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a b s t r a c t 

A real time, kernel based, model-free tracking algorithm is proposed, which employs a weighted von 

Mises mixture as the target’s appearance model. The mixture weights, which are provided by a spatial 

kernel, along with the hue values are used in order to estimate the parameters of the weighted von 

Mises mixture model. The von Mises distribution is suitable for circular data and it is employed in order 

to eliminate drawbacks in kernel-based tracking caused by eventual shifts of the target’s histogram bins. 

The weights allow a mean shift-like gradient based optimization by maximizing the weighted likelihood, 

which would not be feasible in the context of a standard von Mises mixture. Moreover, as only the hue 

component of the target is involved, many quantities of the algorithm may be pre-calculated for given 

parameters and therefore the algorithm can perform in real time, which is experimentally confirmed. 

Finally, it is shown that the proposed method has comparative performance in terms of accuracy and 

robustness with other state-of-the-art tracking algorithms. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Visual object tracking is among the challenging problems in

computer vision, with many applications, such as human computer

interaction, robotics and surveillance. The challenges in visual ob-

ject tracking include the presence of occlusion, change of scene

illumination, variations in object’s scale and shape, camera move-

ment and varying viewpoints. In order to tackle these challenges,

many trackers have been proposed with different approaches to

the problem [34] . Some of these techniques include particle filters

[18,29,30] , template matching [31,39,42] , target’s subregion track-

ing [10,43,45] and object - background distinction [2,9,11,37,40,41] .

Usually, the representation of the target and the function that

matches the target between the frames is part of the proposed

methodology. However, in a different approach the matching func-

tion is learned by the proposed Siamese deep neural network [36] .

A category of trackers addresses the problem of model-free

shape by employing spatial kernels and modeling the color dis-

tribution of the target [6,23–25,28,38] . Although the algorithms

in this category have some differences, they share some com-

mon properties. In general, the region of the object is approxi-

mated by an ellipse and it is spatially masked by a kernel which

assigns greater weights to pixels near the center of the ellipse.
∗ Corresponding author. 
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he kernel makes feasible a gradient-based optimization instead

f a brute force search for target localization and real-time per-

ormance. Moreover, its color distribution is usually modeled by a

istogram. Here, we must note that the term kernel which is used

n the current work should not be confused with the kernel trick

hat is used in some approaches and can efficiently perform a non-

inear classification. These approaches include a kernelized SVM

lassifier which learns a prediction function that directly estimates

he object transformation between frames [12] and a kernelized

orrelation filter which has the exact same complexity as its linear

ounterpart and can process hundreds of frames per second [14] . 

A representative algorithm of this category is the mean shift al-

orithm [7] . In the first frame, it estimates a target model which is

epresented by a histogram. In consecutive frames, the location in

hich the corresponding histogram is similar to the target model

s estimated. This approach compares only the corresponding bins

etween histograms, so if the bins values are shifted due to illumi-

ation change, then the object may be lost. Some other approaches

ave tried to solve this issue. The earth mover’s distance (EMD)

as used in order to estimate the distance between the target

odel and target candidate histogram signatures [44] . However,

he solution is not in closed form and each iteration is limited to

ne pixel movement. Similar in spirit, an algorithm was proposed

hich minimizes the EMD between Gaussian mixture models [16] .

n an other method, the EMD is minimized for 1D histograms but

ts computation is avoided for multidimensional histograms using

 cross-bin metric [22] . Finally, weighted Gaussian mixture models
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ave been employed in order to model the target in the first frame

f the image sequence and to estimate the spatial location of the

arget in subsequent frames using a mean shift update [17] . 

Although the features that represent the object are usually the

uminance or the RGB color value of each pixel, the HSV provides

n attractive representation that has been used for visual tracking

1] . Moreover, the HSV color space was employed in the context

f mean shift [4] . The hue component is a flexible representation,

ue to the fact that is closely related to what humans perceive as

olor. Moreover, hue is unrelated to illumination changes, as these

hanges are encoded in the saturation and value components.

hese properties are highlighted by the author in order to support

is decision to use only the hue component. Another advantage

f using the hue component of the HSV color space instead of the

ull RGB color space is that the dimensions of the problem are

educed to one instead of three. 

The hue component does not depend on illumination changes,

ut this does not prevent its histogram bins to be shifted ( Fig. 3 ).

n these cases, we can not directly apply the approaches that were

roposed for the mean shift algorithm, due to the fact that the

ue is periodic with period 2 π and these methodologies have

een proposed for linear color spaces. 

