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a b s t r a c t

Applying k-Means to minimize the sum of the intra-cluster variances is the most popular clustering
approach. However, after a bad initialization, poor local optima can be easily obtained. To tackle the
initialization problem of k-Means, we propose the MinMax k-Means algorithm, a method that assigns
weights to the clusters relative to their variance and optimizes a weighted version of the k-Means
objective. Weights are learned together with the cluster assignments, through an iterative procedure. The
proposed weighting scheme limits the emergence of large variance clusters and allows high quality
solutions to be systematically uncovered, irrespective of the initialization. Experiments verify the
effectiveness of our approach and its robustness over bad initializations, as it compares favorably to
both k-Means and other methods from the literature that consider the k-Means initialization problem.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is a fundamental problem in data analysis that arises
in a variety of fields, such as pattern recognition, machine learning,
bioinformatics and image processing [1,2]. It aims at partitioning a
set of instances into homogeneous groups, i.e. the intra-cluster
similarities are high while the inter-cluster similarities are low,
according to some clustering objective. However, exhaustively
searching for the optimal assignment of instances to clusters is
computationally infeasible and usually a good local optimum of
the clustering objective is sought.

One of the most well-studied clustering algorithms is k-Means [3],
which minimizes the sum of the intra-cluster variances. Its simplicity
and efficiency have established it as a popular means for performing
clustering across different disciplines. Even an extension to kernel
space has been developed [4,5] to enable the identification of non-
linearly separable groups. Despite its wide acceptance, k-Means suffers
from a serious limitation. Its solution heavily depends on the initial
positions of the cluster centers, thus after a bad initialization it easily
gets trapped in poor local minima [6,7]. To alleviate this shortcoming,
k-Means with multiple random restarts is often employed in practice.

Several methods attempt to overcome the sensitivity to the
initialization in a more principled way. A first group of methods
applies special techniques aiming at systematically avoiding partition-
ings of poor quality during the restarts. In [8], the initial centers are
selected through a stochastic procedure such that the entire data space
is covered. Theoretical guarantees are provided about the capability of
the method to approximate the optimal clustering. Two approaches

that start from random centers and penalize clusters relative to the
winning frequency of their representatives are presented in [9,10].
Discouraging clusters to which several points have already been
assigned from attracting new points in the subsequent steps has a
regularizing effect. Centers that were initially ill-placed and are
currently underutilized can actively participate in the solution on the
following steps, which obstructs outlier clusters from forming and in
effect balances the sizes of the clusters. Some other, analogous,
strategies can be found in [11,12].

A second group of methods attempts to eliminate the dependence
on random initial conditions, hence restarts are not anymore neces-
sary. Global k-Means [13] and its modifications [14,15] are incremental
approaches that start from a single cluster and at each step a new
cluster is deterministically added to the solution according to an
appropriate criterion. A kernel-based version of global k-Means is also
available [16,17]. In [18] and its extension [19], spectral clustering is
applied to locate the global optimum of a relaxed version of the
k-Means objective, by formulating the problem as a trace maximiza-
tion. Although these algorithms are not susceptible to bad initializa-
tions, they are computationally more expensive.

In this paper we propose MinMax k-Means, a novel approach that
tackles the k-Means initialization problem by altering its objective. Our
method starts from a randomly picked set of centers and tries to
minimize the maximum intra-cluster variance instead of the sum of
the intra-cluster variances. Specifically, a weight is associated with each
cluster, such that clusters with larger variance1 are allocated higher
weights, and a weighted version of the sum of the intra-cluster
variances criterion is derived. Different notions of weights have been
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exploited in the literature across several k-Means variants. In fuzzy
c-means and Gaussian mixture models [20] weights are used to
compute the degree of cluster membership of the instances, while
in other variants weights are assigned to features, or groups of
features, such that the tasks of clustering and feature selection are
simultaneously performed [21,22]. Also, in [23], a weighting factor is
added to each instance in order to detect outliers.

The per cluster weights predispose our algorithm towards
primarily minimizing those clusters that currently exhibit a large
variance, in essence confining the occurrence of large variance
clusters in the outcome, and are learned automatically, together
with the cluster assignments. The proposed method alternates
between a minimization step, resembling the k-Means procedure,
and an additional maximization step, in which the weights are
calculated using closed-form expressions. By applying this weight-
ing mechanism, results become less affected by the initialization
and solutions of high quality can be more consistently discovered,
even after starting from a bad initial set of centers. In addition, the
obtained clusters are balanced with respect to their variance.

The presented algorithm also incorporates a parameter p, whose
value must be specified prior to execution, that adjusts the degree
of its bias towards penalizing large variance clusters. When p¼0,
k-Means, which has a zero bias, can be deduced as a special case of
our method. A practical framework extending MinMax k-Means to
automatically adapt this parameter to the dataset has been also
developed in this work, so that the hidden group structures in the
data can be successfully uncovered.

Experiments are conducted on several diverse datasets, includ-
ing images, handwritten digits, proteins and patient records.
MinMax k-Means is compared to k-Means, as well as to k-Mean-
sþþ [8] and pifs k-Means [10] that evade degenerate optima, the
first by methodically picking the initial centers and the second by
balancing the cluster sizes. Our empirical evaluation reveals the
effectiveness of the proposed clustering scheme in restricting the
emergence of large variance clusters and producing superior solu-
tions compared to the other three approaches, while restarted from
random initializations. Furthermore, we observe that our algorithm
constitutes a very promising technique for initializing k-Means.

The rest of this paper is organized as follows. We next briefly
describe k-Means, while in Section 3 the proposed MinMax
k-Means algorithm is presented and its properties are analyzed.
Section 4 introduces our practical framework for setting the p
parameter. The experiments follow in Section 5, before the
concluding remarks of Section 6.

2. k-Means

To partition a dataset X ¼ fxigNi ¼ 1, xiARd into M disjoint

clusters, fCkgMk ¼ 1, k-Means [3] minimizes the sum of the intra-
cluster variances (1), where Vk ¼∑N

i ¼ 1δik‖xi�mk‖2 and
mk ¼∑N

i ¼ 1δikxi=∑N
i ¼ 1δik are the variance2 and the center of the

k-th cluster, respectively, and δik is a cluster indicator variable with
δik ¼ 1 if xiACk and 0 otherwise.

Esum ¼ ∑
M

k ¼ 1
Vk ¼ ∑

M

k ¼ 1
∑
N

i ¼ 1
δik‖xi�mk‖2 ð1Þ

Clustering proceeds by alternating between assigning instances to
their closest center and recomputing the centers, until a local
minimum is (monotonically) reached.

Despite its simplicity and speed, k-Means has some drawbacks,
with the most prominent being the dependence of the solution on

the choice of initial centers [6,7]. Bad initializations can lead to poor
local minima, thus multiple random restarts are usually executed to
circumvent the initialization problem. Often, the solutions returned
by the restarts significantly vary in terms of the achieved objective
value, ranging from good to very bad ones, particularly for problems
with a large search space (e.g. many clusters and dimensions).
Therefore, numerous runs of the algorithm are required to increase
the possibility of locating a good local minimum.

