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a b s t r a c t 

The extraction of representative key-frames from video shots is very important in video processing and 

analysis, since it constitutes the basis for several important tasks such as video shot summarization, 

browsing and retrieval as well as high-level video segmentation. The extracted key-frames should cap- 

ture a great percentage of the information of a shot content, while at the same time they should not 

present similar visual information. Clustering or segmentation methods are usually employed to extract 

key-frames. A major difficulty is caused by the large variety in the visual content of videos. Thus, using a 

single image descriptor (color, texture etc) to extract key-frames is not always effective, since there is no 

single descriptor surpassing the others in all video cases. To tackle this problem, we propose an approach 

for the weighted fusion of several descriptors that automatically estimates the weight of each descriptor. 

The weights reflect the relevance of each descriptor for the specific video shot. Moreover, they are used 

to form a composite similarity matrix as the weighted sum of all the similarity matrices corresponding to 

the individual descriptors. This matrix is then used as input to a spectral clustering algorithm that parti- 

tions shot frames into groups. Finally the medoid frame of each group is selected as key-frame. Numerical 

experiments using a variety of videos demonstrate that our method is capable of efficiently summarizing 

video shots regardless of the characteristics of the visual content of a video. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

In recent years there has been a significant increase in the

availability of high quality digital video, due to advances in video

recorders, broadband services and high-capacity storage media.

The extensive use of video in several widely used applications such

as distance learning, digital libraries, the internet TV and video on

demand, and the steadily increasing rate of movie production, daily

adds a huge volume of videos to various repositories. This implies

a strong need for techniques and applications that will offer effec-

tive indexing, browsing and retrieval of video data. 

The first step in this direction is to segment the video into

smaller units in order to further proceed with indexing and brows-

ing. The smallest physical segment of a video is the shot which

is defined as an unbroken sequence of video frames taken from a

single camera. Then, reliable shot summarization, which is one of

the most important problems in digital video processing and anal-

ysis, should be performed. The most common approach used for

shot representation and summarization is the selection of a set of

key-frames sufficiently representing the whole shot content. The
✩ “This paper has been recommended for acceptance by Anders Heyden”. 
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fficient summarization of a video shot is necessary for two rea-

ons. Firstly, one can rapidly make an assessment about the video

ontent by inspecting the key-frames of the shots of the video. Sec-

ndly, having extracted key-frames from video shots, one can de-

ne the similarity between two shots based on the similarities of

heir corresponding key-frames. Shot similarity can then be used

or grouping shots into scenes, content-based shot retrieval and

ideo rushes summarization. 

In order for a key-frame extraction algorithm to be effective,

he extracted key-frames should represent the whole video content

ithout missing important information, while at the same time,

hese key-frames should not be similar, in terms of video content

nformation, thus containing redundant information. A major cat-

gory of key-frame extraction algorithms are segmentation-based.

uch algorithms detect abrupt changes in terms of similarity be-

ween successive frames [1,2] . In [3] , three properties (Iso-Content

istance, Iso-Content Error and Iso-Content Distortion) are consid-

red. The selected key-frames are equidistant in the shot content

urve with respect to those properties. In [4] , a key-frame selec-

ion framework based on keypoints is presented. A global pool of

nique keypoints extracted from all frames based on SIFT descrip-

ors [5] is generated and those frames that best cover the global

eypoint pool are selected as key-frames. This type of key-frame

xtraction has the disadvantage that it may extract similar key-

rames, if the same content reappears during a shot. 

http://dx.doi.org/10.1016/j.patrec.2016.01.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.01.027&domain=pdf
mailto:vchasani@cs.uoi.gr
http://dx.doi.org/10.1016/j.patrec.2016.01.027
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Another category of key-frame extraction algorithms perform

lustering of shot frames into groups and select a representative

rame of each group as key-frame. In [6] , multiple frames are de-

ected using unsupervised clustering based on the visual variations

n shots. A variant of this algorithm is presented in [7] , where

he final number of key-frames depends on a threshold parameter

hich defines whether two frames are similar. In [8] , static video

ummaries are produced based on color feature extraction from

ideo frames and the k-means clustering algorithm. In [9] , spec-

ral clustering on spatio-temporal features is employed to extract

ey-frames. In [10] , the mutual information values of consecutive

rames are clustered into groups using a split-merge approach. A

ifferent technique for the key-frame selection is described in [11] ,

here the key-frames position in the video is taken into account.

n [12] , the problem of scalable video summarization is modeled as

 problem of scalable graph clustering and is solved using skeleton

raph and random walks in the analysis stage. 

A third category of algorithms transform key-frame extraction

nto a sparse dictionary selection problem. In [13] a scalable video

ummarization based on sparse dictionary selection is proposed

nd a relaxed constraint based on L 2,1 norm is imposed to ensure

parsity. In [14] the minimum number of key-frames are selected

o reconstruct the entire video as accurate as possible by adopting

 real sparse constraint based on L 0 norm. 

Most of the existing key-frame extraction algorithms employ

 single frame descriptor (e.g. color histograms, texture descrip-

ors, visual words) to capture the content of shot frames. However,

ue to the large variety in visual content a single image descriptor

oes not suffice for the efficient summarization of several videos.

herefore, methods capable of fusing several descriptors constitute

 promising solution to tackle this problem. Typical fusion methods

also called multi-view methods) are based either on the concate-

ation of the individual descriptor vectors [13] or on the combi-

ation of the solutions obtained using each descriptor separately.

owever, a significant drawback of those fusion approaches is that

ll descriptors are considered to be equally important. Therefore,

he existence of irrelevant descriptors might lead to performance

eterioration. 