In this work, we use the hue component of the HSV color space

or visual object tracking and we employ a weighted von Mises

ixture model in order to overcome drawbacks caused by shifting

istogram values. The von Mises distribution is the circular analog

f the normal distribution on a line, and it can be used in order

o model circular data. The values of the hue component that is

eriodic with period 2 π , can be represented as points in the two

imensional unit circle. Thus, the terms periodic random variable

nd circular data will be considered interchanged in this paper.

oreover, we propose the weighted von Mises mixture to model

he distribution of the hue value when a single von Mises distri-

ution is not flexible enough to describe the target. To the best of

ur knowledge, this is the first time a von Mises mixture is used

n visual object tracking in order to model the object appearance.

oreover, the proposed weighted von Mises mixture employs the

patial weights that are provided by the kernel. The von Mises

istribution has been employed in order to model sensor noise

32] , the direction of the movement [5,19,35] , and the pose of

n object [15] . Moreover, a single wrapped Gaussian distribution,

hich was also designed for circular data, was used in order to

odel the background hue component [33] . 

In the remaining of the paper, Section 2 reviews the von Mises

istribution and presents the proposed weighted von Mises mix-

ure model, Section 3 integrates the proposed weighted von Mises

ixture model in the visual tracking framework. Experimental

esults are presented in Section 4 and conclusions are drawn is

ection 5 . 

. Weighted von Mises mixture model 

.1. Introduction to the von Mises distribution 

There are cases in image processing and analysis where the

easured quantity is periodic and modeling it by a periodic vari-

ble may be an advantage (e.g. the hue component of an image in

he HSV color space). In what follows, we assume that the period

s 2 π and the periodic variable is defined in the interval [0, 2 π ).

f the variable is defined in another interval, we may map this

nterval to [0, 2 π ). We will also refer to the observations (e.g. hue

alues) as angles accordingly. 

The main drawback of circular data is that we can not directly

pply a conventional distribution (e.g. Gaussian) as there is a

ependence on the choice of the origin. For example, if we have

wo angles one at 0 and one at π , then if we select 0 as the origin
hen the mean of these angles is π /2. However, if we select π /2

s the origin, that is the interval is [ π /2, 5 π /2), the mean is 3 π /2

ue to the fact that the angle 0 is mapped to the angle 2 π . In

rder to overcome these drawbacks, the von Mises distribution

as been proposed. For a complete reference to its properties, the

eader is referred to [3] . Here we summarize the key points. 

The von Mises probability density function for an angle a is

iven by: 

 (a ; θ, m ) = 

1 

2 π I 0 (m ) 
e m cos (a −θ ) , (1)

here θ is the mean, m is the concentration (analogous to the

nverse variance), I 0 ( m ) is the zeroth-order Bessel function of the

rst kind, which is defined as I 0 (m ) = 

∫ 2 π
0 e m cos (t) dt. For large

alues of m the distribution becomes Gaussian and for m = 0 it

ecomes uniform. 

In order to estimate the parameters θ and m having some ob-

erved angles A = { a n } n =1 , ... ,N , we can use the maximum likelihood

stimation. The log-likelihood of the model is given by: 

n p( A ; θ, m ) = ln 

N ∏ 

n =1 

M (a n ; θ, m ) 

= −N ln (2 π) − N ln (I 0 (m )) + m 

N ∑ 

n =1 

cos (a n − θ ) . (2) 

y maximizing (2) with respect to θ we obtain: 

= tan 

−1 

(∑ N 
n =1 sin (a n ) ∑ N 
n =1 cos (a n ) 

)
. (3) 

y maximizing (2) with respect to m we obtain the equation: 

I 1 (m ) 

I 0 (m ) 
= 

1 

N 

N ∑ 

n =1 

cos (a n − θ ) , (4) 

hich can be numerically solved, where I 1 (m ) = I ′ 
0 
(m ) =

 2 π
0 e m cos (t) cos (t ) dt . 

.2. Von Mises mixture model 

If the von Mises distribution is not flexible enough in order to

odel the observations, then we can use the von Mises mixture

odel as a linear superposition of von Mises components. The

robability density function of an angle a for a von Mises mixture

odel can be defined as: 

 (a ; θ, m , π) = 

K ∑ 

k =1 

πk M (a ; θk , m k ) , (5)

here K is the number of components, θ = { θk } k =1 , ... ,K are the

eans of the components, m = { m k } k =1 , ... ,K are the concentra-

ions of the components and π = { πk } k =1 , ... ,K are the importances

weights) of the components. 