3. MinMax k-Means

As discussed in Section 2, the sensitivity of k-Means to initializa-
tion and the diverse solutions uncovered during the restarts make it
difficult to find a good partitioning of the data. Motivated by this, we
propose the optimization of a different objective and a new meth-
odology that allows k-Means to produce high quality partitionings
more systematically, while restarted from random initial centers.

3.1. The maximum variance objective

Consider a dataset X ¼ fxigNi ¼ 1, xiARd to be split into M
disjoint clusters, fCkgMk ¼ 1. Instead of minimizing the sum of the
intra-cluster variances (1), we propose to minimize the maximum
intra-cluster variance

Emax ¼ max
1rkrM

Vk ¼ max
1rkrM

∑
N

i ¼ 1
δik‖xi�mk‖2

( )
; ð2Þ

where Vk, mk and δik are defined as in (1).
The rationale for this approach is the following: the summation

over all clusters in the k-Means objective (1) allows for similar Esum

values to be achieved either by having a few clusters with large
variance that are counterbalanced by others with small variance,
or by having a moderate variance for all clusters. This means that
the relative differences among the cluster variances are not taken
into account. Note that the variance of a cluster is a measure of its
quality. The above remark does not hold when minimizing Emax

though, as the first case above would lead to a higher objective
value. Hence, when minimizing Emax, large variance clusters are
avoided and the solution space is now restricted towards clusters
that exhibit more similar variances.

The previous observation has two important implications.
Since k-Means minimizes Esum, it cannot distinguish between the
two cases, thus a bad initialization yields a poor solution that is
characterized by substantially different variances among the
returned clusters; a result of natural groups getting merged (large
variance clusters) and others getting split (small variance clusters),
or of outlier clusters being formed.3 As explained, the maximum
intra-cluster variance objective Emax is less likely to converge to
such solutions, hence it is easier to overcome a bad initialization.
Thus, we expect a k-Means type algorithm coupled with this
objective to be able to uncover better group structures more
consistently during the restarts. An example is illustrated in Fig. 1.

Additionally, a balancing effect on the clusters occurs. Balanced
outcomes have been pursued in different ways in the literature.
For example, in [10] k-Means and spherical k-Means are modified
to penalize clusters in proportion to the number of instances
assigned to them, while in [24,25] a graph cut criterion is
optimized which favors the creation of subgraphs where the sums
of the edge weights within the subgraphs (subgraph associations)
are similar. In our case, balancing is done with regard to the

2 In this work, we define cluster variance as the sum, and not the average, of
the squared distances from the instances belonging to the cluster to its center.

3 Let us clarify that a solution with quite different variances on the clusters is
not necessarily a bad one. There are datasets where the natural groups exhibit such
structure. We simply claim that such behavior also arises after a bad initialization,
where some groups are merged and others are split.
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variance of the clusters and not the number of cluster instances.
As many real life applications demand partitionings of comparable
size for subsequent data analysis [10], this is a nice and desired
property of the presented objective (2). Note that a known short-
coming of k-Means is its tendency to produce skewed solutions,
i.e. clusters with widely varying number of instances and/or near-
empty clusters, especially for data with many dimensions and
clusters, since the solution space vastly expands in this case [10,20].

3.2. A relaxed maximum variance objective

Despite the aforementioned advantages, directly minimizing
the maximum intra-cluster variance Emax poses a non-trivial
optimization problem. To tackle this problem, the objective is
relaxed so it can be readily optimized in a k-Means iterative
fashion. Specifically, we construct a weighted formulation Ew of the
sum of the intra-cluster variances (3), where greater emphasis, i.e.
a higher weight wk, is placed on clusters with large variance, to
mimic the behavior of the maximum variance criterion (2).

Ew ¼ ∑
M

k ¼ 1
wp

kVk ¼ ∑
M

k ¼ 1
wp

k ∑
N

i ¼ 1
δik‖xi�mk‖2;

wkZ0; ∑
M

k ¼ 1
wk ¼ 1; 0rpo1 ð3Þ

In contrast to Emax, now, all clusters contribute to the objective,
albeit to different degrees regulated by the wk values (the wk

p

values, to be precise). Obviously, the more a cluster contributes
(higher weight), the more intensely its variance will be minimized,
as in this way a bigger reduction of the objective is possible. Note
that the weights are not constants, but parameters that must be
optimized together with the cluster labels. We treat weights as
parameters to allow their values to accurately reflect the variance
of their respective clusters at each iteration during training and
constrain them to sum to unity to avoid overfitting and get a
meaningful optimization problem. The p exponent is a user
specified constant that takes values in the range ½0;1Þ and controls
the sensitivity of the weight updates to the relative differences of
the cluster variances, i.e. how strongly these differences are
echoed by the weights. We shall shortly provide more insight into
the Ew objective and thoroughly explain the role of p.

The general goal of clustering is to produce a partitioning with
low intra-cluster variances (compact clusters) and at the same
time we wish to rigorously guard against solutions in which large
variance clusters occur, analogously to Emax. In order for the
relaxed objective to penalize large clusters, a higher variance
should lead to a higher weight, which can be realized by
maximizing Ew with respect to the weights. The resulting

optimization problem is a min-max problem of the form

min
fCkgMk ¼ 1

max
fwkgMk ¼ 1

Ew;

s:t: wkZ0; ∑
M

k ¼ 1
wk ¼ 1; 0rpo1: ð4Þ

We propose an iterative algorithm, called MinMax k-Means, that
alternates between the Ck and wk optimization steps to get a local
optimum of Ew and the corresponding derivations are presented
next. Note that p is not part of the optimization and must be fixed
a priori.

3.2.1. Minimization step
By keeping the weights fixed, new cluster assignments and

representatives mk are calculated. For the assignments, because
the terms of Ew involving the cluster indicator variables δik for the
i-th instance are independent of the other instances, the optimiza-
tion is straightforward, giving

δik ¼
1; k¼ argmin1rk0 rMw

p
k0
‖xi�mk0‖2

0 otherwise:

(
ð5Þ

Hence, each instance is assigned to the cluster whose weighted
distance from the representative to the instance is the smallest.
Moreover, it is evident that as the weight wk increases, only
instances that are very close to the representative mk are assigned
to the k-th cluster.

To estimate the representatives, the derivatives of the objective
function with respect to mk are set to zero, which yields

mk ¼
∑N

i ¼ 1δikxi

∑N
i ¼ 1δik

: ð6Þ

As for k-Means, the representatives coincide with the centroids of
the clusters and are independent of the weights.

3.2.2. Maximization step
To update the weights for given cluster assignments and

centers, the weight constraints (4) are incorporated into the
objective via a Lagrange multiplier and the derivatives with
respect towk are set to zero. It is easy to verify that the constrained
objective is concave with respect to the weights when 0rpo1,
hence their optimal values that maximize Ew given the current
partitioning can be determined. After some manipulation the
following closed-form solution emerges

wk ¼ V1=ð1�pÞ
k ∑

M

k0 ¼ 1
V1=ð1�pÞ
k0

; where Vk ¼ ∑
N

i ¼ 1
δik‖xi�mk‖2:

,
ð7Þ

Fig. 1. Example (a) of a bad initialization that (b) leads to a poor k-Means solution, consisting of clusters with significantly different variances. On the contrary, our method,
which is based on the notion of the maximum intra-cluster variance, manages to correctly locate the clusters (c) starting from the same initial centers. Different symbols and
colors represent the cluster assignments and centers. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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As 1=ð1�pÞ40, since 0rpo1, it can be observed that the larger
the cluster variance Vk the higher the weight wk.