In this work, we propose an approach for the weighted fusion

f several descriptors that automatically estimates a weight of each

escriptor. The weight reflects the relevance of each descriptor and

herefore adjusts its contribution to the final solution obtained. In

his way, low (near zero) weights are assigned to irrelevant de-

criptors, thus their presence does not affect the solution which is

etermined by the relevant descriptors which are assigned higher

eight values. The fusion weights are estimated automatically us-

ng a weighted multi-view clustering algorithm [15] . Then, a single

imilarity matrix is computed as the weighted sum of all individ-

al similarity matrices of the image descriptors (views). This ma-

rix serves as input to a spectral clustering algorithm that clusters

hot frames to groups. Finally, the medoid of each group is selected

s key-frame. 

This is an extended version of the paper presented in [16] with

mproved presentation of motivation and related work and a more

etailed description of the weighted multi-view clustering method

hich is the main computational tool of our method. Moreover,

t includes additional experimental results using more than two

mage descriptors, experiments on two new datasets and it also

ontains a new subsection where visual examples are presented

iming to provide a better understanding of the advantages of the

roposed method. 

The rest of the paper is organized as follows. The key-frame ex-

raction algorithm is presented in Section 2 . This method consists

f two processing stages: In the first stage the weighted multi-view

lustering algorithm is applied in order to compute the weights as-

igned to the different descriptors (views). In the second stage the
stimated weights are exploited to construct a composite similar-

ty matrix computed as the weighted sum of the individual view

ernel matrices. This similarity matrix is used to perform spectral

lustering of set of video frames and then extract key-frames as

luster medoids. In Section 3 we describe the image descriptors

views) employed in the herein approach, while in Section 4 we

rovide numerical experiments and present three visual examples.

inally, in Section 5 we summarize our method and provide sug-

estions for future work. 

. Weighted multi-view key-frame extraction 

A large variety of existing image descriptors (color, texture,

isual words etc) can be used to represent the visual content of

 video sequence. Due to large variations observed in the visual

ontent of videos, a single descriptor cannot efficiently describe

he content of several videos. To tackle this problem we propose

he combination of two or more descriptors that we call views . For

ach view, we compute a kernel matrix that provides the similarity

etween each pair of frames of a video shot in terms of the cor-

esponding descriptor. All view kernel matrices are then combined

through their weighted sum) to form a final similarity matrix

hat serves as input to a spectral clustering algorithm providing

he extracted key-frames. The weights that reflect the quality of

ach view are estimated using a technique for training weighted

ulti-view Convex Mixture Models [15] that is described below. 

.1. View weight estimation based on multi-view Convex Mixture 

odels 

Suppose we are given a dataset of N data points

 = { x 1 , x 2 , . . . , x N } . Convex Mixture Models (CMMs) [17] are

ixture models of special type aiming to assign data points into

lusters by extracting representative exemplars from the data

et. In CMMs the number of mixture components is equal to the

umber of data points, thus for each data point x i we consider

 separate component f i ( x ) ‘centered’ at this data point with

rior (mixing weight) q i . This prior probability denotes the prob-

bility that the corresponding data point will become a cluster

epresentative. The CMM distribution is given by: 

(x ) = 

N ∑ 

j=1 

q j f j (x ) = C φ(x ) 
N ∑ 

j=1 

q j e 
−βd φ (x,x j ) , (1)

here q j ≥ 0 is the prior probability of the j th component, sat-

sfying the constraint 
∑ N 

j=1 q j = 1 , f j ( x ) is an exponential family

istribution (see Eq. (7) ) with d φ being the Bregman divergence

orresponding to the components distribution, C φ( x ) is indepen-

ent of x j , and β is a constant affecting the obtained number of

lusters [17] . Appropriate β values can be found in the range of

n empirically defined β0 value: 

0 = N 

2 logN/ 

N ∑ 

i, j=1 

d φ(x i , x j ) . (2)

Initially all data priors q i are set equal, thus all data points are

qually considered as possible cluster representatives. The CMM

odel is trained by maximizing the data log-likelihood with re-

pect to the priors q i and, after training, the data points with high-

st prior are selected as exemplars (cluster representatives) and

he rest points are grouped based on their most similar exemplar.

ince the likelihood maximization problem is convex, a unique

lobal optimum solution is easily obtained through a simple itera-

ive update procedure. 

Suppose now that we are given a multi-view dataset of

 instances and V views, X = { x , x , . . . , x } where x is the
1 2 N i 



54 A. Ioannidis et al. / Pattern Recognition Letters 72 (2016) 52–61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Example shot sequence (better seen in color). (a) Ground truth. Solutions 

using: (b) HSV, (c) Centrist (CEN), (d) Wavelets (WAV), (e) HSV - CEN, (f) HSV - 

WAV, (g) CEN - WAV. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Table 1 

Weights assigned to the descriptors by the 

weighted multi-view CMM. 