In order to estimate the parameters we have to maximize the

og-likelihood function with respect to these parameters, which

an be achieved using the Expectation-Maximization algorithm

3,5] . We assume that we have observed N angles A = { a n } n =1 , ... ,N 

nd we want to estimate the parameters θ, m and π of the von

ises mixture model. The log-likelihood function is defined as: 

n L ( A ; θ, m , π) = 

N ∑ 

n =1 

ln 

(
L (a n ; θ, m , π) 

)
. (6)

We can define a set of random variables Z = { z n } n =1 , ... ,N , where

 n is a K -dimensional binary random variable which has z nk = 1 if

he n th angle is produced from the k th component, and z n j = 0 for

 � = k . Thus z n can reveal from which component the observation
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a n has been generated. In practice, the values of the variables Z are

not known, so they are called latent variables. If the value of the

corresponding latent variable z n is known for each observation a n ,

then the set { A , Z } is called the complete data set. The complete

data log-likelihood function is given by: 

ln L ( A , Z ; θ, m , π) 

= ln 

( 

N ∏ 

n =1 

K ∏ 

k =1 

( πk M (a n ; θk , m k ) ) 
z nk 

) 

= 

N ∑ 

n =1 

K ∑ 

k =1 

z nk ( ln πk + ln M (a n ; θk , m k ) ) . (7)

Due to the fact that the latent variables Z are not known, we

can only use their posterior distribution: 

p( Z ; A , θ, m , π) = 

p( A ; Z , θ, m , π) p( Z ; θ, m , π) 

p( A ; θ, m , π) 

∝ 

N ∏ 

n =1 

K ∏ 

k =1 

( πk M (a n ; θk , m k ) ) 
z nk . (8)

The expectation of the complete data log-likelihood is given by: 

Q = 

∑ 

Z 

p( Z ; A , θ, m , π) ln L ( A , Z ; θ, m , π) 

= 

N ∑ 

n =1 

K ∑ 

k =1 

r(z nk ) ( ln πk + ln M (a n ; θk , m k ) ) , (9)

where the r ( z nk ) is the expectation of the latent variable z nk : 

r(z nk ) = E[ z nk ] = 

∑ 

z nk 
z nk p(z nk ; a n , θk , m k , πk ) ∑ 

z n j 
p(z n j ; a n , θ j , m j , π j ) 

= 

πk M (a n ; θk , m k ) ∑ K 
j=1 π j M (a n ; θ j , m j ) 

. (10)

Now, the maximization of (9) with respect to θ, m , π can be easily

achieved. 

Thus, in order to evaluate the parameters θ, m , π of the von

Mises mixture model, we initialize these parameters to some

values and repeatedly apply the E-step and M-step. 

E-step: 

r(z nk ) = 

πk M (a n ; θk , m k ) ∑ K 
j=1 π j M (a n ; θ j , m j ) 

. (11)

M-step: 

N k = 

N ∑ 

n =1 

r(z nk ) , (12)

πk = 

N k 

N 

, (13)

θk = tan 

−1 

∑ N 
n =1 r(z nk ) sin (a n ) ∑ N 
n =1 r(z nk ) cos (a n ) 

, (14)

I 1 (m ) 

I 0 (m ) 
= 

1 

N k 

N ∑ 

n =1 

r(z nk ) cos (a n − θk ) . (15)

Note that (15) is not in closed form but can be numerically solved

with respect to the parameter m . 
.3. Weighted von Mises mixture model 

In our approach, we want the pixels that are more likely to

elong to the object to affect the estimation of the log-likelihood

ore than the pixel that are less likely to belong to the object.

n the general case, we seek to adapt (6) in order to model the

act that some observations are considered more important than

thers: 

n L ( A , w ; θ, m , π) = 

N ∑ 

n =1 

w n ln 

(
L (a n ; θ, m , π) 

)
, (16)

here w = { w n } n =1 , ... ,N are the weights of the observations. The

ational behind this approach is that the values a n are used multi-

le times in (6) instead of just one, virtually changing the number

f observations N . However, by aggregating their appearances into

 n we can keep the number of observations N constant, which

ields the definition of the weighted log-likelihood (16) . 