3.3. Discussion

In this section some aspects of the MinMax k-Means algorithm
and its relaxed objective (3) are analyzed in more detail. According
to (7), for a given partitioning of the data the weights are set
proportionally to the cluster variances. In the subsequent mini-
mization step, the assignment of instances to clusters is made
using the weighted distance from the cluster centers (5). Appar-
ently, for highly weighted clusters, the weighted distance of their
representatives from the instances increases. Consequently, a
cluster with large variance may lose some of its current instances
that are away from its center (instances on the periphery of the
cluster) and its variance is expected to decrease. At the same time,
low variance clusters, due to the small weights, may also acquire
instances that are not close to their centers and their variance will
increase. Therefore, the iterative procedure of MinMax k-Means
punishes large variance clusters and operates towards clusters with
similar variances, resembling the maximum variance objective (2)
whose advantages are carried over.

MinMax k-Means requires initial values for the cluster repre-
sentatives and the weights. At the start no information about the
variance of the clusters is available and the weights should be
uniformly initialized, i.e. wk ¼ 1=M. Similar to k-Means, the solu-
tion depends on the initialization of the centers and multiple
restarts are necessary. However, as Ew shares the same properties
with Emax, high quality solutions are anticipated on a regular basis
compared to k-Means.

Regarding the p values, the most natural choice would be to
propose a method where p¼1. For p¼1 the estimation of the
weights simplifies to

wk ¼
1; k¼ argmax1rk0 rMVk0

0 otherwise:

�
ð8Þ

Obviously, in each iteration only the highest variance cluster
receives a non-zero weight and thus in the following minimization
step all its instances will be randomly assigned (5) to one of the
other, zero-weight, clusters, which clearly signifies a degenerate
case. If p41 is selected, the relaxed objective becomes convex
with respect to the weights, thus the weight updates, which take
the same form as in (7), will minimize Ew instead of maximizing it
as required by (4). Therefore, only 0rpo1 can be permitted.

As for the effect of the p exponent (0rpo1), based on (7) it can
be shown that the greater (smaller) the p value the less (more) similar
the weight values become, as the relative differences of the variances
among the clusters are enhanced (suppressed). This remark also holds
for thewk

p values, which are the actual coefficients used in the relaxed
objective (3). To demonstrate the above in detail, the ratio between
any two weights, wk=wk0 , can be considered as an indicator of their
similarity. The more this ratio tends to 1 the more similar the weights.
Assume a fixed clustering, i.e. fixed cluster variances Vk and Vk0 . From
(7),

wk

wk0
¼ Vk

Vk0

� �1=ð1�pÞ

and

wp
k

wp
k0
¼ Vk

Vk0

� �p=ð1�pÞ
;

0rpo1. As p increases, the value of the 1=ð1�pÞ and p=ð1�pÞ
exponents grows, thus the relative differences of the cluster variances
are enhanced and both ratios deviate more from 1, i.e. the weights
and coefficients wk

p attain less similar values (the exact opposite holds

when p is decreased). In other words, p adjusts how intensely the
differences of the cluster variances are reflected on the weights.

Therefore, for a high p value, large variance clusters accumulate
considerably higher wk and wk

p values compared to low variance
clusters, resulting in an objective that severely penalizes clusters
with high variance. Note that an extremely high p may force clusters
with large variance to lose most, or even all their instances, as their
enormous weights will excessively distance the instances from their
centers (5), something not desired of course. On the other hand, for
p¼0, all wk

p coefficients equal 1, hence the differences of the cluster
variances are ignored and actually the k-Means criterion is recovered,
which permits high variance clusters. As shown in Section 3.1,
preventing the appearance of large variance clusters is helpful in
evading poor solutions after a bad initialization and also balances the
clusters. However, this tactic may prove problematic when natural
groups with different amounts of variance exist in the dataset, a
common scenario in practice, as it will hinder the clustering process
from unveiling the true structure of the data. We believe that
intermediate p values provide a good compromise, since high
variance clusters will be admitted up to a certain extent. In a nutshell,
the p exponent controls how strongly the relaxed objective of MinMax
k-means restricts the occurrence of large variance clusters, allowing its
adaptation to the dataset. This is an important advantage over the
maximum variance objective Emax, whose strictness over large
variance clusters cannot be adjusted.

4. Improving MinMax k-Means

A crucial limitation of the MinMax k-Means algorithm is the
treatment of the p exponent as a predefined constant. While from
the above discussion it is clear that a moderate p is preferable, this
is a rough assessment that hardly provides an indication as to which
exact p values suit a specific dataset. Therefore, manually selecting
an appropriate p is not trivial and requires repeating the clustering
for several p values. This task becomes even harder given the
dependence of the solution on the initial centers for a particular p.

To circumvent this limitation, we devise a practical framework
that extends MinMax k-Means to automatically adapt the exponent
to the dataset, while alternating between the minimization and
maximization steps as before. Specifically, we begin with a small p
(pinit) that after each iteration is increased by step pstep, until a
maximum value is attained (pmax). After pmax is reached, clustering
continues without changing p. The idea behind this strategy is that
the clusters formed during the first steps are heavily influenced by
the initialization and should be allowed to freely evolve without
considering their differences in variance, thus a small p is desirable
(we set pinit ¼ 0). As clustering progresses, p is gradually increased
to restrain large variance clusters that persist in the solution and
result in poor outcomes, especially after a bad initialization. Note
that such a progressive punishment of large variance clusters is not
possible when p is fixed a priori. Moreover, since clusters with high
variance must not be completely eliminated in order to correctly
uncover the intrinsic structures in the data (Section 3.3), extremely
high values for pmax should be avoided.

As p grows, large variance clusters are susceptible to relinquish-
ing most of their current instances (see Section 3.3). If an empty or
singleton cluster appears, it will receive zero weight in the
maximization step as Vk ¼ 0. This will cause all the dataset
instances to be assigned to it in the subsequent minimization step
(5) and the clustering process will collapse. This situation indicates
that p has attained a very high value for the particular dataset.
Whenever an empty or singleton cluster emerges, irrespective of
whether pmax has been reached or not, we decrease p by pstep,
revert back to the cluster assignments corresponding to the
previous p value and resume clustering from there. Note that

G. Tzortzis, A. Likas / Pattern Recognition 47 (2014) 2505–25162508
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p is never increased again in the following iterations. This
manipulation of the p exponent has the same effect as setting
pmax to be equal to the reduced p value from the beginning (here
the adjustment is done automatically though) and actually shows
that the presented framework is not very sensitive to the choice of
pmax, as p will stop increasing when necessary.

