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ABSTRACT
Motivation: This paper studies the problem of discovering
subsequences, known as motifs, that are common to a
given collection of related biosequences, by proposing
a greedy algorithm for learning a mixture of motifs
model through likelihood maximization. The approach
adds sequentially a new motif to a mixture model by
performing a combined scheme of global and local search
for appropriately initializing its parameters. In addition,
a hierarchical partitioning scheme based on kd-trees is
presented for partitioning the input dataset in order to
speed-up the global searching procedure. The proposed
method compares favorably over the well-known MEME
approach and treats successfully several drawbacks of
MEME.
Results: Experimental results indicate that the algorithm is
advantageous in identifying larger groups of motifs charac-
teristic of biological families with significant conservation.
In addition, it offers better diagnostic capabilities by build-
ing more powerful statistical motif-models with improved
classification accuracy.
Availability: Source code in Matlab is available at http:
//www.cs.uoi.gr/∼kblekas/greedy/GreedyEM.html
Contact: kblekas@cs.uoi.gr;

1 INTRODUCTION
In protein sequence analysis motif identification is one of
the most important problems covering many application
areas. It is related to the discovery of portions of pro-
tein strands of major biological interest with important
structural and functional features. For example, conserved
blocks within groups of related sequences (families) can
often highlight features which are responsible for struc-
tural similarity between proteins and can be used to pre-
dict the three dimensional structure of a protein. Motifs
may also enclose powerful diagnostic features, generating
rules for determining whether or not an unknown sequence
belongs to a family and thus define a characteristic func-
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tion for families.
Patterns or motifs are usually distinguished into two

general classes: deterministic and probabilistic (Brazma
et al., 1998; Brejova et al., 2000). A deterministic motif
encloses grammatical inference properties in order to
describe syntactically a conserved region of related
sequences using an appropriate scoring function based
on matching criteria. Special symbols, such as arbitrary
characters, wild-cards and gaps of variable length can be
further used to extend the expressive power of determin-
istic patterns allowing a certain number of mismatches.
The PROSITE database (Hofmann et al., 1999) consists
of a large collection of such patterns used to identify
protein families. A probabilistic motif is described by a
model that assigns a probability to the match between
the motif and a sequence. The position weight matrix
(PWM) provides a simplified model of probabilistic
ungapped motifs representing the relative frequency of
each character at each motif position. The ungapped mode
suggests that the motif contains a sequence of statistically
significant characters (contiguous motif) and corresponds
to local regions of biological interest. Examples of more
complicated probabilistic motifs (allowing gaps, inser-
tions and/or deletions) are profiles and Hidden Markov
models (Durbin et al., 1998).

Many computational approaches have been introduced
for the problem of motif identification in a set of biologi-
cal sequences which are classified according to the type
of motifs discovered. Excellent surveys (Brazma et al.,
1998; Rigoutsos et al., 2000; Brejova et al., 2000) in the
literature cover several motif discovery techniques. The
Gibbs sampling (Lawrence et al., 1993), MEME (Bailey
and Elkan, 1995), TEIRESIAS (Rigoutsos and Floratos,
1998), SAM (Hughey and Krogh, 1998), SPLASH (Cal-
ifano, 2000) and probabilistic suffix trees (Berejano and
Yona, 2001) represent methods for finding multiple shared
motifs within a set of unaligned biological sequences.

Among those, the MEME algorithm fits a two-
component finite mixture model to a set of sequences
using the Expectation Maximization (EM) algorithm
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(Dempster et al., 1977), where one component describes
the motif (ungapped substrings) and the other describes
the background (other positions in the sequences). Multi-
ple motifs are discovered by sequentially applying a new
mixture model with two components to the sequences
remaining after erasing the occurrences of the already
identified motifs. Therefore the MEME approach does
not allow the parameters of this motif to be reestimated in
future steps, and thus future discovered motifs cannot con-
tribute to possible re-allocation of the letter distribution in
the motif positions. This drawback becomes significant
in the case where there exist motifs that partially match,
since these motifs are recognized by the MEME algorithm
as one ‘composite’ motif that cannot be further analyzed
due to the removal of the motif occurrences.

This paper presents an innovative approach for discov-
ering significant motifs in a set of sequences based on
recently developed incremental schemes for Gaussian
mixture learning (Li and Barron, 2000; Vlassis and Likas,
2002). Our method learns a mixture of motifs model in
a greedy fashion by incrementally adding components
(motifs) to the mixture until reaching some stopping
criteria or a desired number of motifs. Starting with one
component which models the background, at each step
a new component is added corresponding to a candidate
motif. The algorithm identifies a good initialization for the
parameters of the new motif, by performing global search
over the input substrings together with local search based
on partial EM steps for fine tuning of the parameters of
the new component. In addition, a hierarchical cluster-
ing procedure is proposed based on kd-tree techniques
(Bentley, 1975; Verbeek et al., 2001) for partitioning
the input dataset of substrings. This reduces the time
complexity for global searching and therefore accelerates
the initialization procedure.