By using the same approach the E-step Eq. (11) remains

he same. On the other hand, the M-step Eqs. (13) –(15) change

ccordingly: 

 k = 

N ∑ 

n =1 

w n r(z nk ) , (17)

k = 

N k ∑ N 
n =1 w n 

, (18)

k = tan 

−1 

∑ N 
n =1 w n r(z nk ) sin (a n ) ∑ N 
n =1 w n r(z nk ) cos (a n ) 

, (19)

I 1 (m ) 

I 0 (m ) 
= 

1 

N k 

N ∑ 

n =1 

w n r(z nk ) cos (a n − θk ) . (20)

. Tracking using the weighted von Mises mixture model 

In this work we assume that the images employ the HSV color

odel and we use only the hue component, that is, each pixel is

epresented by a single value in the interval [0, 2 π ). We use only

he hue component as it provides a good representation of the

arget while being less computational intensive compared to other

pproaches like salient region detection [27] . Moreover, we assume

hat the object to be tracked can be represented by an ellipse. The

llipse has a center denoted by y = [ y (1) , y (2) ] T , where y (1) is the

orizontal coordinate and y (2) is the vertical coordinate of the cen-

er in the image coordinates system, and a vector h = [ h (1) , h (2) ] T ,

here h (1) is the length of the horizontal semi-axis and h (2) is the

ength of the vertical semi-axis of the ellipse. 

Having set the parameters y and h , we can assign a weight

o every pixel of the image by using a spatial kernel k ( t ) which

ill assign greater weights to pixels near the center of the ellipse.

ore specifically, we use a kernel with exponential profile: 

 (t) = 

{
e (−t/σ ) if t ≤ 1 

0 otherwise 
. (21)

sing this kernel, the weight w n ( y ) of the n th pixel with spatial

oordinates x n = [ x (1) 
n , x (2) 

n ] T is given by: 

 n ( y ) = k (M( x n ; y , h )) , (22)

here 

 ( x n ; y , h ) = 

(
x (1) 

n − y (1) 

h 

(1) 

)2 

+ 

(
x (2) 

n − y (2) 

h 

(2) 

)2 

= ( x n − y ) T H 

−1 ( x n − y ) , (23)
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s the squared Mahalanobis distance between x n and y with diago-

al covariance matrix H = diag(h (1) , h (2) ) . By using the function M

n (22) the drawback of the difference in axis lengths is overcome

ecause the normalized pixel coordinates, for pixels inside the

llipse, are now in the interval [0, 1]. Thus, the weights w n ( y ) for

ixels inside the ellipse are greater than zero, while pixels outside

he ellipse have weights equal to zero. 

.1. First frame 

We assume that the position of the ellipse is known in the

rst frame of the sequence. Thus, the objective here is to estimate

he von Mises mixture model using the hue component of the

ixels. The image consists of N pixels (with some given order, e.g.

ow-by-row), each pixel’s weight w n ( y ) is given by (22) and each

ixel’s hue component is denoted by a n . We can now estimate

he von Mises mixture model parameters θ, m , π using Eqs. (11) ,

18) –(20) of the EM algorithm. 

.2. Tracking in consecutive frames 

In every frame of the video (except for the first), we know: ( i )

he center y and the size h of the ellipse which represents the

arget in the immediately previous frame and ( ii ) the parameters

, m , π of the von Mises mixture model which models the dis-

ribution of the hue component of the object’s pixels. In order to

stimate the center of the ellipse in the current frame, a gradient

ased technique will be used. 

We seek to estimate the position y which maximizes the

og-likelihood: 

n L ( A , w ( y ) ; θ, m , π) = 

N ∑ 

n =1 

w n ( y ) ln 

(
L (a n ; θ, m , π) 

)
. (24)

his can be achieved by taking the derivative of (24) and setting it

o zero. The derivative of (24) is defined as: 

dL 

d y 
= 

[
dL 

dy (1) 
, 

dL 

dy (2) 

]T 

, (25) 

here: 

dL 

dy ( j) 
= 

N ∑ 

n =1 

dw n ( y ) 

dy ( j) 
L (a n ; θ, m , π) . (26)

he only term that depends on y is w n ( y ). By defining the negative

erivative of the kernel function as g(t) = − dk (t) 
dt 

, we have: 

dk ( M ( x n ; y , h ) ) 

dy ( j) 
∝ g ( M ( x n ; y , h ) ) 

x ( j) 
n − y ( j) 

h 

( j) 2 
. (27) 

By substituting (27) into (26) we have: 

dL 

dy ( j) 
∝ 

N ∑ 

n =1 

g ( M ( x n ; y , h ) ) 
x ( j) 

n − y ( j) 

h 

( j) 
2 

L (a n ; θ, m , π) . (28)

By setting (28) equal to zero, we get the update formula (in

ector form): 

 = 

∑ N 
n =1 x n g ( M ( x n ; y , h ) ) L (a n ; θ, m , π) ∑ N 

n =1 g ( M ( x n ; y , h ) ) L (a n ; θ, m , π) 
. (29) 

Thus, in every frame, starting from y estimated at the previous

rame, we iteratively apply Eq. (29) in order to move the center

 to a new position, until (24) decreases. Using this approach,

he local maximum of the weighted likelihood (24) is computed,

hich is equivalent of finding the position that best matches the

ppearance model of the object [7] . In (29) , the value of y in the

eft side of the equation is the new center while the value of y in
he right side of the equation is the old center. Scale estimation

an be performed by increasing and decreasing the ellipse size by

 percentage (for example 10%) and choose the ellipse with the

igger average likelihood. 