To enhance the stability of the MinMax k-Means algorithm, a
memory effect could be added to the weights:

wðtÞ
k ¼ βwðt�1Þ

k þð1�βÞ V1=ð1�pÞ
k ∑

M

k0 ¼ 1
V1=ð1�pÞ
k0

!
; 0rβr1;

, 
ð9Þ

where β controls the influence of the previous iteration weights to
the current update, allowing for smoother transitions of the weight
values between consecutive iterations. It should be stressed that
whenmemory is applied (β40), the newly derived weights no more

correspond to their optimal values for the current partitioning, in
contrast to the case where memory is not employed (see Section
3.2.2). However, this does not negatively affect our method, as
convergence to a local optimum cannot be guaranteed, irrespective
of the use of memory, since at every iteration both a minimization
and a maximization of the objective is performed. On the contrary,
our empirical evaluation has shown that memory is beneficial in
several cases and that fewer empty clusters are created.

The change of the relaxed objective's value (3) between two
consecutive iterations serves as the termination criterion. When
this change is less than a tiny value ϵ, we stop. However, as
mentioned above, convergence cannot be theoretically ensured,
therefore we also stop if a predefined number of iterations tmax is
exceeded. In practice we observed that convergence was achieved
in many of our experiments. The pseudocode for the complete
MinMax k-Means algorithm is shown in Algorithm 1.

Algorithm 1. MinMax k-Means.

Input: Dataset X ¼ fxigNi ¼ 1, Initial centers fmð0Þ
k gMk ¼ 1, Number of clusters M, Secondary parameters (see text) pmax, pstep, β, ϵ, tmax

Output: Cluster assignments fδikgi ¼ 1;…;N;k ¼ 1;…;M , Final centers fmkgMk ¼ 1

1: Set t¼0
2: Set pinit ¼ 0
3: Set wð0Þ

k ¼ 1=M, 8k¼ 1;…;M
4: Set empty¼ false //No empty or singleton clusters yet detected.
5: p¼ pinit
6: repeat
7: t ¼ tþ1
8: for i¼1 to N do //Update the cluster assignments.
9: for k¼1 to M do
10:

δðtÞik ¼ 1; k¼ argmin1rk0 rMðwðt�1Þ
k0

Þp‖xi�mðt�1Þ
k0

‖2

0 otherwise

(

11: end for
12: end for
13: if empty or singleton clusters have occurred at time t then // Reduce p.
14: empty¼ true
15: p¼ p�pstep
16: if popinit then
17: return NULL
18: end if

//Revert to the assignments and weights corresponding to the reduced p.
19: δðtÞik ¼ ½ΔðpÞ�ik, 8k¼ 1;…;M, 8 i¼ 1;…;N
20: wðt�1Þ

k ¼ ½wðpÞ�k, 8k¼ 1;…;M
21: end if
22: for all mk, k¼1 to M //Update the centers.
23: mðtÞ

k ¼∑N
i ¼ 1δ

ðtÞ
ik xi=∑N

i ¼ 1δ
ðtÞ
ik

24: end for
25: if popmax and empty¼ false then //Increase p.
26: ΔðpÞ ¼ ½δðtÞik � //Store the current assignments in matrix ΔðpÞ.
27: wðpÞ ¼ ½wðt�1Þ

k � //Store the previous weights in vector wðpÞ.
28: p¼ pþpstep
29: end if
30: for all wk, k¼1 to M do //Update the weights.
31: wðtÞ

k ¼ βwðt�1Þ
k þð1�βÞððVðtÞ

k Þ1=ð1�pÞ=∑M
k0 ¼ 1ðV

ðtÞ
k0
Þ1=ð1�pÞÞ; where

VðtÞ
k ¼∑N

i ¼ 1δ
ðtÞ
ik ‖xi�mðtÞ

k ‖2

32: end for
33: until jEðtÞ

w �Eðt�1Þ
w joϵ or tZtmax

34: return fδðtÞik gi ¼ 1;…;N;k ¼ 1;…;M , fm
ðtÞ
k gMk ¼ 1
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5. Empirical evaluation

The performance of MinMax k-Means4 is studied on several
datasets and we wish to investigate if indeed its relaxed objective
(3) limits the occurrence of large variance clusters and how
effective the proposed method is in overcoming bad initializations
and attaining good solutions more regularly than k-Means.

To demonstrate the above, first, a comparison to the basic
k-Means algorithm is made. As already discussed, k-Means does
not consider the relative differences of the clusters, allowing high
variance clusters to emerge. Also, its solution is greatly affected by
the initial centers. Hence, this comparison will provide strong
evidence on the effectiveness of MinMax k-Means. Moreover, we
also experiment with two k-Means variants, called k-Meansþþ
and partially incremental frequency sensitive (pifs) k-Means.

In k-Meansþþ [8] a stochastic procedure is employed to pick
the initial cluster centers and then k-Means is executed from these
centers. Specifically, given that k�1 centers have already been
selected, instance xi may be selected as the k-th initial center with
a probability that is proportional to its minimum distance from the
k�1 centers. The above procedure aims at selecting initial centers
that cover the entire data space, thus providing better initializa-
tions to k-Means (compared to random starts), and, therefore,
constituting a worthy competitor against which to measure our
method.

Pifs k-Means [10] explicitly penalizes clusters in proportion to
the number of instances already assigned to them, according to the
following cluster update rule5:

δik ¼
1; k¼ argmin1rk0 rM jCk0 j‖xi�mk0‖2

0 otherwise;

(
ð10Þ

where jCkj is the current size of the k-th cluster. Based on (10), the
larger the cluster the lower the chance of an instance being
acquired by that cluster. Thus, clusters are balanced in terms of
their size, which has been shown to decrease the sensitivity to bad
initializations [9,10]. Remember (Section 3.3), that MinMax k-
Means, implicitly, through its weighting strategy, operates towards
clusters with similar variances. Therefore, it is interesting to
examine how these two different balancing approaches compare
against each other.

5.1. Datasets

Six popular datasets are utilized in our empirical study for
which the ground-truth is available. Their features are normalized
to zero mean and unit variance, unless stated otherwise.

Coil-20 [26] contains 72 images taken from different angles for
each of the 20 included objects. As in [27], SIFT descriptors [28] are
first extracted from the images which are then represented by the
bag of visual words model using 1000 visual words and the data
vectors are normalized to unit length. For our purposes, three
subsets of Coil-20 were created, Coil1 (objects 3, 9 and 10), Coil2
(objects 15, 18 and 19) and Coil3 (objects 2, 4, 7, 10 and 11).

Multiple features & Pendigits are two collections of handwritten
digits (0–9) from the UCI repository [29]. Multiple features digits
(200 per class) are described in terms of six different feature sets
and we select two of them, namely pixel averages and profile
correlations. Pendigits consists of 10 992 instances (roughly 1100
samples per numeral) in 16-dimensional space.

Olivetti is a face database of 40 individuals with ten 64�64
grayscale images per individual. Based on [30], we only retain the
first 100 images, belonging to ten persons, and apply the same
preprocessing. Specifically, each image is smoothed using a Gaus-
sian kernel and then rotated by �101, 01 and 101 and scaled by a
factor of 0.9, 1.0 and 1.1, resulting in 900 images. Finally, a central
50�50 window of the images is kept and its pixels are normalized
to zero mean and 0.1 variance.