In analogy to the MEME approach, our technique
discovers motifs when neither the number of motifs nor
the number of occurrences of each motif in each sequence
is known. However, the main difference with MEME
technique is in the way that the mixture models are
applied. Although both methods treat the multiple motif
identification problem through mixture learning using
the EM algorithm, our approach is able to effectively
fit multiple-component mixture models. This is achieved
through a combined scheme of global and local search,
which overcomes the problem of poor initialization of
EM that frequently gets stuck on local maxima of the
likelihood function. Therefore efficient exploration of
the dataset is attained and larger groups of motifs are
discovered.

In Section 2 the proposed greedy mixture learning
approach for motif discovery in a set of sequences is
presented. In addition a novel technique for partitioning
the data space in order to reduce the time complexity

of global searching is included. Section 3 presents ex-
perimental results considering both artificial and real
biological datasets. The comparative results with the
MEME algorithm indicate the superiority of the proposed
Greedy EM and establish its ability to generate more pow-
erful diagnostic signatures. Finally, Section 4 summarizes
the proposed method and addresses directions for future
research.

2 GREEDY EM ALGORITHM FOR MOTIF
DISCOVERY

2.1 The mixture of motifs model
Consider a finite set of characters � = {α1, . . . , α�}
where � = |�|. Any sequence S = a1a2 . . . aL , such that
L ≥ 1 and ai ∈ �, is called a string (or sequence) over the
character set �, from position 1 to position L = |S|. The
sequence of characters ai ai+1 . . . ai+W−1 form a substring
xi of S length W , identified by the starting position i over
the string S. There are n = L − W + 1 such possible
substrings of length W generated from sequence S.

The probability of the sequence S is†:

P(S) = P(aW−1 . . . a1)P(aW |aW−1 . . . a1) . . .

P(aL |aL−1 . . . a1), (1)

which can be approximately written as

P(S) ≈ P(aW−1 . . . a1)P(aW |aW−1 . . . a1) . . .

. . . P(aL |aL−1 . . . aL−W+1)

= P(aW . . . a1)P(aW+1 . . . a2) . . . P(aL . . . aL−W+1)

P(aW . . . a2)P(aW+1 . . . a3) . . . P(aL−1 . . . aL−W+1)
.

(2)

By defining yi = ai ai+1 . . . ai+W−2 (substrings of length
W − 1) we obtain the following log likelihood L:

L = log P(S) =
L−W+1∑

i=1

log P(xi ) −
L−W+1∑

i=2

log P(yi ) .

(3)
The first term, which has to be maximized, is the log
likelihood of a set of independent substrings of length
W . This can be accomplished with the EM algorithm,
as shown below. The second term, which has to be
minimised, is the log likelihood of a set of independent
substrings of length W − 1. This contribution corrects
for the fact that our substrings are strongly overlapping
and therefore not idependent. Since the minimization of
the log likelihood would have to resort to a slow iterative
procedure, we adopt the following approximate method.
First, the dependence of the substrings is neglected, that

† Equations (1)–(3) were suggested by the anonymous referees.
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is, the second term is discarded and L is approximated by

L ≈
L−W+1∑

i=1

log P(xi ). (4)

The effect of the second, neglected, term is then heuris-
tically incorporated into the optimization procedure by
discarding substrings that show a significant overlap with
other motifs. This is discussed in Section 2.3.

We assume a set of N unaligned sequences S =
{S1, . . . SN } of length L1, . . . , L N , respectively. In order
to deal with the problem of identifying motifs of length
W we construct a new dataset containing all substrings of
length W in S. Since for each original sequence Ss (of
length Ls) there are ms = Ls − W + 1 possible substrings
of length W, we obtain a training dataset X = {x1, . . . , xn}
of n substrings (n = ∑N

s=1 ms) for the learning problem.
A mixture of motifs model f for an arbitrary substring

xi assuming g components can be written as

f (xi ; �g) =
g∑

j=1

π jφ j (xi ; θ j ), (5)

where �g is the vector of all unknown parameters
in the mixture model of g components, i.e. �g =
[π1, . . . , πg−1, θ1, . . . , θg]. The mixing proportion π j
(π j ≥ 0, ∀ j = 1, . . . , g) can be viewed as the prior
probability that data xi has been generated by the j th
component of the mixture. It holds that

∑g
j=1 π j = 1.