.3. Implementation details 

The execution time of the proposed algorithm can be improved

s the values of the hue component are integers in the interval [0,

59]. 

First, in (16) , the term L (a n ; θ, m , π) depends only on the hue

alue of the pixel. Thus, we can aggregate the weight w n of the

ixels that have the same hue value to a new weight W n . This is

quivalent to creating a new image with 360 pixels having values

rom 0 to 359 and assign to each pixel the corresponding weight

 i = 

∑ N 
n =1 w n δ( i − a n ) . The delta function is zero everywhere

xcept the δ(0) = 1 . Using this approach, the number of the pixels

sed by the EM algorithm is constant and this makes also the time

eeded for the initialization on the first frame relatively constant.

ere, we must highlight that this is not an approximation and the

esult is the same as it would be if we used every pixel of the

riginal image. 

Second, in (29) , the term L (a n ; θ, m , π) can be pre-calculated

or all the values of a n . The parameters θ, m and π are deter-

ined for the first frame and are keep constant in the subsequent

rames. Thus, we can have an array of 360 values which can be

omputed after the estimation of the parameters θ, m and π.

uring the tracking procedure, we can use this array instead of

he Eqs. (16) and (1) . 

. Experimental results 

In this section we evaluate the performance of the optimized

ersions of the proposed algorithm and compare its performance

ith other state-of-the art algorithms. The single parameter of the

lgorithm is the number of components K , which is set a priori

ut its estimation is not a guess. The components of the von Mises

ixture model, roughly represent the number of colors of the

bject. In our experiments, we used K = 10 but we noticed that if

he actual number of colors of the object is smaller than K , some

omponents will have πk = 0 . This effect may be easily clarified

sing an example. If the object to be tracked is a ball with only

ed and green patches, then the hue distribution of the object will

ave the majority of its values around the green and red points in

he histogram needing only two components in the mixture. If the

odel contains more than two components, some of them could

ave mixing proportions πk = 0 as a result of the EM algorithm.

hen, we could delete these components from the mixture model

o further speed up the computation. 

First, we examine the performance benefits of the proposed op-

imized implementations that have been presented in Section 3.3 .

n Table 1 , the performance of the different initialization strategies

nd likelihood estimations is presented. The first column indicates

he size of the target in pixels. K indicates the number of compo-

ents used by mixture based algorithms and B is the number of

ins used by histogram based algorithms. The optimized imple-

entations are described in Section 3.3 . For the initialization, our

lgorithm uses only 360 pixels in order to estimate the parameters

f the model through the EM algorithm. For the likelihood estima-

ion, the algorithm employs a precomputed array with elements

he values of the likelihood for a given set of parameters. The

tandard implementations do not use the ideas of Section 3.3 . The

olumn indicated by GMM is an implementation which uses a

aussian mixture model. The column indicated by Hist refers to an

pproach that uses histograms in order to estimate the likelihood

or each pixel and was originally proposed in the framework of
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Table 1 

Comparison of different initialization and likelihood estimation approaches presented in Section 3.3 . GMM indicates a Gaussian mixture model and Hist a histogram 

approach employed in the mean shift algorithm. All times are in microseconds ( 10 −6 s). 

Size Initialization Likelihood estimation 

Optimized Standard Optimized Standard GMM Hist 

K = 5 K = 10 K = 5 K = 10 K = 5 K = 10 K = 5 K = 10 K = 10 B = 16 

100 × 100 866 ± 20 1754 ± 60 114325 ± 2130 209932 ± 7705 10 ± 4 10 ± 3 2735 ± 148 5039 ± 144 4066 ± 154 202 ± 21 

100 × 200 728 ± 19 1428 ± 60 280364 ± 3404 671230 ± 5922 20 ± 5 21 ± 5 5363 ± 173 10091 ± 209 8112 ± 175 393 ± 29 

100 × 300 902 ± 21 1777 ± 72 412384 ± 4080 1056531 ± 36563 31 ± 6 31 ± 6 8057 ± 191 15061 ± 285 12152 ± 211 586 ± 40 

200 × 200 764 ± 23 1468 ± 58 686327 ± 6888 1669781 ± 14176 42 ± 7 42 ± 9 10633 ± 224 19970 ± 249 19742 ± 257 789 ± 52 