Ecoli (UCI) [29] includes 336 proteins from the E. coli bacterium
and seven attributes, calculated from the amino acid sequences,
are provided. Proteins belong to eight categories according to their
cellular localization sites. Four of the classes are extremely under-
represented and are not considered in our evaluation. Note that
classes differ in size, i.e. it is an unbalanced dataset.

Dermatology (UCI) [29] is composed of 366 patient records that
suffer from six different types of the Eryhemato-Squamous dis-
ease. Each patient is described by both clinical and histopatholo-
gical features (34 in total). This dataset is also unbalanced.

A summary of the datasets is provided in Table 1.

5.2. Experimental protocol

All tested algorithms, apart from k-Meansþþ , are restarted
500 times from the same randomly chosen initial centers. For k-
Meansþþ , the stochastic initialization procedure is executed 500
times. The number of clusters is set equal to the number of classes
in each dataset, throughout the experiments. To evaluate the
quality of the returned solutions, the maximum cluster variance
Emax, defined in (2), and the sum of the cluster variances Esum,
defined in (1), serve as the main performance measures and their
average and standard deviation over the 500 runs is reported. Note
that Esum favors k-Means and k-Meansþþ in the comparisons,
since this is the objective optimized by these two methods.
Likewise, Emax favors our framework which optimizes a relaxed
version of (2). Since the ground-truth is available, the achieved
NMI score (11),6 is also reported. Higher NMI values indicate a
better match between the cluster labels and the class labels.

NMI¼
2∑M

k ¼ 1∑
C
h ¼ 1

nh
k

N
log

nh
kN

∑M
i ¼ 1n

h
i ∑

C
i ¼ 1n

i
k

HMþHC
ð11Þ

Moreover, to assess the computational complexity of the algo-
rithms, their average execution time (in seconds) is reported.

In a second series of experiments, the cluster centers derived
by each execution of MinMax k-Means and pifs k-Means are used
to initialize a subsequent k-Means run. This allows us to determine
if k-Means performance can be improved when initialized by these

Table 1
Main characteristics of the tested datasets.

Dataset Instances Features Classes Balanced

Coil1 & Coil2 216 1000 3 Yes
Coil3 360 1000 5 Yes
Multiple features—pixel averages 2000 240 10 Yes
Multiple features—profile

correlations
2000 216 10 Yes

Pendigits 10 992 16 10 Almost
Olivetti 900 2500 10 Yes
Ecoli 307 7 4 No
Dermatology 366 34 6 No

4 Matlab code is available at: http://www.cs.uoi.gr/�gtzortzi.
5 Note that the exact cluster update rule proposed in [10] contains an

additional d lnjCk0 j term, where d is the dataset dimensionality. However, better
results were obtained without using this term in our experiments.

6 N is the dataset size, M is the number of clusters, C is the number of classes,
nk
h is the number of points in cluster k belonging to class h, and HM , HC is the

entropy of the clusters and the classes, respectively.
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two approaches and also facilitates the comparison of the tested
methods under a common objective (Esum).

For MinMax k-Means, some additional parameters must be fixed
prior to execution (pmax, pstep, β, ϵ and tmax). Our method is not
particularly sensitive to either pmax or pstep. Regarding pmax, p stops
increasing when empty or singleton clusters are detected. For pstep,
one should simply avoid a large step which will cause abrupt
changes to the p value between consecutive iterations. Thus, we do
not fine-tune these two parameters for each dataset and for all the
experiments we set pmax ¼ 0:5 and pstep ¼ 0:01. Note that empty
clusters appear quite often for the selected pmax value, indicating
that it is already set to a high value. For β, we tried three different
levels of memory, βAf0;0:1;0:3g, and present the corresponding
results. Finally, ϵ¼ 10�6 and tmax ¼ 500 for all experiments.

5.3. Performance analysis

The comparison of the algorithms across the various datasets is
shown in Tables 2–10, where MinMax k-Means and pifs k-Means
are abbreviated as MinMax and pifs, respectively. Tables 2(b)– 10

(b), labeled as “method þ k-Means”, refer to the experiments
where k-Means is initialized from the solution of the method
designated by the corresponding row. For example, we denote as
MinMaxþk-Means (pifsþk-Means), the method where MinMax
k-Means (pifs k-Means) is executed first and its solution is used to
initialize a subsequent run of k-Means. Of course, reinitializing
k-Means with its own, or the k-Meansþþ solution has no effect
and the results are just replicated from Tables 2(a)– 10(a) for
readers' convenience. Superscripts asterisk (n), dagger (†) and
double dagger (‡) denote that MinMax k-Means has a statistically
significant difference to k-Means, k-Meansþþ and pifs k-Means,
respectively, according to the t-test (the significance level is taken
as 0.05). A line above (below) these symbols stands for a higher
(lower) average, respectively.

From the tables two main observations can be made. First, all
memory levels of MinMax k-Means exhibit better (smaller) Emax

than k-Means, k-Meansþþ and pifs k-Means for every dataset
(Tables 2(a)– 10(a)), but Pendigits. This clearly displays that the
relaxed objective (3) minimizes large variance clusters and mimics
the maximum variance criterion (2). Note also that k-Means, when

Table 2
(a) Comparative results on the Coil1 dataset. (b) Comparative results on the Coil1 dataset when k-Means is initialized by the solution returned by MinMax k-Means and pifs
k-Means.

Method Emax Esum NMI Time

(a)
MinMax (β¼ 0) 46:6170:00n†‡

119:0270:00n†‡ 0:8870:00†‡ 0.54 (0.54)

MinMax (β¼ 0:1) 45:7570:00n†‡
119:2470:00n†‡ 0:8770:00n†‡ 0.42 (0.42)

MinMax (β¼ 0:3) 45:0470:00n†‡
119:4070:00n†‡ 0:8770:00n†‡ 0.42 (0.42)

k–Means 66:33719:46 121:2477:12 0:8970:16 0:07
k–Meansþþ 64:92718:83 121:0177:18 0:9070:16 0.09
Pifs 53:4370:00 117:8270:00 1:0070:00 0.07

Method þ k–Means Emax Esum NMI Time

(b)
MinMax (β¼ 0) 53:4370:00n† 117:8270:00n†

1:0070:00n† 0.58 (0.58)

MinMax (β¼ 0:1) 53:4370:00n† 117:8270:00n†
1:0070:00n† 0.45 (0.45)

MinMax (β¼ 0:3) 53:4370:00n† 117:8270:00n†
1:0070:00n† 0.46 (0.46)

k–Means 66:33719:46 121:2477:12 0:8970:16 0:07
k–Meansþþ 64:92718:83 121:0177:18 0:9070:16 0.09
Pifs 53:4370:00 117:8270:00 1:0070:00 0.09

Table 3
(a) Comparative results on the Coil2 dataset. (b) Comparative results on the Coil2 dataset when k-Means is initialized by the solution returned by MinMax k-Means and pifs
k-Means.