Descriptors HSV CEN WAV 

HSV - CEN 0.9880 0.0120 –

HSV - WAV 0.9449 – 0.0551 

CEN - WAV – 0.3286 0.6714 
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representation of the i th instance across the views, i.e., x i =
{ x 1 

i 
, x 2 

i 
, . . . , x V 

i 
} , x v 

i 
∈ � 

d v . We assume that the mixture distribution

of each view v , is a CMM: 

Q 

v (x v ) = 

N ∑ 

j=1 

q j f 
v 
j (x v ) 

= C φv (x v ) 
N ∑ 

j=1 

q j e 
−βv d φv (x v ,x v 

j 
) 
, x v ∈ � 

d v , (3)

where q j ≥ 0 is the prior probability of the j th component, satisfy-

ing the constraint 
∑ N 

j=1 q j = 1 . Appropriate βv values can be found

in the range of an empirically defined βv 
0 

value: 

βv 
0 = N 

2 logN/ 

N ∑ 

i, j=1 

d φv (x v i , x 
v 
j ) . (4)

In the case where a N × N kernel matrix K 

v is available for each

view, with K 

v (i, j) reflecting the similarity between x v 
i 

and x v 
j 
, then

it holds that: 

d φv (x v i , x 
v 
j ) = K 

v (i, i ) + K 

v ( j, j) − 2 K 

v (i, j) (5)

In weighted multi-view CMM [15] each view vector is assumed

to be generated from a corresponding CMM, thus it can be con-

sidered as a mixture of CMMs with mixing weights π v indicating

the relevance of each view v . In this way it is possible to locate

exemplars in the dataset by allowing all views to contribute to the

objective function with different weights, which are learned auto-

matically. The weighted multi-view CMM is defined as follows: 

F (x = { x 1 , x 2 , . . . , x V } ) = 

V ∑ 

v =1 

π v Q 

v (x v ) 

= 

V ∑ 

v =1 

π v 
N ∑ 

j=1 

q j f 
v 
j (x v ) , x v ∈ � 

d v , (6)

where 

f v j (x v ) = C φv (x v ) e −βv d φv (x v ,s v 
j 
) 
, 

π v ≥ 0 , 

V ∑ 

v =1 

π v = 1 , q j ≥ 0 , 

N ∑ 

j=1 

q j = 1 . (7)

In the above equations F ( x ) is a mixture model whose num-

ber of components is equal to the number of the views and each

component is a CMM Q 

v (x v ) , corresponding to the v th view. Each

CMM is associated with a weight π v which represents the contri-

bution of each view in the mixture model. 

All instances are considered as possible cluster representatives,

since a CMM is used for each view. It is important to note that the

priors q j are the same across all views, to allow the extraction of

representative exemplars based on every view. Therefore, if after

training an instance has a high q j value, then probably it is a good

exemplar for all the available views. Moreover, if after training, a

low weight π v is assigned to view v , this is an indication that this

view is irrelevant for the specific dataset. 

Since F ( x ) is considered as a mixture model, in order to per-

form model training the log-likelihood of the dataset must be max-

imized with respect to q j and π v . The log-likelihood is defined as

follows: 

L (X ; { π v } V v =1 , { q j } N j=1 ) = 

N ∑ 

i =1 

log 

V ∑ 

v =1 

π v Q 

v (x v i ) 

= 

N ∑ 

i =1 

log ( 
V ∑ 

v =1 

π v 
N ∑ 

j=1 

q j f 
v 
j (x v i )) . (8)
This maximization problem is not convex, due to the addition of

he weights π v . Local maxima can be found by applying an EM al-

orithm [18] . The EM algorithm starts with some initial parameter

alues and iteratively adjusts them in order to increase the likeli-

ood until a local maximum is reached. Since the only parameters

f the weighted multi-view CMM are the prior probabilities π v 

nd q j , by initializing those values uniformly ( π v (0) = 1 /V, q v 
(0) 

j 
=

 /N), multiple executions can be avoided. Note that the weights
v might be initialized accordingly if there exists prior knowledge

oncerning the quality of the available views. More information

bout the EM for the Weighted Multi-view CMMs can be found in

15] . After the completion of EM, in order to extract k key-frames,

he k exemplars with the higher q j values are selected. 

In Fig. 1 , we give an example of the key-frames extracted from

 video shot using the weighted multi-view CMM algorithm with

SV (“HSV3D”), Centrist and Wavelet descriptors. The same ker-

el (9) was used for all descriptors. In each experiment we employ

nly two of the three views. The first row depicts the ground truth

f the video sequence. The ground-truth contains four key-frames

here the same person holds square placards of different color

nd one key-frame representing all the frames where the person

hanges placards. It is obvious that only the color descriptor is rel-

vant for this video sequence, providing the best single view clus-

ering solution. When the HSV descriptor is combined with each

f the other two descriptors, the clustering solution is still optimal.

urprisingly, even when centrist and wavelet descriptors are com-

ined, the clustering solution of the weighted multi-view CMM al-

orithm is also optimal, contrary to the corresponding single-view

lustering solutions. In Table 1 , the view weights estimated by the

eighted multi-view CMM algorithm are presented. The weight
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Fig. 2. Number of key-frames per video sequence for each ground truth assessment. 
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1 http://www.open-video.org . 
2 https://sites.google.com/site/vsummsite/download . 
ssigned to HSV is very high correctly indicating that this is the

est view. 

.2. Key-frame selection using spectral clustering 

Although the weighted multi-view CMM algorithm provides

oth the view weights π v , v = 1 , . . . , V and the representative ex-

mplars (key-frames), we have empirically found that better results

re obtained if we use only the view weights provided by this al-

orithm in order to build a final kernel as a weighted sum of the

ndividual view kernels K 

v : S = 

∑ V 
v =1 π

v K 

v : The composite matrix

 is then used as input similarity to a spectral clustering algorithm.