Each one of the g components corresponds to either a
motif or the background. A motif j can be modeled by
a position weight matrix PWM j = [p j

l,k] of size [� ×
W j ], where each value p j

l,k denotes the probability that
the letter αl is located in motif position k. Although the
general model considers motifs of variable length W j , in
the sequel we assume motifs of constant length W . On
the other hand, a background component j is represented
using a probability vector BPM j (of length �), where

each parameter value �
j
l denotes the probability of letter

αl to occur at an arbitrary position. The probability that a
substring xi = ai1 . . . aiW , where aik ∈ � (k = 1, . . . , W )
has been generated by the component j is

φ j (xi ; θ j ) =
{ ∏W

k=1 p j
aik ,k

if j is motif∏W
k=1 �

j
aik if j is background,

(6)

where the probability matrix PWM j (or BPM j ) corre-
sponds to the parameter vector θ j .

The log-likelihood of the observed dataset X corre-
sponding to the above model is

L(�g) =
n∑

i=1

log f (xi ; �g). (7)

Formulating the problem as an incomplete-data problem
(McLachlan and Peel, 2001), each substring xi can be
considered as having arisen from one of the g components
of the mixture model of Equation (5). We can define the
parameters zi j = 1 or 0 (missing parameters) indicating
whether xi has been generated by the j-th component of
the mixture (i = 1, . . . , n ; j = 1, . . . , g). Then, the
complete-data log-likelihood Lc is given by

Lc(�g) =
n∑

i=1

g∑
j=1

zi j {log π j + log φ j (xi ; θ j )}. (8)

The EM algorithm can be applied for the log-likelihood
maximization problem by treating zi j as missing data.
The following update equations are obtained for each
component j (Render and Walker, 1984; Bailey, 1995;
Bailey and Elkan, 1995)

z(t+1)
i j = Pr(zi j = 1|xi , �

(t)
g ) = π

(t)
j φ j (xi ;θ(t)

j )

f (xi ;�(t)
g )

, (9)

π
(t+1)
j = 1

n

∑n
i=1 z(t+1)

i j , (10)

θ
(t+1)
j =




p̂ j
l,k = ĉ j

l,k∑�
l=1 ĉ j

l,k

if j is motif

�̂
j
l = ĉ j

l∑�
l=1 ĉ j

l

if j is background,
(11)

where the elements ĉ j
l,k (ĉ j

l ) correspond to the observed
frequency of letter αl at position k of motif j occurrences
(at background j arbitrary positions) and can be formally
expressed as

ĉ j
l,k =

n∑
i=1

z(t+1)
i j I(aik, l) if j is motif

ĉ j
l =

n∑
i=1

z(t+1)
i j

W∑
k=1

I(aik, l) if j is background.

(12)
The indicator I(aik, l) denotes a binary function which is
given as

I(aik, l)=
{

1 if aik ≡ αl (letter αl is at position k of xi )
0 otherwise.

(13)
Equations (9)–(11) can be used to estimate the param-

eter values �g of the g-component mixture model which
maximize the log-likelihood function [Equation (8)].
After training the mixture model, the motif occurrences
(substrings xi ) can be obtained using the estimated
posterior probabilities zi j [Equation (9)]. Since it has
been shown that the application of the EM algorithm to
mixture problems monotonically increases the likelihood
function (Dempster et al., 1977), these EM steps ensure
the convergence of the algorithm to a local maximum
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of the likelihood function in most cases (in some rare
cases this can also be a saddle point). However, its great
dependence on parameter initialization and its local nature
(it gets stuck in local maxima of the likelihood function)
do not allow us to directly apply the EM algorithm to a
g-component mixture of motifs model.

To overcome the problem of poor initialization of
the model parameters, several techniques have been
introduced (McLachlan and Peel, 2001). The MEME
approach, for example, uses a dynamic programming
algorithm which estimates the goodness of many possible
starting points based on the likelihood measurement
of the model after one iteration of EM (Bailey, 1995;
Bailey and Elkan, 1995). Our method provides a more
efficient combined scheme by applying global search over
appropriate defined candidate motifs, followed by a local
search for fine tuning the parameters of a new motif. In
Section 2.2 we describe a procedure for properly adding a
new motif and it is shown how the monotone increase of
the likelihood can be guaranteed.

2.2 Greedy mixture learning
Assume that a new component φg+1(xi ; θg+1) is added
to a g-component mixture model f (xi ; �g). The new
component corresponds to a motif modeled by the position
weight matrix PWMg+1 denoted by the parameter vector
θg+1. Then the resulting mixture has the following form:

f (xi ; �g+1) = (1 − a) f (xi ; �g) + aφg+1(xi ; θg+1),
(14)

with a ∈ (0, 1). �g+1 specifies the new parameter
vector and consists of the parameter vector �g of the g-
component mixture, the weight a and the parameter vector
θg+1. Then, the log-likelihood for �g+1 is given by

L(�g+1) =
n∑

i=1

log f (xi ; �g+1) =
n∑

i=1

log{(1 − a) f (xi ; �g) + aφg+1(xi ; θg+1)}. (15)

The above formulation proposes a two-component like-
lihood maximization problem, where the first component
is described by the old mixture f (xi ; �g) and the second
one is the motif component φg+1(xi ; θg+1) with θg+1 =
[pg+1

l,k ] (l = 1, . . . , �; k = 1, . . . , W ) describing the po-
sition weight matrix PWMg+1. If we consider that the pa-
rameters �g of f (xi ; �g) remain fixed during maximiza-
tion of L(�g+1), the problem can be treated by applying
searching techniques to optimally specify the parameters
a and θg+1 which maximize L(�g+1).