Method Emax Esum NMI Time

(a)
MinMax (β¼ 0) 58:7470:36n†‡ 154:4971:04n†‡

0:9570:14n†‡ 1.94 (0.47)

MinMax (β¼ 0:1) 57:1470:35n†‡ 155:0970:85n‡
0:9170:13n†‡ 0.45 (0.44)

MinMax (β¼ 0:3) 58:7370:42n†‡ 154:5671:09n†‡
0:9470:14n†‡ 0.52 (0.52)

k–Means 77:46718:74 155:4972:26 0:8070:16 0:09
k–Meansþþ 74:33716:87 155:1871:85 0:8270:16 0.10
Pifs 59:4871:11 155:9671:61 0:7570:19 0.11

Methodþk–Means Emax Esum NMI Time

(b)
MinMax (β¼ 0) 58:9570:97n†‡ 154:3870:93n†‡

0:9570:13n†‡ 1.97 (0.50)

MinMax (β¼ 0:1) 59:0371:70n†‡ 154:3970:94n†‡
0:9570:13n†‡ 0.47 (0.46)

MinMax (β¼ 0:3) 59:1171:98n†‡ 154:4270:96n†‡
0:9470:14n†‡ 0.55 (0.55)

k–Means 77:46718:74 155:4972:26 0:8070:16 0:09
k–Meansþþ 74:33716:87 155:1871:85 0:8270:16 0.10
Pifs 62:8477:06 155:5871:50 0:7770:19 0.14
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Table 4
(a) Comparative results on the Coil3 dataset. (b) Comparative results on the Coil3 dataset when k-Means is initialized by the solution returned by MinMax k-Means and pifs
k-Means.

Method Emax Esum NMI Time

(a)
MinMax (β¼ 0) 58:0070:27n†‡ 245:9570:71n†‡

0:9970:03n†‡ 3.29 (0.74)

MinMax (β¼ 0:1) 57:9070:25n†‡ 245:6470:75n†‡
0:9970:03n†‡ 5.46 (0.81)

MinMax (β¼ 0:3) 53:2470:40n†‡
249:8270:24†‡ 0:9470:01n† 3.36 (0.82)

k–Means 101:95729:81 249:6475:64 0:8870:08 0:15
k–Meansþþ 96:35728:37 249:1375:45 0:8970:07 0.18
Pifs 58:3971:07 246:4772:52 0:9570:08 0.20

Methodþk–Means Emax Esum NMI Time

(b)
MinMax (β¼ 0) 58:3072:85n†‡ 245:4170:41n†‡

0:9970:02n†‡ 3.33 (0.82)

MinMax (β¼ 0:1) 58:2672:72n†‡ 245:4170:41n†‡
0:9970:02n†‡ 5.51 (0.90)

MinMax (β¼ 0:3) 58:0371:77n†‡ 245:4070:23n†‡
0:9970:01n†‡ 3.40 (0.89)

k–Means 101:95729:81 249:6475:64 0:8870:08 0.15
k–Meansþþ 96:35728:37 249:1375:45 0:8970:07 0.18
Pifs 64:1279:50 245:6872:01 0:9670:06 0.25

Table 5
(a) Comparative results on the Multiple features (pixel averages) dataset. (b) Comparative results on the Multiple features (pixel averages) dataset when k-Means is
initialized by the solution returned by MinMax k-Means and pifs k-Means.

Method Emax Esum NMI Time

(a)
MinMax (β¼ 0) 149:6079:56n†‡

1239:3376:19†‡ 0:6870:03n†‡ 2.59 (2.00)

MinMax (β¼ 0:1) 146:73714:70n†‡
1240:4978:61n†‡ 0:6870:03n†‡ 2.36 (1.98)

MinMax (β¼ 0:3) 145:00717:17n†‡
1243:09713:05n†‡ 0:6870:04n†‡ 2.22 (1.50)

k–Means 222:50733:95 1238:36712:51 0:7170:04 0.66
k–Meansþþ 219:63736:34 1237:24711:18 0:7170:04 0.80
Pifs 150:7574:47 1237:8474:31 0:7270:05 1.03

Methodþk–Means Emax Esum NMI Time

(b)
MinMax (β¼ 0) 202:03723:73n†‡ 1230:6475:56n†‡

0:7270:03n†‡ 2.87 (2.28)

MinMax (β¼ 0:1) 200:20723:89n†‡ 1230:5275:38n†‡
0:7270:03n†‡ 2.66 (2.28)

MinMax (β¼ 0:3) 198:91724:51n†‡ 1229:7774:27n†‡
0:7270:03n†‡ 2.55 (1.83)

k–Means 222:50733:95 1238:36712:51 0:7170:04 0:66
k–Meansþþ 219:63736:34 1237:24711:18 0:7170:04 0.80
Pifs 177:06721:25 1232:0773:53 0:7470:04 1.30

Table 6
(a) Comparative results on the Multiple features (profile correlations) dataset. (b) Comparative results on the Multiple features (profile correlations) dataset when k-Means is
initialized by the solution returned by MinMax k-Means and pifs k-Means.

Method Emax Esum NMI Time

(a)
MinMax (β¼ 0) 118:6077:63n†‡ 966:9678:43n†‡ 0:6970:04‡ 2.84 (1.98)

MinMax (β¼ 0:1) 150:97752:71n†‡ 1004:81752:86n†‡ 0:6770:04n†‡ 3.93 (1.82)

MinMax (β¼ 0:3) 120:21715:16n†‡
972:86713:50n†‡ 0:6970:04‡ 2.13 (1.03)

k–Means 179:22741:17 970:18715:90 0:6970:04 0:49
k–Meansþþ 175:74737:88 968:81715:43 0:6970:03 0.63
Pifs 133:29710:57 974:5475:63 0:7170:04 1.00

Methodþk–Means Emax Esum NMI Time

(b)
MinMax (β¼ 0) 155:36716:13n†‡ 958:2876:97n†‡

0:7070:03n†‡ 3.05 (2.19)

MinMax (β¼ 0:1) 154:59713:08n†‡ 957:7876:54n†‡
0:7070:03n†‡ 4.17 (2.04)

MinMax (β¼ 0:3) 153:97712:22n†‡ 957:6376:28n†‡
0:7070:03n†‡ 2.37 (1.26)

k–Means 179:22741:17 970:18715:90 0:6970:04 0:49
k–Meansþþ 175:74737:88 968:81715:43 0:6970:03 0.63
Pifs 160:16711:63 962:9373:56 0:7270:04 1.26
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Table 7
(a) Comparative results on the Pendigits dataset. (b) Comparative results on the Pendigits dataset when k-Means is initialized by the solution returned by MinMax k-Means
and pifs k-Means.