Spectral methods [19] are well-known approaches to clustering.

ssume we are given n data objects X = [ x 1 x 2 . . . x n ] and a similar-

ty matrix S ∈ R 

n ×n , where S ij ≥ 0 reflects the similarity between

 i and x j . Spectral clustering computes the top k eigenvectors

f the similarity matrix to partition the objects of set X into k

lusters. In our method the video frames of a shot are clustered

nto groups using an improved spectral clustering algorithm [20] ,

hat employs the global k-means algorithm [21] in the clustering

tage after the eigenvector computation. Then, the medoid of each

roup, defined as the frame of a group whose average similarity

o all other frames of this group is maximum, is characterized as

 key-frame. The number of clusters in spectral is set equal to the

umber of key-frames in the ground-truth for each video. 

. Visual descriptors 

Several image descriptors have been employed in the herein

pproach to describe the content of shot frames from different

spects. 

• HSV Color Histograms: Two normalized HSV color histograms

have been considered. The first one, denoted as “HSV1D”, re-

sults from the concatenation of 64 bins for hue and 16 bins

for each of saturation and value. The second one, denoted as

“HSV3D”, is obtained from the 3-dimensional HSV histogram

and it is constructed using 8 bins for hue and 4 bins for each

of saturation and value, resulting into a 128 (8 × 4 × 4) di-

mension feature vector. Although color descriptors are easy to

compute and perform relatively well for key-frame extraction,

they have certain disadvantages such that they cannot repre-

sent shape and texture and they are also sensitive to noise, eg.

due to lighting changes. 
• Wavelets: 9 Haar wavelet sub-bands are used on 3 × 3 grids

to form a 81-d feature vector [22] . They are suitable for texture

representation. 
• Scale Invariant Feature Transform (SIFT): A very popular de-

scriptor that represents local features in images [5] , based on

storing the weighted edge orientation histograms of salient cor-

ners of an image. It is more expensive to compute compared to

color descriptors. 
• Census Transform Histogram (CENTRIST): The Centrist descrip-

tor (a 254-d feature vector) [23] encodes the structural prop-

erties of an image and is considered to be superior to SIFT in

place and scene recognition tasks. It is easier and faster to com-

pute compared to SIFT. 

The bag of visual words representation [24] is employed to rep-

esent shot frames when SIFT descriptors were used. More specif-

cally, all the descriptors extracted from shot frames are clustered

nto 20 or 50 clusters thus forming visual vocabulary with 20 or

0 visual words, respectively. For each frame, its corresponding set

f descriptors is mapped into these 20 or 50 visual words, each

escriptor is mapped to its nearest visual word, resulting into a

ector containing the normalized count of each visual word in the

rame (denoted as “SIFT20” or “SIFT50”, respectively). 
.1. Kernel function 

The kernel function used in our experiments to build the kernel

atrix for each view, is the Chi-Square kernel, due to its simplicity

nd effectiveness, especially as a measure of histogram similarity

n computer vision tasks. Given two image descriptor vectors x , y ,

ur kernel function is computed as: 

(x, y ) = 1 −
∑ 

i 

(x i − y i ) 
2 

1 
2 
(x i + y i ) 

. (9)

Note that it is possible to use a different kernel function for

ach descriptor, however in our experiments the same kernel func-

ion was used for all frame descriptors (views). 

. Experimental evaluation 

The empirical evaluation of key-frame extraction methods is

 rather difficult task, since there do not exist any widely ac-

epted performance indicators that could be computed automat-

cally. Thus, apart from the necessary manual annotation of each

ideo sequence for the specification of its ground-truth key-frames,

e also have to resort to visual assessment in order to deter-

ine whether the key-frames provided by a method match to the

round-truth key-frames of each video sequence. 

.1. Datasets and ground truth 

In our experiments we have considered three different datasets.

he first dataset contains 27 shot sequences of various visual con-

ent including car motion, construction demolition, car accidents,

hanging traffic lights, indoor and outdoor movement. Ground-

ruth key-frames were visually extracted by two different persons

video editing specialists) so as to represent adequately the con-

ent of each shot sequence. Each of the two persons also provided

or each sequence a visual assessment of whether the key-frames

xtracted by each compared method match to the ground-truth

et. These two assessments are denoted as “GT1” and “GT2” in

he rest of the paper. In Figs. 2 and 3 , we present the number of

ey-frames per video sequence for each ground truth assessment

nd selected representative frames from the video sequences of

his dataset, respectively. The second dataset contains 50 videos

aken from Open video project 1 . These videos are distributed

mong several genres (documentary, educational, ephemeral,

istorical, lecture), their duration varies from 1 to 4 min and

here exist approximately 75 min of video in total. Finally, the

hird dataset 2 contains 50 videos from websites like YouTube.

hese videos are distributed among several genres (cartoons,

http://www.open-video.org
https://sites.google.com/site/vsummsite/download
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Fig. 3. Selected frames from the video sequences of the first dataset. 
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ews, sports, commercials, tv-shows and home videos) and their

uration varies from 1 to 10 min. For the last two datasets, the

round truth is also available in the form of user summaries (sets

f key-frames) [8] . These summaries were created from 50 users,

ach one dealing with five videos, meaning that each video has

ve video summaries created by five different users. 