An efficient technique for the specification of θg+1 is
presented in Vlassis and Likas (2002) using a combination
of local and global searching. In particular, an EM algo-
rithm performs local search for the maxima of likelihood

with respect to a and θg+1, where the learning procedure is
applied only to the mixing weight a and the probabilistic
quantities pg+1

l,k of the newly inserted component (motif-
model). Following Equations (9)–(11) and assuming that
the new component describes a motif, the following up-
date procedures can be derived.

z(t+1)
i,g+1 = Pr(zi,g+1 = 1|xi , θ

(t)
g+1, a(t)) =

a(t)φg+1(xi ;θ(t)
g+1)

(1−a(t)) f (xi ;�g)+a(t)φg+1(xi ;θ(t)
g+1)

, (16)

a(t+1) = 1
n

∑n
i=1 z(t+1)

i,g+1, (17)

θ
(t+1)
g+1 = [ p̂g+1

l,k ], where p̂g+1
l,k = ĉg+1

l,k∑�
l=1 ĉg+1

l,k

, (18)

where

ĉg+1
l,k =

n∑
i=1

z(t+1)
i,g+1 I(aik, l). (19)

The above partial EM steps constitute a simple and
fast method for local searching the maxima of L(�g+1).
However, the problem of poor initialization still remains
since this scheme is very sensitive to the proper initial-
ization of the two parameters a and θg+1. For this reason
a global search strategy has been developed (Vlassis
and Likas, 2002) which facilitates the global search over
the parameter space. In particular, by substituting the
log-likelihood function [Equation (15)] using a Taylor
approximation about a point a = a0, we can search
for the optimal θg+1 value from the resulting estimate.
Therefore, we expand L(�g+1) by second order Taylor
expansion about a0 = 0.5 and then the resulting quadratic
function is maximized with respect to a. This results into
the following approximation:

L̂(�g+1) = L(�g+1|a0) − [L̇(�g+1|a0)]2

2L̈(�g+1|a0)
, (20)

where L̇(�g+1) and L̈(�g+1) are the first and second
derivatives of L(�g+1) with respect to a. It can be shown
(Vlassis and Likas, 2002) that, for a given parameter
vector θτ , a local maximum of L(�g+1) near a0 = 0.5
is given by

L̂(θτ ) =
n∑

i=1

log
f (xi ; �g) + φg+1(xi ; θτ )

2
+

1

2

[∑n
i=1 δ(xi , θτ )]2∑n
i=1 δ2(xi , θτ )

, (21)

and is obtained for

â = 1

2
− 1

2

∑n
i=1 δ(xi ; θτ )∑n

i=1 δ2(xi ; θτ )
, (22)
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where

δ(xi , θτ ) = f (xi ; �g) − φg+1(xi ; θτ )

f (xi ; �g) + φg+1(xi ; θτ )
. (23)

If the estimated value of a falls outside the range
(0, 1) then we can initialize the partial EM with the
approximation â = 0.5 for g = 1 and â = 1/(g + 1)

for g ≥ 2, according to Li and Barron (2000).
The above methodology has the benefit of modifying

the problem of maximizing the likelihood function [Equa-
tion (15)] to become independent on the selection of initial
value for the mixing weight a. In addition, this procedure
reduces the parameter search space and restricts global
searching on finding good initial values θτ of the proba-
bility matrix θg+1 (probabilities pg+1

l,k ). The last observa-

tion is made clearer from Equation (21) where L̂(θτ ) de-
pends only on φg+1(xi ; θτ ), while f (x; �g) remains fixed
during optimization. The only problem is now the identi-
fication of a proper initial value θτ so as to conduct partial
EM steps. Therefore we need to find candidates for the
initialization of the motif parameters.

2.3 Candidate selection for initializing new model
parameters

A reasonable approach of initializing motif parameters
θg+1 is to search for candidates directly over the total
dataset of substrings X = {xτ }, (τ = 1, . . . , n), where
xτ = aτ1 . . . aτW . For this reason each substring xτ is
associated with a position weight matrix θτ constructed as

θτ = [pτ
l,k], where pτ

l,k =
{

λ if aτk = αl
1−λ
�−1 otherwise. (24)

The parameter λ has a fixed value in the range (0, 1),
where its value depends on the � alphabet size (�) and
satisfies λ ≥ 1/� (e.g. λ 	 0.05 for protein sequence
alphabet where � = 20). Therefore, the (local) log-
likelihood L̂(θτ ) is determined by selecting among the
θτ -matrices (τ = 1, . . . , n) the one which maximizes the
right-hand side of Equation (21), i.e.

