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Abstract A regression mixture model is proposed where each mixture component is a multi-
kernel version of the Relevance Vector Machine (RVM). This mixture model exploits the
enhanced modeling capability of RVMs, due to their embedded sparsity enforcing proper-
ties. In order to deal with the selection problem of kernel parameters, a weighted multi-kernel
scheme is employed, where the weights are estimated during training. The mixture model
is trained using the maximum a posteriori approach, where the Expectation Maximization
(EM) algorithm is applied offering closed form update equations for the model parameters.
Moreover, an incremental learning methodology is also presented that tackles the parameter
initialization problem of the EM algorithm along with a BIC-based model selection method-
ology to estimate the proper number of mixture components. We provide comparative exper-
imental results using various artificial and real benchmark datasets that empirically illustrate
the efficiency of the proposed mixture model.

Keywords Relevance vector machines · Mixture models · Sparse prior · Multi-kernel ·
Incremental EM learning

1 Introduction

Mixture model constitutes a flexible and well-established approach in the case of data sets
containing data objects that have been generated from heterogeneous sources [3,21]. Among
many advantages they offer, mixture models provide a nice framework for cluster analysis by
assigning objects to mixture components (or clusters) while simultaneously estimating the
model parameters. Regression mixture models are a special type of mixture models where the
components correspond to regression functions, and they have mainly employed to model
sequential data.
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Many problems of scientific interest can be formulated as sequential data modeling prob-
lems. Such type of data can be encountered in a number of diverse applications, ranging from
gene clustering in bioinformatics to clustering of cyclone or trucks trajectories [6,5,8,23]
and recently to video surveillance problems [1,2,35] and motion recognition [34].

A natural framework for modeling sequential data is through regression mixture models,
also known as latent class regression analysis [3,21]. A regression mixture model allows for
simultaneously modeling heterogeneous regression functions by training a mixture of distinct
distributions, each corresponding to a latent class. Objects within each latent class share
the same regression function. Through the literature, there are different types of regression
mixture models that have been used for sequential data modeling [20]. Among them, Hidden
Markov Models [29], polynomial and spline regression models [6,5,11], mixtures of ARMA
models [36] and mixtures of Gaussian processes [28] are commonly used models. These
methods are suffering from the drawback of not automatically addressing the problem of
model order selection, which is very important in regression. If the order of the regressor
model is too large, it overfits the observations and does not generalize well. On the other
hand, if it is too small, it might miss trends in the data.

Sparse Bayesian regression offers a solution to the model selection problem, see for exam-
ples [25,27,30,37] by introducing sparse priors on the model parameters. Enforcing sparsity
is a fundamental machine learning regularization principle and has been successfully used
to tackle several problems, such as feature selection. The key idea behind sparse Bayesian
regression is that we can use Bayesian inference to obtain sparse models with high gener-
alization by initially employing models with many degrees of freedom on which a heavy
tail prior is imposed. During training, the coefficients that are not significant are zeroed out
due to the prior; thus, only a few coefficients are retained in the model which are considered
significant for the particular training data.

In this paper, we propose a regression mixture model where each component corresponds
to an extension of the typical RVM model [30] assuming a weighted multikernel function, ie.,
each RVM kernel is a weighted combination of basic kernels, and the combination weights
are estimated during training [13]. We call this extension a multi-kernel RVM (MKRVM).
In the RVM model, the marginal distribution of the observations given the hyperparameters
is a Gaussian distribution (see Eq. 10). Therefore, the regression mixture is converted into
a typical mixture model of Gaussians with zero mean and full covariances. A significant
problem in regression is how to define the scalar parameter of the kernel design matrix. In
this study, we have faced this issue by considering a multi-kernel scheme where we assume
that each mixture component has a unique kernel matrix calculated as a linear combination of a
(common) set of matrices with known kernel parameter values. These vectors of coefficients
are part of the mixture model parameters which must be estimated. Then, a maximum a
posteriori expectation maximization algorithm (MAP-EM) [7,21] is applied to learn this
mixture of multi-kernel RVMs model and fit the input data. This leads to update rules of
all model parameters in closed form during the M-step and improves data fitting. In the
case of the multi-kernel scheme coefficients, this leads to a convex quadratic programming
problem with constraints. Another contribution of the present work is an incremental scheme
for training the mixture of multi-kernel RVMs model that is based on an appropriate repeated
splitting process. This makes the learning process independent of the initialization of model
parameters and leads to near-optimal solutions. We also estimate the number of components
of the mixture model, and therefore the number of clusters, using the Bayesian information
criterion (BIC) [10].