.2. Performance measure 

As mentioned previously, performance evaluation for the first

ataset has been based on the visual comparison (separately by

ach of the two persons) of the key-frames extracted from each

ethod against the ones in the ground truth set. Suppose we

re given M video sequences V S = { V S 1 , . . . , V S M 

} and let G i (i =
 , . . . , M) the number of ground truth key-frames of sequence VS i .

or each sequence VS i , the key-frame extraction method is applied

etting the number of key-frames (clusters) equal to G i and the

umber F i of successfully found ground truth key-frames is de-

ermined through visual assessment. Thus, F i / G i is the percentage

f successfully found ground truth key-frames per video sequence.

ur performance measure m (mean accuracy) is computed as the

verage accuracy over all video sequences: 

 = 

1 

M 

M ∑ 

i =1 

F i 
G i 

. (10)

It is apparent that separate performance results (namely “GT1”

nd “GT2”) have been computed for each of the two persons that

ade the visual assessment. 

For the second and third datasets each summary extracted for

 video from any approach (Automatic Summary (AS)) is com-

ared with all the corresponding to this video User Summaries

US). Color histograms and Manhattan distance [8] are employed

o measure the distance between two summaries. Two key-frames

re similar if the distance between them is less than a predeter-

ined threshold d = 0.5. Once two frames are matched, they are

emoved from the next iteration of the comparing procedure. The

uality of the any generated summary is assessed by two metrics,

alled accuracy rate CUS A and error rate CUS E , which are defined

s follows: 

US A = 

n mAS 

n US 

, (11)

US E = 

n ˜ m AS 

n US 

, (12)

here n mAS is the number of matching key-frames from automatic

ummary (AS), n ˜ m AS is the number of non-matching key-frames

rom AS and n US is the number of key-frames from user summary

US). Note that we seek for high values of CUS A and low values of

US E . 

.3. Experimental results 

In Tables 2 and 3 we present comparative results for the first

ataset on ground truth assessments “GT1” and “GT2”, respectively.

ach of the six image descriptors (see Section 3 ) was also tested

n a single-view experiment, using the methods proposed in [6]

nd [20] . Performance results of these experiments are presented

s “HSV1D”, “HSV3D”, “CEN”, “WAV”, “SIFT20” and “SIFT50”. Eight

airs of image descriptors were tested in the multi-view experi-

ent. Experiment “SP-UNWEIGHTED” corresponds to the solution

sing the spectral clustering algorithm, when the similarity matrix

s built as an unweighted sum of the individual view kernels.

xperiment “SP-MULTIVIEW” corresponds to the solution using

he spectral clustering algorithm, when the similarity matrix is

uilt as a weighted sum of the individual view kernels, with
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Table 2 

Comparative results using mean accuracy ( m in (%)) based on assessment “GT1”, for both sampling 

rates ( Sr = 1 and Sr = 5) for the first dataset. Daggers indicate statistical significance. 

Sampling rate Sr = 1 Sr = 5 Sr = 1 Sr = 5 

Descriptors [6] [20] 

HSV1D 63.08 ± 16.43 65.30 ± 17.70 61.90 ± 14.54 68.99 ± 15.40 

HSV3D 64.52 ± 13.09 65.88 ± 12.04 69.28 ± 12.85 70.08 ± 12.69 

SIFT20 61.96 ± 20.04 62.57 ± 15.32 71.28 ± 14.47 68.29 ± 12.05 

SIFT50 61.16 ± 15.70 65.78 ± 17.30 69.65 ± 13.61 67.86 ± 14.05 

CEN 62.98 ± 12.22 62.55 ± 12.36 68.41 ± 15.39 68.26 ± 11.39 

WAV 66.03 ± 18.60 64.30 ± 16.62 66.47 ± 16.61 69.49 ± 15.66 

SP-UNWEIGHTED SP-MULTIVIEW 

HSV1D - SIFT20 73.17 ± 14.88 70.76 ± 14.94 78.82 ± 17.34 †‡ 80.26 ± 14.89 †‡ 

HSV1D - SIFT50 72.70 ± 13.35 72.61 ± 13.10 79.44 ± 17.80 †‡ 79.65 ± 15.10 †‡ 

HSV3D - SIFT20 74.25 ± 13.15 72.92 ± 16.45 83.26 ± 11.71 †‡ 79.09 ± 15.93 †‡ 

HSV3D - SIFT50 73.94 ± 14.76 74.03 ± 16.14 83.88 ± 12.14 †‡ 82.18 ± 14.75 †‡ 

HSV1D - CEN 70.98 ± 16.84 68.91 ± 17.64 83.26 ± 15.23 †‡ 81.50 ± 15.79 †‡ 

HSV1D - WAV 69.74 ± 15.68 71.25 ± 14.79 81.72 ± 15.23 †‡ 82.36 ± 15.14 †‡ 

HSV3D - CEN 69.74 ± 15.27 68.91 ± 17.64 80.79 ± 12.10 †‡ 80.45 ± 16.06 †‡ 

HSV3D - WAV 70.42 ± 16.48 72.92 ± 15.10 82.03 ± 14.12 †‡ 80.76 ± 13.70 †‡ 

Table 3 

Comparative results using mean and standard deviation of accuracy ( m in (%)) based on assessment 

“GT2”, for both sampling rates ( Sr = 1 and Sr = 5) for the first dataset. Daggers indicate statistical 

significance. 