θ̂g+1 = arg max
θτ

L̂(θτ ). (25)

In order to accelerate the above searching procedure
the following quantities ξτ,i for each substring xi =
ai1 . . . aiW are computed

ξτ,i (= φg+1(xi ; θτ )) =
W∏

k=1

pτ
aik ,k , (26)

which substitute for the φg+1(xi ; θτ ) in Equations (21)
and (23). Following this observation, the searching is
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Sorted characters 

Character variance in position 3

"odd"

"even"
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left subset right subset

"even" characters"odd" characters (C, D)(A, B)

Fig. 1. Partitioning occurs in the third position that presents the
maximum character variance.

made over these quantities ξτ,i which maximize Equa-
tion (21). The constructed matrix  with elements ξτ,i
is calculated once during the initialization phase of
the learning algorithm and is applied each time a new
component is added to a g-component mixture. Similar
techniques for searching for global solutions over the
parameter space have been proposed in Smola et al.
(1999); Vlassis and Likas (2002).

The drawback of searching for candidates over all sub-
strings n of the dataset is the increasing time complexity
(O(n2)) of the search procedure. Indeed, O(n2) compu-
tations are needed since the likelihood of every substring
under every such candidate parameterized model must be
computed. In order to reduce the complexity, we perform a
hierarchical clustering pre-processing phase based on kd-
trees. Original kd-trees (Bentley, 1975) were proposed in
an attempt to speed-up the execution of nearest neighbor
queries by defining a recursive binary partitioning of a k-
dimensional dataset, where the root node contains all data.
Most such techniques partition the data at each tree level
using an appropriate hyperplane perpendicular to the di-
rection which presents major variance of the data (Sproull,
1991; Verbeek et al., 2001).

A modification is proposed in order to deal with
sequential data. Starting with a root node that contains the
total set of substrings X , at each step we partition the set of
substrings at each node using an appropriate criterion. In
particular, after calculating the relative frequency values
fl,k of each character αl at each substring position k in the
subset of substrings contained in that node, we identify the
position q that exhibits the largest entropy value Hk :

Hk = −
∑
αl ∈�

fl,k>0

fl,k log fl,k , (27)

and q = arg maxk=1,...,W {Hk}. The partitioning procedure
is implemented by initially sorting the characters αl in the
position q according to their relative frequency values fl,q
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Fig. 2. The neighborhood of a motif occurrence.

and then labeling them as ‘odd’ or ‘even’. In this case two
subsets are created (left and right), which are successively
filled with the substrings that contain the ‘odd’ (left) and
the ‘even’ (right) characters in the position q. An example
is shown in Figure 1 where the third position with the
maximum entropy is selected for partitioning.

The above recursive procedure builds a tree with several
nodes and the partitioning for a node is terminated (leaf
node) when the number of included substrings is lower
than a fixed value T . Every node of the tree contains a
subset (cluster) of the original set of substrings and each
such cluster is characterized by its centroid (consensus
substring). Therefore, the total set of leaf nodes consists
of C centroids and their corresponding position weight
matrices [obtained by Equation (24)] constitute the candi-
date motif parameters used in global searching. Our exper-
iments have shown that this partitioning technique drasti-
cally accelerates the global search procedure without af-
fecting significantly its performance.

Another problem we must face concerns the occurrence
of overlappings with the already discovered motifs during
the selection of a candidate motif instance. As it has been
already discussed in Section 2.1 this is necessary since
our objective is to find a set of motifs that do not exhibit
any significant overlap. Therefore when a new motif is
discovered, substrings which correspond to positions next
to the motif occurrences in the original set of sequences
(determining the neighborhood of motif occurrences)
contain a portion of the discovered motif. If any of these
overlapping substrings were used as a candidate motif
model for the initialization of a new component, it would
probably lead (as the performance of the EM algorithm
depends very much on the initialization of the parameters
(Dempster et al., 1977; McLachlan and Peel, 2001)) to the
discovery of a new motif that would exhibit significant
overlap with another one already being discovered. An
example is illustrated in Figure 2, where the substrings x1,
. . . x7 of length W = 4 overlap with the discovered motif
occurrence x4 = DACD and these substrings should not be
subsequently considered as candidates for the discovery of
additional motifs.

In order to avoid this inconvenience, a binary indicator
value � is introduced for each leaf node (τ = 1, . . . , C),

whose value indicates the occurrence of a significant
portion of a motif already being discovered (�τ = 1)
in the subset corresponding to that node. A parameter
K (K < W ) is used to define the neighborhood Ni of
a motif occurrence xi as the set of substrings x j ( j =
i − K , . . . , i + K ) which match at least K contiguous
characters with xi , and thus are derived from K left and
K right starting positions from the starting position i (in
the original set of sequences) that corresponds to xi , i.e.