Method Emax Esum NMI Time

(a)
MinMax (β¼ 0) 7769:5071249:80n†‡

61 140:867659:81†‡ 0:6870:01n†‡ 2.72 (2.23)

MinMax (β¼ 0:1) 17 497:2175431:65n†‡ 71 599:6175066:73n†‡ 0:6470:03n†‡ 4.79 (1.47)

MinMax (β¼ 0:3) 8849:2171706:73n†‡ 62 345:4471266:36n†‡ 0:6970:01‡ 2.27 (0.91)

k–Means 11 576:4373125:47 61 024:1771333:92 0:6970:02 0:55
k–Meansþþ 11 857:8973039:04 60 940:9671294:01 0:6970:02 0.56
Pifs 8623:377329:35 61 895:127643:98 0:7070:01 3.06

Methodþk–Means Emax Esum NMI Time

(b)
MinMax (β¼ 0) 9403:2172760:33n† 60 681:717710:50n† 0:6970:01‡ 2.88 (2.39)

MinMax (β¼ 0:1) 9835:2172444:54n†‡ 60 447:717751:37n†‡
0:7070:01n†‡ 4.99 (1.60)

MinMax (β¼ 0:3) 9258:1172590:49n† 60 366:927731:99n†‡ 0:6970:01‡ 2.50 (1.07)

k–Means 11 576:4373125:47 61 024:1771333:92 0:6970:02 0:55
k–Meansþþ 11 857:8973039:04 60 940:9671294:01 0:6970:02 0.56
Pifs 9289:797672:91 60 722:657684:59 0:7170:00 3.25

Table 8
(a) Comparative results on the Olivetti dataset. (b) Comparative results on the Olivetti dataset when k-Means is initialized by the solution returned by MinMax k-Means and
pifs k-Means.

Method Emax Esum NMI Time

(a)
MinMax (β¼ 0) 1217:72755:18n†‡ 11 016:58744:35n†‡ 0:3470:04 7.80 (7.43)

MinMax (β¼ 0:1) 1207:91786:61n†‡ 11 019:11783:40n† 0:3470:04 7.26 (7.10)

MinMax (β¼ 0:3) 1198:19792:13n†‡ 11 019:25769:03n† 0:3470:04 6.50 (6.22)

k–Means 1610:497152:77 11 034:37761:38 0:3470:03 2:40
k–Meansþþ 1624:467158:38 11 031:70764:07 0:3470:03 2.82
Pifs 1305:87736:61 11 024:36745:72 0:3470:03 2.97

Methodþk–Means Emax Esum NMI Time

(b)
MinMax (β¼ 0) 1383:357120:45n†‡ 10 985:52741:70n†‡ 0:3470:04 8.61 (8.24)

MinMax (β¼ 0:1) 1374:737117:89n† 10 984:49741:86n†‡ 0:3470:04 8.04 (7.88)

MinMax (β¼ 0:3) 1367:467116:57n† 10 980:86742:48n†‡ 0:3470:04 7.33 (7.05)

k–Means 1610:497152:77 11 034:37761:38 0:3470:03 2:40
k–Meansþþ 1624:467158:38 11 031:70764:07 0:3470:03 2.82
Pifs 1362:697101:90 10 993:37740:90 0:3470:03 3.91

Table 9
(a) Comparative results on the Ecoli dataset. (b) Comparative results on the Ecoli dataset when k-Means is initialized by the solution returned by MinMax k-Means and pifs k-
Means.

Method Emax Esum NMI Time

(a)
MinMax (β¼ 0) 5:2970:15n†

15:9470:24n†‡ 0:5870:01n†‡ 0.18 (0.06)

MinMax (β¼ 0:1) 5:0270:25n†‡ 15:7270:04‡
0:5770:01n†‡ 0.11 (0.05)

MinMax (β¼ 0:3) 4:8070:00n†‡ 15:7370:00‡
0:5870:00n†‡ 0.05 (0.05)

k–Means 6:3870:88 15:6870:54 0:6170:02 0.02
k–Meansþþ 6:6071:58 15:7971:02 0:6170:03 0.01
Pifs 5:3070:28 16:1970:15 0:5570:01 0.04

Methodþk–Means Emax Esum NMI Time

(b)
MinMax (β¼ 0) 6:2970:11n†‡ 15:4070:03n†‡

0:6370:00n†‡ 0.19 (0.06)

MinMax (β¼ 0:1) 6:2970:00n†‡ 15:3970:00n†‡
0:6370:00n†‡ 0.12 (0.06)

MinMax (β¼ 0:3) 6:2970:00n†‡ 15:3970:00n†‡
0:6370:00n†‡ 0.05 (0.05)

k–Means 6:3870:88 15:6870:54 0:6170:02 0.02
k–Meansþþ 6:6071:58 15:7971:02 0:6170:03 0.01
Pifs 6:0470:35 15:6570:19 0:6170:02 0.05
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initialized by our algorithm, leads to clusters with lower Emax for
most datasets (Tables 2(b)– 10(b)). However, k-Means optimizes
the sum of the variances and does not consider the maximum
variance. Hence, it is reasonable in this case that Emax increases
compared to that before employing k-Means and that pifsþ
k-Means produces equal or better Emax scores than MinMaxþ
k-Means for half of the datasets.

Second, our method outperforms k-Means for all the metrics
(apart from execution time) reported in Tables 2–10, demonstrat-
ing its ability to attain good partitionings on a more frequent basis.
To add to the above, MinMaxþk-Means obtains lower Esum and
higher NMI values than k-Means, i.e. k-Means converges to better
local minima when initialized by MinMax k-Means. Actually, the
main difference between k-Means and MinMaxþk-Means is that
some restarts of the former return solutions with excessively high
Esum (its higher standard deviation is indicative of that), while for
the latter such poor outcomes do not emerge, illustrating the
robustness of MinMax k-Means over bad initializations.

Considering k-Meansþþ , its stochastic initialization process
improves performance, as lower Emax and Esum (and equal NMI)
values are acquired on most cases compared to the randomly
restarted k-Means. When put up against MinMax k-Means though,
similar conclusions to those mentioned above for k-Means can be
drawn, further establishing the potential of the presented frame-
work. It is of particular interest that MinMaxþk-Means yields
better Esum and NMI scores on every dataset, despite k-Meansþþ
carefully picking the initial centers. This definitely reveals that the
centers outputted by MinMax k-Means consist good initializations
for k-Means.

The proposed algorithm is also superior to pifs k-Means.
Specifically, it always reaches a lower Emax (the exception being
Multiple features-profile correlations for β¼ 0:1 and Pendigits for
β¼ 0:1 and β¼ 0:3), while for Esum it gets ahead on four of the
nine datasets and it is only beaten two times. For the remaining
three (Coil3, Multiple features-profile correlations and Pendigits),
there is at least one memory level for which pifs k-Means is
outperformed. As Emax is biased towards MinMax k-Means and
Esum is optimized by neither algorithm, to get a more meaningful
and fair comparison we should focus on MinMaxþk-Means and
pifsþk-Means. In this case, Esum is the most informative measure,
since it coincides with the k-Means objective, and consistently
MinMaxþk-Means edges ahead (apart from Dermatology when
β¼ 0 or β¼ 0:1), signifying that the MinMax k-Means solutions

are of higher quality and thus when fed to k-Means improved local
optima are attained. In terms of NMI, they are closely matched,
each achieving a better score than the other on half of the datasets
(Tables 2–10). Note that apart from Ecoli and Dermatology, all
other datasets consist of classes of equal size, thus we would
expect pifs k-Means, which explicitly balances the cluster sizes, to
have the upper hand for this metric. Therefore, we can conclude
that balancing the variance of the clusters is a more effective
strategy.