Sampling rate Sr = 1 Sr = 5 Sr = 1 Sr = 5 

Descriptors [6] [20] 

HSV1D 60.43 ± 14.84 57.41 ± 16.42 68.66 ± 15.12 66.48 ± 14.99 

HSV3D 61.08 ± 14.87 62.66 ± 14.18 69.40 ± 15.48 69.04 ± 14.44 

SIFT20 57.24 ± 21.32 61.71 ± 16.51 64.47 ± 16.11 64.75 ± 14.53 

SIFT50 56.51 ± 17.33 61.18 ± 16.50 64.27 ± 15.37 65.52 ± 14.55 

CEN 57.94 ± 15.52 56.92 ± 14.18 68.86 ± 15.22 68.46 ± 15.57 

WAV 59.26 ± 16.74 58.13 ± 15.90 65.99 ± 14.97 64.97 ± 14.52 

SP-UNWEIGHTED SP-MULTIVIEW 

HSV1D - SIFT20 67.40 ± 13.49 68.46 ± 16.01 76.72 ± 14.56 †‡ 76.02 ± 13.32 †‡ 

HSV1D - SIFT50 71.17 ± 14.93 68.52 ± 11.49 77.83 ± 13.70 †‡ 76.17 ± 11.73 †‡ 

HSV3D - SIFT20 70.21 ± 15.14 67.10 ± 14.36 78.94 ± 13.69 †‡ 79.38 ± 13.60 †‡ 

HSV3D - SIFT50 69.59 ± 16.46 71.23 ± 14.25 81.41 ± 14.27 †‡ 80.06 ± 14.75 †‡ 

HSV1D - CEN 68.91 ± 18.96 69.44 ± 16.08 78.91 ± 13.09 †‡ 79.10 ± 12.20 †‡ 

HSV1D - WAV 69.32 ± 14.31 68.73 ± 17.65 80.34 ± 12.26 †‡ 77.44 ± 11.48 †‡ 

HSV3D - CEN 67.43 ± 16.50 69.51 ± 16.49 78.76 ± 14.33 †‡ 80.49 ± 15.66 †‡ 

HSV3D - WAV 64.32 ± 17.72 70.43 ± 14.39 79.37 ± 14.15 †‡ 79.07 ± 11.92 †‡ 

w  

I  

a  

f  

d  

s  

t  

a

 

t  

v  

t  

t  

r  

d  

t  

f  

w  

a  

t  

a  

a  

a  

a  

e  

v  

g

 

w  

t  

r  

p  

p  

t  

i  

w  

d  

t  

s  

u  

2  

f  

i  

w  

C  

d  

a  

r

eights determined by the weighted multi-view CMM algorithm.

n another experiment we carried out, instead of employing all

vailable frames of a video sequence, we sampled every five

rames in order to reduce execution time. Dagger ( † ) and double

agger ( ‡ ) superscripts denote that the proposed method has a

tatistically significant difference from all single experiments and

he corresponding experiment with equal weights, respectively,

ccording to t-test (the significance level is taken as 0.05). 

At first, it must be noted that it has been empirically confirmed

hat there is no single-view descriptor surpassing the other single-

iew descriptors. From the results in Tables 2 and 3 it is clear that

he proposed method achieves the best performance compared

o all single-view methods and the method with equal weights

egardless of the pair of descriptors employed. Moreover, even for

ifferent ground truth assessments, the proposed method provides

he best results, indicating that the number of clusters (key-

rames) does not affect the performance. It must be noted that the

eights assigned to the views by the Weighted Multi-View CMM

re the same, regardless the number of clusters (key-frames). Thus,

he proposed algorithm guarantees that the quality of each view,

ssociated with its weight, is independent of the ground truth

ssessment. In Table 6 , we present the average of the weights

ssigned to the descriptors by the weighted multi-view CMM

lgorithm for the two sampling rates. Furthermore, it should be
mphasized that the application of the method on the 20% of each

ideo sequence (sampling every five frames) still provides very

ood results indicating the robustness of the proposed approach. 

In Table 4 we present performance results on the first dataset

hen more than two descriptors are combined at the same

ime, for both ground truth assessments and for both sampling

ates. In what concerns the first ground truth assessment (“GT1”),

erformance is very good, similar to the performance when

airs of descriptors are used, whereas for the second ground

ruth assessment (“GT2”), there is a considerable performance

mprovement for both sampling rates compared to the cases

here pairs of descriptors are used. However, the use of many

escriptors may increase the computational cost of the method,

hus making it inefficient. In other words, a tradeoff between

peed and accuracy must be set in such an approach. The cost of

sing a lot of descriptors could be compensated by using only the

0% of the video sequence (sampling every five frames). Despite

rame subsampling, high performance is retained as indicated

n Table 4 for S r = 5 . In Table 7 , we present the average of the

eights assigned to the descriptors by the weighted multi-view

MM algorithm for the two sampling rates when more than two

escriptors are combined at the same time. Note that, due to the

ddition of a third relevant descriptor, the HSV weight has been

educed. 
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Table 4 

Performance results using mean and standard deviation of accuracy ( m in (%)) using more than two descriptors and two 

sampling rates ( Sr = 1 and Sr = 5) for the first dataset. Daggers indicate statistical significance. 