The general learning framework where the proposed regression mixture model can be
employed is to model and cluster a set of functions, ie., each object in the training set is a
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function represented as by a set of (input, output) pairs. More specifically, suppose we are
given a set of N samples (data objects) Y = { y1, . . . , yN }, where each sample yn consists of
L input-target pairs: yn = {xn, tn} = {(xni , tni )}L

i=1. tni is the target attribute to be analyzed,
while the input xni can have different formats. An important special case of the above general
framework is time-series clustering, where the inputs may be either the time instances or d-
dimensional vectors containing d past target values, i.e., xni = (tn,i−d , tn,i−d+1, . . . , tn,i−1).
Another special case is trajectory clustering where the inputs xni usually correspond to space
coordinates.

We first evaluated the performance of the proposed methodology on the general task of
clustering a set of functions using synthetically created data. Then, we tested our method
on time-series clustering performance using a variety of artificial and real data sets. Com-
parative results demonstrate improvements over previous methods such as the polynomial
regression mixture model and the mixture of autoregressive models. Since the ground truth is
already known for all datasets, we have used the percentage of correct classification (purity)
and the normalized mutual information (NMI) quantities for evaluating the performance of
each method. In the case of artificial data, we have computed as a performance metric the
error in estimating the original functions that have generated each cluster. Finally, we have
experimentally studied the performance of the proposed mixture model on a real problem of
clustering trajectories.

As experiments indicate, our method offers both flexibility and robustness and obtains
superior modeling solutions. Its modeling power is mainly due to the use of multi-kernel RVM
as a mixture component. Multi-kernel RVM is a powerful regressor that exhibits the notable
robustness capability of typical RVM that is due to Bayesian regularization. In addition, it
effectively tackles the main drawback of typical RVM which is its sensitivity to the choice
of the kernel parameters. Although the proposed mixture model is rather complex, the use
of Bayesian priors and constraints on the model parameters guide the learning process to
avoid overfitting in regression modeling and provide robust regression components. Since
the learning process is non-convex and depends on parameter initialization, the proposed
incremental training approach also contributes to the quality of the clustering solution. Finally,
in the case where we are interested in estimating the true number of clusters, we provide
empirical evidence that the simple BIC criterion could provide good estimations in cases
where the clusters are well-separated.

In Sect. 2, we describe the multi-kernel relevance vector machine which is the building
block in our approach. The proposed sparse regression mixture model is then presented in
Sect. 3, along with the EM algorithm used for parameter estimation and the incremental
learning procedure. To assess the performance of the proposed methodology, we present in
Sect. 4 numerical experiments with artificial and real benchmark data sets. Finally, in Sect. 5,
we provide conclusions and suggestions for future research.

2 The multi-kernel relevance vector machine

In this section, we present the multi-kernel relevance vector machine that can be applied
to model a sample (data object) yn consisting of L input-target pairs: yn = {xn, tn} =
{(xni , tni )}L

i=1. tni is the target attribute to be analyzed, while the input xni can have different
formats.

We consider that the real target values tni correspond to noisy measurements of the output
of a parametric model f with input vector xni , i.e.,
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tni = f (xni ; θ) + εni , (1)

where εni refers to noise and θ denotes the model parameters which must be estimated using
a training set. Moreover, for the conditional density of each sample yn we can write

p( yn = {xn, tn}|θ) = p(tn |xn, θ)p(xn) ∝ p(tn |xn, θ) (2)

Typically, we can model tn by assuming an M-order linear regression model on the L input
vectors with an additive noise term given by

tn = �nw + εn, (3)

where w = (w1, . . . , wM )T is the vector with the unknown regression coefficients, and �n

is the design matrix of size L × M . In the above model, the error term εn is a L-dimensional
vector that is assumed to be zero mean Gaussian with a spherical covariance, εn ∼ N (0, σ 2 I ),
i.e., errors are not correlated.