Ni = {x j }, j = i − K , . . . , i + K . (28)

For example, setting K = 2 the substrings x j ( j =
2, . . . , 6) in Figure 2, are included in the neighborhood of
the motif occurrence x4 = DACD. Initially we set �τ = 0
(∀τ = 1, . . . , C), and whenever a new motif g is found
and its motif occurrences xi are identified‡, the leaf nodes
τ that contain substrings belonging to the neighborhood
Ni of one of the xi are excluded (�τ = 1) from the set
of candidate motifs used in the global search phase. Best
results are obtained for K < W/2.

The above strategy eliminates the possibility of over-
lappings among the motifs discovered and ensures
proper specification of candidate motif models, while
at the same time it iteratively reduces further the time
complexity of the global search. In comparison with the
MEME approach where substrings that correspond to
the neighborhood of motif occurrences are deleted from
the dataset, in our scheme the overlapping substrings
are only excluded from the set of candidate motifs used
in the global search phase. This constitutes a significant
advantage over the MEME approach.

Algorithm 1 summarizes the described ideas for learn-
ing a mixture of motifs model for the motif discovery
problem. It ensures the monotonic increase of the log-
likelihood of the learning set since EM cannot decrease
the log-likelihood and the proposed partial EM solutions
are accepted only if L(�g+1) > L(�g). The stopping
condition of the algorithm depends not only on the
maximum allowed number of components g (specified
by the user), but also on the vector � . This means that
in the case �τ = 1, ∀τ = 1, . . . , C , the parameter space
for selecting candidate components has been entirely
searched and therefore the possibility of existence of
another motif in the set of sequences is very low.

3 EXPERIMENTAL RESULTS
The experiments described in this section have been
conducted using both artificial§ and real datasets. In all
the experiments the parameter λ [Equation (24)] was set

‡ The motif occurrences xi are those with zig values (Equation (9)) that are
close to 1 (e.g. zig > 0.9).
§ A documentation that describes experiments with artificial datasets can be
downloaded at http://www.cs.uoi.gr/∼kblekas/greedy/GreedyEM.html.
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Algorithm 1 : The Greedy EM algorithm
Start with a set of N unaligned sequences S = {Ss } with length Ls = |Ss |
(s = 1, . . . , N ), taking values from alphabet � = {α1, . . . , α�} of length
� = |�|.

initialize
• Apply a window of length W to the original set S creating a

learning dataset of substrings X = {xi } (i = 1, . . . , n), where
n = ∑N

s=1(Ls − W + 1).

• Apply the proposed kd-tree approach over the dataset X , find the C
final consensus substrings and define the corresponding C candidate
initial parameter values θτ , τ = 1, . . . , C (Equation 24) used for
global searching.

• Initialize �τ = 0, ∀τ = 1, . . . , C , and calculate matrix  of
quantities ξτ,i according to Equation 26.

• Initialize the model using one component (g = 1) that represents the
background with parameter settings (probability matrix θ1) equal to

the relative frequencies of characters αl ∈ �, i.e. �1
l = fl∑N

s=1 Ls
,

where fl indicates the frequency of character αl in the set of
sequences S.

repeat
1. Perform EM steps (Equations 9-11) until convergence:

|L(t)(�g)/L(�g)(t−1) − 1| < 10−6.

2. If g ≥ 2 then from the motif occurrences xi (with zig > 0.9)
find their neighborhood Ni = {x j } ( j = i − K , . . . , i + K ) and
set �τ = 1 for each leaf node τ which contains any of the x j .

3. Insert a new candidate component g + 1 by searching over
all θτ (where τ = 1, . . . , C and �τ = 0) and setting θ̂g+1
equal to the θτ that maximize the log-likelihood function of
Equation 21 using the already calculated quantities ξτ,i instead
of φ(xi ; θτ ). Compute the weight â using the obtained value
θ̂g+1 in Equation 22.

4. Perform partial EM steps (Equations 16 - 18) with initial values
â and θ̂g+1, until convergence as in step 1 and obtain the
parameter values �g+1.

5. If L(�g+1) > L(�g) then accept the new mixture model with
g + 1 components and go to step 1, otherwise terminate.

until an appropriate condition is met (e.g. maximum number of motifs, or∑C
τ=1 �τ = C).

equal to 0.8, and while we set K = 1 to specify the
neighborhood of a motif. Finally, the proper value for
parameter T (maximum size of the kd-tree leaf nodes)
was empirically estimated T = N/2 (half the number of
sequences).

For all the experimental datasets we have also applied
the MEME approach using the available software from
the corresponding Web site¶, where we have selected the
‘any number of repetitions’ model (Bailey, 1995; Bailey
and Elkan, 1995) as it is equivalent to the one used in our
approach.