Ground truth GT1 GT2 

Sampling rate Sr = 1 Sr = 5 Sr = 1 Sr = 5 

SP-UNWEIGHTED 

HSV1D - CEN - WAV 70.02 ± 12.72 71.53 ± 15.20 71.54 ± 17.05 70.15 ± 18.17 

HSV1D - CEN - WAV - SIFT20 72.80 ± 07.49 73.32 ± 11.71 72.53 ± 17.33 73.02 ± 17.46 

SP-MULTIVIEW 

HSV1D - CEN - WAV 82.83 ± 13.06 †‡ 81.50 ± 12.21 †‡ 84.25 ± 11.57 †‡ 80.80 ± 12.07 †‡ 

HSV1D - CEN - WAV - SIFT20 82.83 ± 13.06 †‡ 82.43 ± 12.64 †‡ 85.17 ± 11.85 †‡ 81.73 ± 12.56 †‡ 

Table 5 

Performance results using mean and standard deviation of CUS A and CUS E measures (in %) for the second and third 

datasets. Daggers indicate statistical significance. 

Descriptors Second dataset Third dataset 

CUS A CUS E CUS A CUS E 

SP-SINGLE 

HSV1D 73.28 ± 11.87 49.78 ± 26.67 57.58 ± 16.23 51.86 ± 29.53 

CEN 73.20 ± 11.81 49.82 ± 28.92 56.74 ± 16.76 52.70 ± 32.67 

WAV 69.98 ± 12.70 53.06 ± 29.67 57.22 ± 17.50 52.18 ± 31.09 

SIFT50 66.70 ± 14.37 56.44 ± 31.75 54.44 ± 17.34 54.68 ± 31.67 

SP-UNWEIGHTED 

HSV1D - CEN - WAV 73.94 ± 13.27 49.16 ± 29.19 57.44 ± 16.57 52.14 ± 31.56 

HSV1D - CEN - WAV - SIFT50 74.36 ± 13.70 48.78 ± 29.80 57.22 ± 14.89 52.28 ± 30.17 

SP-MULTIVIEW 

HSV1D - CEN - WAV 76.02 ± 13.21 †‡ 47.12 ± 27.43 59.34 ± 15.78 †̄ ‡̄ 50.14 ± 30.24 

HSV1D - CEN - WAV - SIFT50 76.38 ± 12.23 †‡ 46.68 ± 27.55 58.66 ± 15.37 †̄ ‡̄ 50.78 ± 29.56 

Table 6 

Average weight values ( π1 and π2 ) assigned to views 

V 1 and V 2 for two sampling rates ( Sr = 1 and Sr = 5) 

for the first dataset. 

Sampling rate Sr = 1 Sr = 5 

V 1 V 2 π1 π2 π1 π2 

HSV1D SIFT20 0.90 0.10 0.79 0.21 

HSV1D SIFT50 0.93 0.07 0.85 0.15 

HSV3D SIFT20 0.88 0.12 0.80 0.20 

HSV3D SIFT50 0.93 0.07 0.84 0.16 

HSV1D CEN 0.58 0.42 0.52 0.48 

HSV1D WAV 0.72 0.28 0.69 0.31 

HSV3D CEN 0.53 0.47 0.49 0.51 

HSV3D WAV 0.72 0.28 0.65 0.35 

Table 7 

Average weight values assigned to views for two sampling rates ( Sr = 1 

and Sr = 5) when more than two descriptors (views) are combined at 

the same time for the first dataset. 

Sampling rate Sr = 1 Sr = 5 Sr = 1 Sr = 5 

Descriptors Weights 3 views 4 views 

HSV1D π1 0.44 0.38 0.43 0.37 

CEN π2 0.38 0.40 0.36 0.34 

WAV π3 0.18 0.22 0.18 0.21 

SIFT20 π4 – – 0.03 0.08 

 

 

 

 

 

 

 

 

 

Table 8 

Average weight values assigned to views for the second and third datasets 

when more than two descriptors (views) are combined at the same time. 

Second dataset Third dataset 

Descriptors Weights 3 views 4 views 3 views 4 views 

HSV1D π1 0.20 0.19 0.25 0.23 

CEN π2 0.73 0.73 0.71 0.68 

WAV π3 0.07 0.06 0.04 0.04 

SIFT50 π4 – 0.02 – 0.05 
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In Table 5 we present performance results using mean and

standard deviation of CUS A and CUS E measures on four single de-

scriptors and their combination for the second and third datasets.

In must be noted that the proposed method does not estimate the

number of extracted key-frames but takes it as granted. For this

reason, we set the number of key-frames per video equal to the

number of key-frames extracted from “VSUMM1” approach pre-

sented in [8] . Moreover, we set the sampling rate to one frame

per second (we sample every 30 frames) [8] . Furthermore, in
ontrast with [8] we do not attempt to eliminate meaningless

rames, usually caused by fade in/out effects. This is done in or-

er not to affect performance, since the main research objective in

his work is to explore whether the combination of image descrip-

ors with different weights performs better that single descrip-

ors and their combination with equal weights. It can be observed

hat in both datasets the proposed methodology provides better

esults compared to all single view experiments and the method

ith equal weights. Dagger ( † ) and double dagger ( ‡ ) super-

cripts denote that the proposed method has a statistically signifi-

ant difference from all single experiments and the corresponding

xperiment with equal weights, respectively, according to t-test

the significance level is taken as 0.05). A line above these symbols

enotes statistically significant difference when significance level

s taken as 0.1. In Table 8 , we present the average of the weights

ssigned to the descriptors by the weighted multi-view CMM algo-

ithm for the second and third datasets. 