For constructing the design matrix �, we can employ several approaches. A simple
approach is to use the Vandermonde or B-splines matrix, in cases where we assume polyno-
mial or splines regression models, respectively [15]. Another option is to consider a kernel
design matrix of size L × L , consisting of L basis functions, �n = [φ(xn1), . . . , φ(xnL)]
where φ(xni ) is a vector of L kernel values among xni and all other inputs, i.e., φ(xni ) =
(K (xni , xn1), . . . , K (xni , xnL)). This is achieved by appropriately selecting a kernel func-
tion, with the RBF kernel function to be the most commonly used:

K (xni , xnk) = exp

(
−‖xni − xik‖2

2λ

)
. (4)

The scalar parameter λ plays a significant role to the quality of the fitting procedure. Its
selection depends on the amount of local variations of input data sequences.

In our case, we consider a multi-kernel scheme by using a discrete set of S RBF kernel
functions Ks , each one having its own scalar parameter value λs . In particular, we assume that
the composite kernel matrix �n can be written as a linear combination of S kernel matrices
Fns :

�n =
S∑

s=1

us Fns, (5)

where the coefficients us satisfy the constraints us ≥ 0 and
∑S

s=1 us = 1. These parameters
should be estimated during learning in order to construct the composite kernel matrix, as it
will be shown later. It must be noted that the multi-kernel idea has been successfully used
in several machine learning models [12–14,16] that assume a weighted linear sum of kernel
and estimate the kernel weights during training. However, to the best of our knowledge, this
is the first time that a multi-kernel version of RVM with adaptive kernel weights is proposed.

Using Eq. 3, it is obvious that given the set of regression parameters {w, σ 2, u}, we can
model the conditional probability density of the target tn with the normal distribution, i.e.,

p(tn |w, σ 2, u) = N (tn |�nw, σ 2 I ). (6)

An important issue, when using a regression model is how to define its order M , since models
of small order may lead to underfitting, while large values of M may lead to overfitting.
One approach to tackle this problem is the Bayesian regularization method that has been
successfully employed in the Relevance Vector Machine (RVM) model [30]. This technique
initially assumes a large value of the order M (M = L) and imposes a heavy tailed prior
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distribution p(w) on the regression model parameters wi , to zero out most of them after
training.

More specifically, the prior is defined in a hierarchical way by considering a zero mean
Gaussian distribution over w = (w1, . . . , wL):

p(w|α) = N (w|0, A−1) =
L∏

i=1

N (wi |0, α−1
i ) (7)

where A is a diagonal matrix containing L elements of the hyperparameter vector α =
[α1 . . . αL ]. In addition, a Gamma prior is imposed on each hyperparameter αi :

p(α) =
L∏

i=1

Gamma(αi |a, b) ∝
L∏

i=1

αa−1
i e−bαi . (8)

Also we can assume a Gamma hyperprior over the noise parameter σ 2:

p(σ−2) = Gamma(σ−2|c, d) ∝ σ−2(c−1)e−dσ−2
. (9)

All Gamma parameters {a, b, c, d} are a priori set to zero values to achieve uninformative
priors.

The above two-stage hierarchical prior on αi is actually a Student-t distribution and is
called sparse [30], since it enforces most of the values αi to be large; thus, the corresponding
coefficients wi are forced to zero and eliminated from the model. In this way the complexity
of the regression model is controlled in an automatic and elegant way and overfitting is
avoided.

By integrating out the contribution of weights w from Eq. 6, we can obtain the marginal
distribution of target tn given the model parameters θ = {α, σ 2, u}, as a zero mean Normal
distribution:

p(tn |θ) =
∫

p(tn |w, σ 2, u)p(w|α)dw = N (0, Cn), (10)

where the covariance matrix has the form:

Cn = �n A−1�T
n + σ 2 I. (11)

Furthermore, we can obtain the posterior distribution over the weights w, which is also
Gaussian, as:

p(w|tn, θ) = N (w|μn, 	n), (12)

with mean and covariance given by

μn = σ−2	n�T
n tn, 	n = (σ−2�T

n �n + A)−1. (13)

Thus, the �nμn denotes the final model-based estimation for sample yn .
Learning the linear weights u of the multi-kernel scheme can be done using the fact that

�nμn =
S∑

s=1

us Fnsμn = Fn u,
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where Fn = [Fn1μn Fn2μn · · · FnSμn], and by solving the following minimization prob-
lem:

min
u

1

2
‖tn − Fn u‖2 s.t.