200 × 300 954 ± 27 1508 ± 62 851812 ± 8411 2652596 ± 372650 64 ± 9 64 ± 10 15920 ± 283 29980 ± 1079 29439 ± 310 1155 ± 18 

300 × 300 1018 ± 52 1574 ± 84 1370657 ± 13097 4111642 ± 219722 94 ± 4 94 ± 3 24359 ± 225 45011 ± 278 40829 ± 295 1749 ± 19 

Fig. 1. Comparative evaluation of the proposed VMT with respect to state-of-the-art algorithms over all the video sequences of the VOT2014 data set. The plot is generated 

by the VOT 2014 toolset. 
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the mean shift tracker [7] . The results for the initialization step

show that the time needed by the optimized implementation is

relatively constant and around 1 ms. This time also includes the

time needed in order to create the image with the 360 pixels and

its aggregated weights. On the other hand, the time needed by

the standard implementation increases as the number of pixels

increases. The number of components K has the same impact

on both approaches. If K is doubled, then the execution time

is also doubled. This is expected, as the number of factors in

the Eqs. (11) , (13) –(15) is doubled. The results for the likelihood

estimation step show that the proposed optimized method is

around 200 times faster than the straightforward approach that

evaluates the exponential and cosine functions in every pixel and

20 times faster than the approach that uses histograms. Moreover,

the time needed by the optimized approach does not depend on

the number of components K , as the likelihood of the mixture is

evaluated beforehand for every possible input value. In the exper-

iments above, all mixtures have the same number of components

and produce the same results. The evaluation has been performed

10 0 0 0 times and we present here the mean values. The machine

that was used is a laptop with a dual core CPU at 2.26 GHz. 

In order to evaluate the tracking performance of the proposed

method we used the Visual Object Tracking (VOT) 2014 dataset

(URL: http://votchallenge.net ). The authors of the VOT dataset

[20] provided a detailed description of the dataset and the eval-

uation methodology. Here we will provide a quick overview of

the dataset and the toolkit. The VOT dataset consist of 25 color

image sequences with one moving object in each sequence. In

every image, the ground truth of the target has been manually

annotated by bounding boxes. The information provided for the

initialization of the tracker is the bounding box in the first frame.

A target is considered to have lost the object when there is no
verlap between the estimated target and the ground truth. If the

racker loses the object, then it is reinitialized in a subsequent

rame. The evaluation of the tracker is performed N rep times for

ach image sequence. The accuracy is associated with the average

verlap per repetition per frame between the target’s ground truth

ounding box and the bounding box which was estimated by

he tracker. The robustness index is associated with the average

umber of times the tracker failed per repetition. The performance

f the tracker is evaluated in two sets of experiments. In the first

et, which is called Baseline, the initialization of the target is done

sing the exact ground truth bounding box. In the second set,

hich is called Region Noise, a noisy initialization is done. The au-

hors of the VOT dataset [20] has already tested the performance

f 38 trackers and the tools needed to compare a new tracker

ith these state-of-the-art algorithms are included in the toolkit. 

In Fig. 1 , the plots for the Baseline and Region Noise experi-

ents are presented. The proposed method is called VMT, which

tands for von Mises Tracker. The horizontal and vertical axis

enote the robustness rank and accuracy rank respectively. The

roposed tracker, which is highlighted, is placed near the center of

he plot, thus it has average performance in both measures with

espect to the other algorithms. It is worth noting that the 38

ther trackers constitute the state of the art in the framework of

he VOT2014 dataset [20] . Moreover, the performance of a similar

racker, (denoted by GMM) that used the Gaussian distribution

nstead of the von Mises distribution is presented. Due to the

act that the Gaussian distribution can not model circular data

n the beginning of the axis accurately, it exhibits an inferior

erformance than the von Mises distribution. 

Table 2 presents the comparison of VMT with the top ranked

ethods of VOT2014. There are cases where VMT’s performance is

imilar or even better than the top ranked methods. The cases that

http://votchallenge.net
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Table 2 

Performance of VMT with respect to the top ranked methods presented in [21] ; DSST [8] , SAMF [26] and KCF [13] . The attributes column contains the number of frames 

having: camera motion, illumination change, object motion, occlusion and object size change. 