By examining how memory affects the results, the following
pattern arises. As the amount of memory grows, a greater reduc-
tion of Emax is possible, which is usually accompanied by an
increase over Esum (Tables 2(a)– 10(a)). This can be explained from
Table 11, which depicts a remarkable rise on the number of
restarts that are free of empty or singleton clusters as memory
increases. When no empty or singleton clusters are detected, p
reaches pmax in our framework and, remember, that for higher p
values large variance clusters are heavily punished, while less
effort is put into minimizing the sum of the cluster variances. Two
datasets severely deviate from the previous pattern, Multiple
features-profile correlations and Pendigits, for which the use of
memory (especially β¼ 0:1) yields partitionings of very poor
quality. NMI-wise, β¼ 0:1 seems to be slightly worse than β¼ 0
and β¼ 0:3. For MinMaxþk-Means, the setting where β¼ 0:3
always displays (apart from Coil2) a better or, at least, equal score
for Emax, Esum and NMI than the other two β settings. However, the
performance differences between the memory levels for Min-
Maxþk-Means are small and, in general, not statistically signifi-
cant on most datasets. Hence, larger memory seems to only
slightly boost efficacy when initializing k-Means.

The average execution time per run (in seconds) unveils,
as anticipated, that k-Means is the fastest method, followed by
k-Meansþþ , pifs k-Means and MinMax k-Means. MinMax

Table 10
(a) Comparative results on the Dermatology dataset. (b) Comparative results on the Dermatology dataset when k-Means is initialized by the solution returned by MinMax
k-Means and pifs k-Means.

Method Emax Esum NMI Time

(a)
MinMax (β¼ 0) 1513:857316:42n†‡ 5672:827272:21n†‡

0:8270:03‡ 0.37 (0.18)

MinMax (β¼ 0:1) 1439:767296:76n†‡ 5685:167237:35n†‡
0:8270:03‡ 0.37 (0.16)

MinMax (β¼ 0:3) 1368:057347:04n†‡ 5703:267195:87n†‡
0:8270:01‡ 0.49 (0.16)

k–Means 2247:597804:75 5885:927542:49 0:8270:07 0.10
k–Meansþþ 2134:547681:34 5800:237448:38 0:8270:07 0.11
Pifs 1650:13791:99 6057:18750:62 0:8070:01 0:08

Methodþk–Means Emax Esum NMI Time

(b)
MinMax(β¼ 0) 1683:337402:51n†‡

5578:957295:56n†‡ 0:8670:04n†‡ 0.42 (0.23)

MinMax (β¼ 0:1) 1609:887379:81n†‡
5548:567263:49n†‡ 0:8670:03n†‡ 0.42 (0.21)

MinMax (β¼ 0:3) 1395:327109:48n†‡ 5441:137107:40n†‡
0:8770:01n† 0.54 (0.21)

k–Means 2247:597804:75 5885:927542:49 0:8270:07 0.10
k–Meansþþ 2134:547681:34 5800:237448:38 0:8270:07 0.11
Pifs 1761:137358:36 5496:977207:25 0:8770:02 0.10

Table 11
Percentage (%) of MinMax k-Means restarts over all
nine datasets for which empty or singleton clusters
never occur, in relation to the memory level.

Memory level Percentage

β¼ 0 14.96
β¼ 0:1 54.37
β¼ 0:3 91.19
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k-Means is slower than k-Means by a factor ranging between 3 and
6, depending on the dataset. This higher execution time is a direct
consequence of our method requiring more iterations to converge,
due to the process employed for adapting p to the data, and also
the fact that for some restarts convergence is not achieved, hence
tmax iterations are performed. Note that tmax is set to a high value
in the experiments (tmax ¼ 500). For this reason, the execution
time for only those restarts that do converge is also shown (in
parentheses) and for Coil3, Multiple features-profile correlations,
Pendigits, Ecoli and Dermatology a significant reduction is
observed. However, MinMax k-Means is still more time
consuming.

Overall, the experimental evaluation has revealed that MinMax
k-Means is superior to k-Means, k-Meansþþ and pifs k-Means,
although it incurs a higher computational cost. Importantly, our
method guards against large variance clusters and evades poor
solutions after bad initializations. Furthermore, it constitutes a
sound approach for initializing k-Means. This superior perfor-
mance has been attained for general pmax and pstep values that
were not tailored to each particular dataset, which greatly
enhances the applicability of the presented algorithm. Regarding
the use of memory, a higher memory further limits large variance
clusters as well as the occurrence of empty or singleton clusters,
but increases Esum and its gains when used to initialize k-Means
are small. We could argue that memory is helpful, but not
considerably, and even without memory (β¼ 0) solutions of very
good quality can be obtained. As already discussed, the conver-
gence of MinMax k-Means cannot be theoretically guaranteed.
However, for the conducted experiments about 60% of the restarts
across all datasets do converge, empirically validating that runs
which stop at a local optimum of the relaxed objective (3) are
frequently encountered. Finally, a note on the Olivetti dataset,
where the compared methods attain identical NMI scores (Tables 8
(a)–(b)): despite the NMI being equal on average, many of the
individual restarts exhibit significant differences across the differ-
ent methods.

6. Conclusions

We have proposed the MinMax k-Means algorithm, a prin-
cipled approach to circumvent the initialization problem asso-
ciated with k-Means. Weights are assigned to the clusters in
proportion to their variance and a weighted version of the
k-Means objective is optimized to restrain large variance clusters
from appearing in the solution. A user specified p exponent is
utilized to control the strictness of our method over large variance
clusters. By punishing large variance clusters, bad initializations
can be readily overcome to consistently uncover partitionings of
high quality, irrespective of the initial choice of the cluster centers.
Additionally, clusters are balanced in terms of their variance,
which may prove useful as many data analysis scenarios require
groups of roughly the same size. Training involves a min-max
problem that is iteratively solved, where the weights are updated
in the maximization step to accurately reflect the variances of the
clusters at each iteration. Moreover, we have presented a metho-
dology for adjusting the p exponent to the underlying dataset
properties, so that the intrinsic group structures can be identified,
which greatly facilitates the application of our algorithm.

To draw reliable conclusions, MinMax k-Means was extensively
tested on various datasets. Results demonstrate its robustness over
bad initializations and its efficacy, as for most cases it outperforms
(in terms of clustering quality) all three compared methods,
namely k-Means, k-Meansþþ [8] and pifs k-Means [10]. Further-
more, we noticed that k-Means solutions can be significantly
improved when initialized by MinMax k-Means, suggesting an

important additional usage of our approach. Overall, MinMax
k-Means appears to be a very competitive and easy to employ
method for dealing with the sensitivity to initialization of
k-Means.

As for future work, we plan to extend MinMax k-Means to
kernel-based clustering [2], so that nonlinearly separable clusters
can be detected in the data. Also, it would be interesting to explore
other possible ways of automatically determining the p value and
compare them to the methodology proposed in this paper.
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