtain good 
approximation results in reasonable execution times; in Section 3.2, we present results from 
experiments concerning the influence of these three parameters upon the performance of 
Algorithm 1. 

As one can see from Tables 1 and 2, the experimental behaviour of the conceived model 
is quite satisfactory and superior to the one of the greedy algorithm, in what concerns the 
average case approximation ratio. Of course, concerning the corresponding execution 
times, we note here that we have executed Algorithm 1 sequentially. However, since it is 
easily parallelizable, its parallel execution time is expected to be much smaller and 
comparable to the one of the greedy algorithm. 

3.2. Influence of the parameters E, y and dt on the behaviour of Algorithm I 

The parameters E (computation’s precision), y (slope of the function tanh) and dt 
(computation step) used by Algorithm 1 play an important role on both the approximation 
ratio and the execution time of the algorithm. So, in Tables 3-5, we present experimental 

Table 1. Unweighted IS approximation performances of the two heuristics; Algorithm 1 has been 
executed with E = 10m8, dt = 10m3 and y = 250 

Method P % Optimal solutions Average execution time 

Algorithm 1 0.947 57.14 10.8 
Algorithm 2 0.918 41.61 0.77 

Table 2. Weighted IS approximation performances of the two heuristics; Algorithm 1 has been 
executed with E = lo-*, dt = 10m4 and y = 200 

Method P % Optimal solutions Average execution time 

Algorithm 1 0.963 39.75 12.8 
Algorithm 2 0.959 36.65 1.02 
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Table 3. Performance measures of Algorithm 1 under variation of E, with dr = 10-j 
and y = 200 

t 10-4 10-b 
Unweighted case 

10-R 

% Optimal solutions 35.40 
P 0.896 
Mean execution time 4.7 

40.99 
0.915 
7.6 

Weighted case 

53.42 
0.942 

13.5 

“XI Optimal solutions 28.57 31.68 31.68 
P 0.95 0.954 0.954 
Mean execution time 1.0 2.2 2.9 

Table 4. Performance measures of Algorithm 1 under variation of dt, with E = 10-s 
and y = 200 

dt 10-l 10-r 
Unweighted case 

10-s 

% Optimal solutions 28.57 41.61 53.42 
P 0.896 0.933 0.942 
Mean execution time 1.6 5.2 13.5 

Weighted case 

% Optimal solutions 11.80 18.01 31.68 
P 0.87 0.904 0.954 
Mean execution time 0.2 1.2 2.9 

Table 5. Performance measures of Algorithm 1 for 3 under variation of y, with dt = 10-j and 
E = 10-s 

Y loo 150 200 
Unweighted case 

250 

% Optimal solutions 
P 
Mean execution time 

41.61 
0.912 

17.1 

45.34 53.42 
0.926 0.942 

17.0 13.5 

Weighted case 

57.14 
0.947 

10.8 

% Optimal solutions 33.54 33.54 31.68 28.57 
P 0.958 0.956 0.954 0.950 
Mean execution time 3.1 3.0 2.9 ?4 -. 

results on the dependence of these measures with respect to the variations in the values of 
the parameters E, dt and y, respectively. 

As can be observed, by performing judicious choices of the three parameters, it is 
possible to achieve a very efficient trade-off between solution qualities and execution times 
for Algorithm 1. 

4. A MODEL FOR MINIMUM SET COVERING PROBLEM 

A very convenient way to represent SC is by means of a bipartite graph B = (S, C, E), 
where the colour class S represents the members of Y, the colour class C represents the 
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elements of C, and the edge set E contains an edge SIcj, if Cj E Si in the original SC 
instance; in the case of WSC, the vertices of S are weighted. 

To each edge sicj of E, we correspond a real input value rij(t) and an output value 
u,(t) = tanh(r,(t)). Moreover, for every vertex Si, we define, as for the case of IS, a 
quantity pi which we call the potential of vertex si and define it as p, = 
(C)s=‘/rji(f) - Wi)/lSi(* 

We have developed the following approximation algorithm for SC. 

STEP 0 set rij(t) = 0 and fix positive constants y and E; at each time step t do 
STEP 1 compute pi(t), i = 1, . . ., n; 
STEP 2 for every c,, j = 1, . . . , m , find the vertices SY and s:“, adjacent to c,, having 
the maximum (p?““(t)) and the minimum (p?(r)) potential, respectively, over all vertices 
adjacent to cj; 
STEP 3 for every i = 1, . . ., m and for every k such that Sk is adjacent to c,, set 
a,‘;,k(f) = Y(PyaX(f) - Pk(t)), if Sk f ST and AY,k(f) = bj(f)(p~(f) - p:‘“(t)), if Sk = 
S/ ’ where y is a small positive constant and b,(t) is a parameter which must be computed 
at each time step in order to ensure convergence (the role of b,(t) is discussed below); 
STEP 4 compute rjk(r i- 1) = rjk(t) + hI,k(t) and U,k(t •k 1) = tanh(r,k(t -I- 1)); 
STEP 5 if [[?,k(t + 1) - U,k(t)l 6 E, for all i, k then exit, else go to STEP 1. 

It is easy to see that at each time step, for every edge i, i = 1, . . ., m, there exists a i’ 
for which u,j~(t) increases while, for all j # ji, the values of Uij decrease. To prove 
convergence of the above procedure, it suffices to show that there exists a function L(t) 
bounded from below and decreasing with t; such a Lyapunov function for the system is 
L!t) = C,Cj”,Ct>. 

Since Iu,~/ < 1, L(t) is bounded below. 
To prove that L(t) decreases with t, we impose the requirement that, for each element 

Cl SU,l(t + 1) < Cj,,+j’(SUij(t + l)i, where 6u~j(t + 1) = ul,,( f + 1) - uill(t). This inequality 
can be easily satisfied by first computing the corresponding sum, and then by appropriately 
adjusting the parameter hi(t) (appearing in STEP 3 of the above algorithm) so that the 
inequality becomes valid. 

Under the above operation schema, the system asymptotically converges and moreover, 
as one can see, the only equilibrium point is the one having the property: ‘for each c,, 
u,,! = 1 and u,, = -1, j # j”. 

In terms of the proposed algorithm, this means that, if a vertex sj has ‘won’ in the 
competition for at least one Ci (at least one Ulj = l), then the set Sj corresponding to vertex 
s, is included to SC solution. 

The described algorithm does not always lead to feasible solutions. We have tested it on 
150 (unweighted) SC instances where n varied between 8 and 20, m between 10 and 30, 
the cardinality of a set of Y varying between 2 and 15; the parameters y and E were both 
fixed to lo-“. 

The percentage of feasible solutions was quite high, equal to 76.34%) the average 
approximation ratio (considering the instances for which feasible solutions had been 
obtained) was 2.22, while the percentage of the optimal solutions obtained was equal to 
2%. 

5. CONCLUSIONS 

We have defined a dynamical model inspired from a physical metaphor that leads to a 
parallel approximation algorithm for WIS and, moreover, we have provided some, not yet 
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completely elaborated, ideas of how the proposed approach could be extended to develop a 
parallel algorithm for approximately solving WSC. (We are actually working on the 
conception of an ‘efficient’ dynamical system for WSC.) Concerning the IS Algorithm 1, 
the tests we have performed show that this algorithm is very efficient from an approxima- 
tion quality point of view. In addition, the sequential execution time of Algorithm 1 is 
quite satisfactory, and we can consider that, when implementing this algorithm on a 
parallel machine, the total execution time will be even smaller than the corresponding time 
of the greedy heuristic. 
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