Seq. Attributes Baseline experiments Region noise experiments 

Accuracy rank Robustness rank Accuracy rank Robustness rank 

VMT DSST SAMF KCF VMT DSST SAMF KCF VMT DSST SAMF KCF VMT DSST SAMF KCF 

Ball 602, 0, 375, 0, 192 9.5 25.0 5.0 5.0 10.5 28.5 28.5 28.5 9.5 26.5 4.0 10.0 13.0 27.5 23.1 29.5 

Basketball 725, 0, 238, 53, 40 14.0 14.5 4.0 14.5 23.5 15.0 6.5 6.5 12.5 17.5 9.5 29.0 26.0 13.6 2.5 14.6 

Bicycle 271, 0, 178, 4, 100 30.9 13.0 11.6 10.0 36.0 11.0 11.0 11.0 35.0 14.0 4.0 4.0 37.0 7.5 8.5 7.1 

Bolt 350, 0, 119, 0, 0 17.5 17.5 17.5 21.0 11.0 11.5 18.0 22.5 18.5 16.0 15.0 18.5 17.0 6.6 17.0 17.5 

Car 252, 0, 162, 24, 157 32.0 3.0 20.0 4.5 14.5 15.0 15.0 15.0 32.0 2.0 17.0 5.0 15.5 15.0 15.0 15.0 

David 770, 520, 706, 0, 135 21.0 7.5 5.5 4.5 12.0 12.5 12.5 12.5 20.0 9.0 6.5 6.5 11.0 11.5 11.5 11.5 

Diving 219, 0, 54, 0, 74 11.0 5.1 30.1 28.7 4.0 11.2 34.0 34.0 8.5 9.0 29.5 29.5 3.5 19.1 37.5 36.5 

Drunk 0, 0, 79, 0, 69 23.7 11.5 10.1 15.5 34.0 15.5 15.5 15.5 22.0 7.5 8.5 7.5 32.0 13.0 13.0 13.0 

Fernando 274, 55, 176, 67, 142 24.0 24.0 19.6 16.1 20.5 11.5 11.5 11.5 26.0 18.5 15.5 13.6 17.4 14.2 8.8 11.0 

Fish1 436, 0, 304, 0, 293 4.0 28.2 4.2 15.5 30.0 9.0 22.5 22.5 8.0 13.0 5.14 12.5 23.0 15.4 14.9 20.3 

Fish2 278, 0, 106, 71, 132 12.5 9.5 16.3 20.2 4.0 16.0 20.5 28.5 11.0 11.5 15.5 26.0 4.0 16.5 17.7 25.5 

Gymnastics 138, 0, 82, 0, 46 21.9 18.1 19.5 19.5 4.5 37.5 24.0 14.5 20.0 20.5 20.0 19.5 4.0 33.0 27.0 16.5 

Hand1 0, 0, 239, 0, 171 14.0 38.5 13.5 13.0 12.7 19.6 24.1 24.1 13.0 24.0 25.0 18.5 14.0 23.0 34.0 26.7 

Hand2 0, 0, 252, 0, 146 24.6 9.67 12.5 11.7 29.5 18.5 13.5 18.5 25.5 15.5 17.3 16.2 30.1 17.0 19.5 22.0 

Jogging 307, 0, 305, 22, 124 28.0 10.0 7.7 9.5 15.5 16.0 16.0 16.0 26.5 12.0 14.0 12.5 26.7 16.0 15.5 16.0 

Motocross 164, 0, 155, 0, 99 25.8 14.1 22.4 20.8 35.0 29.5 29.5 15.0 32.5 12.8 20.5 23.0 33.4 29.5 24.9 27.1 

Polarbear 371, 0, 133, 0, 46 16.5 17.0 6.5 3.0 20.5 20.5 20.5 20.5 16.5 19.5 9.0 5.5 20.0 20.0 20.0 20.0 

Skating 347, 400, 57, 42, 64 32.5 9.5 20.5 3.5 3.5 3.5 3.5 14.5 34.0 9.5 13.5 9.0 12.0 2.75 3.0 10.5 

Sphere 201, 32, 189, 0, 34 16.0 1.5 3.8 3.0 16.5 16.5 16.5 16.5 13.0 6.0 4.5 4.5 17.5 17.5 17.5 17.5 

Sunshade 172, 75, 170, 0, 22 28.6 9.5 10.0 10.0 13.0 13.5 13.5 13.5 29.5 9.5 12.0 10.0 9.0 9.5 9.5 9.5 

Surfing 282, 0, 30, 30, 0 24.0 5.0 14.0 13.5 19.0 19.5 19.5 19.5 24.0 12.5 13.0 13.0 18.5 18.0 18.0 18.0 

Torus 0, 0, 236, 0, 68 36.3 5.5 2.5 2.5 37.5 10.0 10.0 10.0 38.5 4.5 5.5 4.5 38.0 7.0 8.5 7.0 

Trellis 569, 403, 391, 0, 93 22.0 2.0 2.0 2.0 8.0 8.5 8.5 8.5 21.0 2.0 2.0 2.0 7.0 7.5 7.5 7.5 