.4. Visual examples 

In Fig. 4 , Fig. 5 and Fig. 6 we present three examples of the ex-

racted key-frames for two of the videos of the first dataset and

ne video of the second dataset, respectively. In the first exam-

le ( Fig. 4 ), there are five lights that initially are turned on, then
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Fig. 4. First visual example (better seen in color). (a) Ground truth. Solutions using: (b) HSV3D, (c) SIFT50 (d) Centrist (CEN), (e) Wavelets (WAV), (f) HSV3D - SIFT50, (g) 

HSV3D - CEN, (h) HSV3D - WAV. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Second visual example (better seen in color). (a) Ground truth. Solutions using: (b) HSV3D, (c) SIFT50 (d) Centrist (CEN), (e) Wavelets (WAV), (f) HSV3D - SIFT50, (g) 

HSV3D - CEN, (h) HSV3D - WAV. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Third visual example (better seen in color). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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they all turn off and start turning on one by one until all traffic

lights are turned on again and the turn off again (the ground-

truth key-frames are presented in the first row). The next four

rows present the key-frames extracted when only one descriptor

is employed: (b) HSV3D (8/9 correct key-frames), (c) SIFT20 (7/9

correct key-frames), (d) Centrist (CEN) (6/9 correct key-frames),

(e) Wavelets (WAV) (9/9 correct key-frames). Next three rows

present the key-frames extracted when pairs of descriptors are em-

ployed: (f) HSV3D - SIFT50 (8/9 correct key-frames, π1 = 0.95 and

π2 = 0.05), (g) HSV3D - CEN (8/9 correct key-frames, π1 = 0.98 and

π2 = 0.02) and (h) HSV3D - WAV (9/9 correct key-frames, π1 = 0.45

and π2 = 0.55). It can be observed that when HSV3D is used with

SIFT50 or Centrist it acquires very large weight, thus key-frames
re similar to those obtained when only HSV3D is employed. On

he other hand, when HSV3D is combined with WAV, their weights

ave comparable values indicating these are the most relevant de-

criptors for the specific video sequence. 

In the second example ( Fig. 5 ), there are three circle lights

red, orange, green) and three arrow lights (red, orange, green).

round truth key-frames for this video sequence are presented in

he first row. The next four rows provide the extracted key-frames

hen only one descriptor is employed: (b) HSV3D (4/6 correct

ey-frames), (c) SIFT50 (4/6 correct key-frames), (d) Centrist (CEN)

3/6 correct key-frames), (e) Wavelets (WAV) (4/6 correct key-

rames). Next three rows present the key-frames extracted when

airs of descriptors are employed: (f) HSV3D - SIFT50 (4/6 correct
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ey-frames, π1 = 1.00 and π2 = 0.00), (g) HSV3D - CEN (5/6 correct

ey-frames, π1 = 0.27 and π2 = 0.73) and (h) HSV3D - WAV (5/6

orrect key-frames, π1 = 0.11 and π2 = 0.89). It is obvious that the

ombination of HSV3D with Centrist or Wavelets yields a better

olution. 

In the third example ( Fig. 6 ), v21 (The Great Web of Wa-

er, segment 01) from the second dataset (Open video project) is

sed. The first five rows provide ground truth key-frames as se-

ected form five different users [8] . The next four rows provide

he extracted key-frames when only one descriptor is employed:

f) HSV1D ( CUS A = 0.7 and CUS E = 1.44), (g) Centrist (CEN) ( CUS A 
 0.75 and CUS E = 1.39), (h) Wavelets (WAV) ( CUS A = 0.7 and

US E = 1.44), (i) SIFT50 ( CUS A = 0.61 and CUS E = 1.53). Next two

ows present the key-frames extracted when proposed method is

mployed: (j) HSV1D - CEN - WAV ( CUS A = 0.9 and CUS E = 1.24,
1 = 0.11, π2 = 0.64 and π3 = 0.25), (k) HSV1D - CEN - WAV - SIFT50

 CUS A = 0.85 and CUS E = 1.29, π1 = 0.18, π2 = 0.49, π3 = 0.23 and
4 = 0.1). It can be observed that the proposed method performs

etter than single descriptors. 

. Conclusions 

A key-frame extraction method has been proposed capable of

ombining different image descriptors (views). In this way a signif-

cant problem is tackled, since the large variations observed in the

isual content of videos make inefficient the use of a specific single

escriptor. Our method builds upon a weighted multi-view cluster-

ng algorithm based on Convex Mixture Models and demonstrates

he important property that the weight of each descriptor is au-

omatically estimated to reflect its importance for a specific video

equence. After the weights have been computed, a similarity ma-

rix is built as a weighted sum of the individual kernels corre-

ponding to each descriptor. Finally a spectral clustering algorithm

s applied using this similarity matrix to cluster the frames of a

hot into groups, from which the representative key-frames (clus-

er medoids) are extracted. Performance results on several video

equences (also supported by visual examples) indicate that our

ethod efficiently summarizes video shots regardless of the visual

ontent and the combination of image descriptors employed. This

s mainly due to its ability to assign high weight to relevant de-

criptors and almost zero weight to irrelevant ones. 

In future work, we aim to perform additional experiments

sing other types of kernels, creating synthetic kernels for each

escriptor as a weighted combination of base kernels and using

isual vocabularies of different size. It is also interesting to replace

he spectral clustering part of our approach with a segmentation-

ased technique that would take as input the weighted similarity

atrix. Finally, another future research direction would be to

nhance the proposed methodology using clustering criteria so as

o automatically estimate the number of clusters (key-frames). 
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