3.1 Experiments with real datasets
Our experimental study with real datasets has two objec-
tives. First to measure the effectiveness of our method
in discovering already known motifs in real protein

¶ The Web site of MEME/MAST system version 3.0 can be found at http:
//meme.sdsc.edu/meme/website/

Table 1. The PRINTS datasets selected for our experimental study and their
fingerprints as reported in the PRINTS Web site

PRINTS Sequences PRINTS fingerprints
family (average length) (number and length of motifs)

PR00058 16 (297) 6 (W = [20, 21])
PR00061 24 (120) 4 (W = [24, 30])
PR00810 6 (286) 2 (W = [10, 11])
PR01266 24 (222) 3 (W = [15, 17])
PR01267 22 (218) 4 (W = [12, 14])
PR01268 19 (209) 3 (W = [17, 22])

families, as well as to explore the possibility of obtaining
additional (currently unknown) motifs and therefore build
larger groups of characteristic motifs for real families.
Second to study the diagnostic capabilities of groups of
motifs constructed by the proposed Greedy EM approach,
by measuring their classification accuracy within the
SWISS-PROT database of protein sequences (Bairoch
and Apweiler, 2000). In this spirit, we have selected real
datasets from the PRINTS database (Attwood et al., 2000)
and the PROSITE database of protein families (Hofmann
et al., 1999).

To evaluate the quality of the discovered motifs we
computed the information content (IC) (also called relative
entropy) (Bailey and Elkan, 1995; Hertz and Stormo,
1999) as follows:

I C j =
W∑

k=1

∑
αl∈�

p j
lk log2

p j
lk

f̄αl

, (29)

where f̄αl indicates the overall relative frequency of letter
αl in the training set of sequences. As stated in Hertz
and Stormo (1999); Tompa (1999) the IC provides a
good measure for comparing motifs having nearly the
same number of occurrences, but not in cases where the
numbers of motif occurrences are quite different.

3.1.1 Discovering fingerprints for PRINTS datasets
The PRINTS database contains protein family finger-
prints which are groups of motifs that occur in every
family member and thus are characteristic of a family.
The identification of the fingerprints within the PRINTS
database has been made using database scanning al-
gorithms from sequence analysis tools Attwood et al.
(2000). Current release of PRINTS (32.0) contains 1600
families with 9800 individual motifs.

Six (6) PRINTS families have been selected as shown
in Table 1. For each family, we conducted experiments for
several values of the motif length W . In each experiment
we applied both MEME and Greedy EM until at most
15 motifs had been discovered. The final fingerprints
provided by each technique included only the motifs that
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Fig. 3. The number of the motifs discovered by MEME and Greedy EM for several values of the motif length W in each PRINTS dataset.
The numbers inside the graph indicate average IC-scores for the discovered fingerprints.

occur once in every family member (single copy per
sequence). The remaining motifs were removed from the
final set.

Figure 3 displays the obtained results where the vertical
bars represent the fingerprint size (number of motifs
occurring in every training sequence). Since all motifs
exhibit the same number of occurrences in the training
sequences, the IC-score can be employed for motif
evaluation. For this reason, the average IC-scores of the
identified fingerprints are also presented in Figure 3 for
several values of the motif length W ‖. From the results it
is clear that the proposed method has the ability to build
greater and better conserved fingerprints for almost every
value of W .

3.1.2 Measuring the classification accuracy in protein
families It has been previously mentioned that one
significant reason for identifying characteristic motif-
models of sequence families is related to the subsequent
employment of the motifs for classification purposes. The
MAST algorithm (Bailey and Gribskov, 1998) constitutes
an example of a sequence homology searching tool that
matches multiple motif models against a set of sequences

‖ More details on the discovered PRINTS fingerprints can be found at http:
//www.cs.uoi.gr/∼kblekas/greedy/GreedyEM.html.

using as test statistic the product of the p-values of motif
match score.

The purpose of this series of experiments is to evaluate
the quality of motifs in protein families discovered by both
the MEME and the Greedy EM approach by measuring
their classification accuracy in sets of target sequences.
Since the previous experimental results have demonstrated
the potential of our approach to discover a larger number
of more conservative motifs, we next proceed in using the
discovered motifs for sequence homology searching.

We have selected to experiment with four datasets
from the PROSITE database of protein sequence families
(Hofmann et al., 1999) summarized in Table 2. The
sequences of each dataset were considered as positive
data, and a small percentage of sequences from each
family was randomly selected as the training datasets
for motif discovery. A fixed value W = 10 has been
selected as the length of the motifs and redundant motifs
were removed∗∗ from the set of motifs provided by
each algorithm. The numbers of the characteristic motifs
discovered for the four PROSITE families are presented
in Table 3 where it is again obvious the capability of the
Greedy EM approach to identify larger motif groups.

∗∗As indicated by the experiments, the redundant motifs have no effect on the
performance of the MAST homology detection algorithm.
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Fig. 4. Receiver operating characteristic (ROC50) curves for four different PROSITE families using the Greedy EM (solid line) and the
MEME (dot line) for motif discovery and then applying each group of motifs to the MAST homology finding algorithm.