Tunnel 731, 335, 356, 0, 114 23.0 1.0 7.5 3.0 34.0 11.0 11.0 11.0 27.0 1.5 8.0 1.5 36.0 9.7 9.7 9.7 

Woman 597, 0, 236, 343, 43 22.5 6.6 8.0 9.0 36.0 17.0 17.0 17.0 24.5 5.5 5.0 10.5 33.5 19.3 15.5 9.0 

Average 21.4 12.3 11.8 11.2 19.4 15.9 16.9 17.1 21.9 12.0 12.0 12.5 19.9 15.6 16.0 16.7 

Fig. 2. Videos where the proposed method fails. 
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Fig. 3. Representative frames and the corresponding histograms with the estimated 

von Mises mixture superimposed on it. 
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ost influence the performance of VMT are the shape of the target

nd the color distribution. Fig. 2 contains the first frame of some

equences where VMT does not perform well. In the motocross

ideo, a large part of the ellipse which represents the target con-

ains background elements. This is even worse in the torus video,

here the center of the ellipse is entirely covered by the back-

round. The situation is different in the tunnel video, where the

arget is white and its values have saturation near zero, making

he hue component meaningless. This results from the fact that in

rder to model the black and white colors in the HSV color space

e have to use both the value and the saturation components. On

he other hand, VMT performs well if the shape of the target can

e modeled by an ellipse and its color distribution by a von Mises

ixture. Moreover, VMT is not strongly affected by camera motion,

llumination change, object motion, occlusion or size change. 

In Table 2 , various cases concerning the performance of VMT

re presented. For example hand1 and hand2 videos have nearly

he same attributes but VMT performs better that the average in

and1. In hand2 sequence, the hand moves in front of the face

any times, so VMT may follow the face instead of the hand. This

s not the case in hand1, where the hand moves above the head in

he majority of the frames. The person also opens and closes the

and in hand1, but this does not affect VMT. Finally, the proposed
ptimized VMT can process hundreds of frames per second by

eeping the same accuracy and robustness as the standard VMT. 

Some representative frames from the VOT’s sphere and sun-

hade image sequence along with their corresponding histograms

re presented in Fig. 3 . In these figures, the first row shows some

rames while the second row shows the corresponding histogram

ins (computed from pixels inside the target) and the weighted

on Mises mixture (estimated in the first frame and not chang-

ng along time) which is indicated by a continuous black line. For

emonstration purposes, the histogram bins are normalized to [0 −
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1] . In the sphere video, the target has a dominant red color, which

in the beginning of the sequence is located mainly at the right side

of the histogram while at the end the bins are shifted to the right

and circularly appear at the left side of the histogram (due to the

fact that the Hue component is periodic). Even in these cases, the

proposed algorithm successfully tracks the object due to the fact

that the von Mises distribution is periodic. More specifically, it as-

signs a likelihood to the pixels whose colors belong to the right

side of the histogram which is sufficient to distinguish the object

from the background. In the sunshade video, the target has two

color components. The target oscillates back and forth from the

sunshade to the sun, thus it illumination changes. As the hue com-

ponent is immutable to changes in the brightness, the proposed

method successfully follows the object between these transitions. 

From these experiments, we can underpin some properties

of the algorithm: a) The performance of VMT if not affected

significantly when the initialization in the first frame of the

image sequence does not contain exactly the target. This can be

confirmed by the results of the Baseline and the Region Noise

experiments, where the performance, both in terms of accuracy

and robustness, remain nearly the same ( Fig. 1 ). b) The tracker

continues to perform well when the histogram of the color is

shifted, like for example in the sphere sequence ( Fig. 3 ). 

5. Conclusion 

The proposed algorithm eliminates drawbacks in kernel-based

tracking which usually appear in standard applications and are due

to periodic shift of the histogram bins of the target. Although some

approaches have been proposed to handle this issue for linear

spaces [16,17,22,44] , these methods can not be directly applied for

circular data as the determination of the origin of the axis affect

the distance between two points. The VMT method proposed

herein, employs the weighted von Mises mixture in order to esti-

mate the target position within a maximum likelihood framework

using a gradient based approach. As the von Mises is a continuous

distribution, the likelihood is not affected by shifts in the his-

togram bins of the hue. Moreover, as the hue values are integers

in [0, 359], the pre-calculation of key quantities of the likelihood

of the mixture model, both in terms of computational time and

memory. Although VMT uses the hue values, other circular data

could be used, like the angle of the image gradient. Furthermore, a

perspective of this work is to intergrade periodic and non-periodic

spaces, as the full HSV space, in the same distribution. 
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