Table 2. The PROSITE families used for the experimental study of the
diagnostic significance of the group of the discovered motifs. The entire
SWISS-PROT database (release 40, 103990 sequences) was used as the
set of target sequences for evaluating the classification performance of the
MEME–MAST and the Greedy EM–MAST approaches

SWISS-PROT PROSITE Positive Training set
(test set) family data (average length of seqs)

PS00030 303 15 (467)
103990 PS00061 317 20 (272)
sequences PS00075 72 14 (218)

PS00716 100 20 (396)

The MAST homology search algorithm is used to cal-
culate the statistical significance (E-value) of the matches
of a group of motifs (characteristic of a protein family)
to target real sequences. The experimental methodology
(adopted from Bailey and Gribskov (1998)) is the follow-
ing: After training a set of sequences with MEME and
Greedy EM, the MAST software takes as input the set
of discovered motifs and computes the E-value for each
sequence in the SWISS-PROT database (SWISS-PROT
release 40, number of entries 103990 sequences). By
specifying a threshold for the E-value we classify as
positives those target sequences with E-value lower than
the threshold.

Table 3. Number of motifs of length W = 10 discovered using the MEME
and the Greedy EM algorithm in the four PROSITE families

PROSITE Number of discovered motifs (W = 10)
family MEME Greedy EM

PS00030 4 7
PS00061 5 10
PS00075 7 10
PS00716 13 17

For each experiment we measured the number of false
positives and true positives observed at a given E-
value threshold in order to estimate the sensitivity and
specificity of each method. Figure 4 summarizes the
performance of the two techniques in the four real datasets
by presenting the receiver operating characteristic curves,
i.e. plots of the true positives as a function of false
positives for varying E-value thresholds until 50 false
positives are found (ROC50) (Gribskov and Robinson,
1996). The superior classification performance of the
MAST algorithm using the motifs provided by the Greedy
EM algorithm is obvious from the plotted curves. In
PROSITE family PS00075 for example, the use of Greedy
EM results in sensitivity 94.44% with specificity 100%
for E-value threshold = 0.001. When using the MEME
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motifs, for the same classification behavior (specificity
100%) only 28 true positives are found, corresponding to
sensitivity 38.89%, for E-value threshold = 10−6. In all
the ROC50 plots in Figure 4, the curves that correspond
to Greedy EM–MAST method are located higher than
those of MEME–MAST especially for lower E-values,
thus indicating superior classification accuracy (higher
sensitivity and specificity rates).

4 CONCLUSIONS
In this paper we have proposed a greedy EM algorithm for
solving the multiple motif discovery problem in biological
sequences. Our approach describes the problem through
likelihood maximization by mixture learning using the
EM algorithm. It learns a mixture of motifs model in
a greedy fashion by iteratively adding new components.
This is achieved through a combined scheme of local and
global search which ensures fine tuning of the parameter
vector of the new component. In addition a hierarchical
clustering procedure is proposed based on the notion of
kd-trees, which results in partitioning the (usually) large
datasets (containing all substrings of length W ) into a
remarkable smaller number of candidate motif-models
used for global searching. As it has been experimentally
shown, this partitioning technique constitutes an effective
strategy which manages to significantly reduce the time
complexity for global searching without affecting the
performance of the whole algorithm.

We have studied the performance of the proposed
algorithm in several artificial and real biological datasets,
including hard problems of almost indiscernible motif
instances. Comparative results have also been provided
through the application of the MEME approach which ex-
hibits analogies to our method providing also an iterative
algorithm of learning mixture models. The differences
between the two approaches have been highlighted
throughout this paper, while experiments have shown the
superiority of the Greedy EM in discovering larger sets
of more distinguishable (clearer) motifs (fingerprints) as
suggested by the information content measure. The results
obtained from the experimental study with the PROSITE
database have also proved the ability of the greedy method
to build more compact groups of diagnostic motifs for
protein families that can provide with better homology
searching and classification capabilities.

It must be noted that our approach has been developed
mainly in an attempt to overcome some limitations of the
MEME scheme, such as erasing input data each time a
new motif is discovered using the assumption that this
motif is correct, and limiting the model exclusively to the
two-component case. Our technique actually overcomes
these limitations based on recent methods for incremental
mixture density estimation.

Ongoing research is mainly focused on working with
multiple motifs of variable length. This can be viewed as a
problem of expanding an existing model and determining
the correct number of its parameters (the optimum width
of the motif). Several model selection techniques can be
adopted for this reason that have been proposed mainly
for Gaussian mixture models, such as the likelihood
ratio test (LRT), the minimum description length (MDL),
the Markov chain Monte Carlo (MCMC) method, the
Bayesian information criterion (BIC), the asymptotic
information criterion (AIC) and some recent Bayesian
approaches (Roberts et al., 1998; McLachlan and Peel,
2001).
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