S∑
s=1

us = 1 and us ≥ 0. (14)

More comprehensively, we can rewrite the above objective function as follows:

min
u

{1

2
uT Zn u + uT qn

}
, s.t.

S∑
s=1

us = 1, us ≥ 0, (15)

where Zn = FT
n Fn and qn = −FT

n tn . This is a typical convex quadratic programming
problem with both equality and inequality constraints that can be solved by active-set methods
that use Lagrange multipliers leading to closed form analytical expressions [22].

3 The mixture of MKRVMs model

Suppose we are given a set of N samples (data objects) Y = { y1, . . . , yN }, where each
sample yn consists of L input-target pairs: yn = {xn, tn} = {(xni , tni )}L

i=1. In the mix-
ture of MKRVMs model there are K multi-kernel RVM components with parameters
θ j = {α j , σ

2
j , u j }, j = 1, . . . , K . According to Eq. 10, each component defines a zero

mean Normal distribution:

p(tn |θ j ) = N (tn |0, Cnj ), (16)

with

Cnj = �nj A−1
j �T

nj + σ 2
j I and �nj =

S∑
s=1

u js Fns . (17)

Moreover, A j in Eq. 17 is a diagonal matrix containing the elements of hyperparameter
vector α j , i.e., A j = diag{α j1, . . . , α j L }. The MK-RVM mixture model is described by the
following probability density function:

f (tn |
) =
K∑

j=1

π j p(tn |θ j ) =
K∑

j=1

π j N (tn |0, Cnj ). (18)

Let 
 denote the set of all mixture model parameters, i.e., 
 = {π j , θ j }K
j=1. The mixing

weights π j satisfy the constraints:
∑K

j=1 π j = 1 and π j ≥ 0. The same happens with the

coefficients u j of the multi-kernel scheme, i.e.,
∑S

s=1 u js = 1 and u js ≥ 0. The parameters
{α j , σ

2
j } are constrained by Gamma prior distributions:

p(α j ) =
L∏

i=1

Gamma(α j i |a j , b j ) ∝
L∏

i=1

α
a j −1
j i e−b j α j i , (19)

p(σ−2
j ) = Gamma(σ−2

j |c j , d j ) ∝ σ
−2(c j −1)

j e−d j σ
−2
j , (20)

where all Gamma parameters {a j , b j , c j , d j }, are set to zero (uninformative priors).
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To train the mixture of MKRVMs model, we define the maximum a posteriori (MAP)
log-likelihood function:

L M AP = log p(Y |
) + log p(
)

=
N∑

n=1

log

⎧⎨
⎩

K∑
j=1

π j N (tn |0, Cnj )

⎫⎬
⎭ +

K∑
j=1

{
log p(α j ) + log p(σ−2

j )
}

, (21)

and use the Expectation–Maximization (EM) algorithm [7] for likelihood maximization.
EM performs iteratively two steps: The E-step, where the current posterior probabilities are
calculated of any sample yn = {xn, tn} to belong to any cluster j :

znj = P( j | yn,
) = π j N (tn |0, Cnj )∑K
j ′=1 π j ′N (tn |0, Cnj ′)

. (22)

During the M-step, the maximization of the expected value of the complete log-likelihood
(Q-function) is performed with respect to 
. In our case, the Q-function is:

Q(
) =
N∑

n=1

K∑
j=1

znj

{
log π j − 1

2
log |Cnj | − 1

2
tT
n (Cnj )

−1 tn

}

+
K∑

j=1

{
L∑

i=1

{
a j log(α j i ) − b jα j i

} + c j log(σ−2
j ) − d jσ

−2
j

}
, (23)

where the quantities znj have been computed by Eq. 22.
Setting the partial derivatives equal to zeros, the following update rules for the mixture

parameters are obtained:

π̂ j =
∑N

n=1 znj

N
, (24)

α̂ j i =
∑N

n=1 znj + 2a j∑N
n=1 znjμ

2
nji + ∑N

n=1 znj (	nj )i i + 2b j
, (25)

σ̂ 2
j =

∑N
n=1 znj‖tn − �njμnj‖2 + 2d j∑N
n=1 znj (L − ∑T

i=1 γnji ) + 2c j
. (26)

In the above rules we have used the following expressions [30]:

log |�nj A−1
j �T

nj + σ 2
j I | = − log |	nj | + log σ 2

j − log |A j |, (27)

tT
n (�nj A−1

j �T
nj + σ 2

j I )−1 tn = 1

σ 2
j

tT
n (tn − �njμnj )

= 1

σ 2
j

‖tn − �njμnj‖2 + μT
nj A jμnj , (28)

where

μnj = σ−2
j 	nj�

T
nj tn, (29)

	nj = (σ−2
j �T

nj�nj + A j )
−1. (30)

Note also that in the above equations (Eqs. 25, 26) the (	nj )i i indicates the i-th diagonal
element of the j-th RVM posterior weight covariance matrix 	nj , while μnji is the i-th
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element of the posterior mean vector μnj . Also, the quantities {γnji } are defined as γnji =
1 − α j i (	nj )i i .

As in the case of a single multi-kernel RVM model (see Eq. 14), the linear weights
u j = (u j1, . . . , u j S) of the multi-kernel scheme can be estimated by solving the following
minimization problem per component j :

min
u j

1

2

N∑
n=1

znj‖tn − �njμnj‖2 = min
u j

1

2

N∑
n=1

znj‖tn −
S∑

s=1

u js Fnsμnj‖2

= min
u j

1

2

N∑
n=1

znj‖tn − Fnj u j‖2 s.t.
S∑

s=1

u js = 1 and u js ≥ 0, (31)

where we have considered only the part of the Q-function (Eq. 23) that involves u j . It must
be noted here that we assume the posterior mean vector μnj and the covariance matrix 	nj

as constants. Also, the matrix Fnj in the above rule has S columns calculated by Fjsμnj , i.e.,
Fnj = [Fn1μnj Fn2μnj · · · FnSμnj ]. We can further write the minimization problem in a
more convenient way (similar to Eq. 15):

min
u j

{1

2
uT

j Z j u j + uT
j q j

}
, s.t.

S∑
s=1

u js = 1, u js ≥ 0, (32)

whereZ j = ∑N
n=1 znj FT

njFnj and q j = −∑N
n=1 znj FT

nj tn . This is a typical convex quadratic
programming problem with both equality and inequality constraints [22].

After EM convergence, the assignment of each sample yn to the K MKRVM compo-
nents can be made using the maximum value of the posterior probabilities znj (Eq. 22). The
MKRVM function can be also obtained for each component j as follows:

w j =
(

σ−2
j

N∑
n=1

znj�
T
nj�nj + A j

)−1

σ−2
j

N∑
i=1

znj�
T
nj tn . (33)

The algorithmic complexity of the proposed methodology depends on the computational
cost of the E-step and M-step during the EM learning. The complexity is dominated by the
inversion cost O(N K L3) of the N K covariance matrices Cnj (Eq. 17) each of them being
an L × L matrix.

3.1 Incremental mixture learning

An important concern when applying the EM algorithm is its strong dependence on the
initialization of the model parameters. Improper initialization may lead to poor local maxima
of the log-likelihood, a fact that in turn may affect the quality of the method’s estimation
capability. A natural way for initialization is to first make a random sampling through the
training set Y to select K samples, one for each component. Then, a single multi-kernel
RVM is trained using the corresponding selected sample in order to estimate the regression
parameters θ j = {α j , σ

2
j , u j } for each component j . The mixing parameters π j are initially

set to 1
K . Finally, one iteration of the EM algorithm (one-step-EM) is executed to further

refine these parameters and to evaluate the MAP log-likelihood function value L M AP (Eq.
21). Several such random trials (100 in our experiments) are executed and the solution with
the maximum log-likelihood value is selected for initializing the model parameters.
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In Gaussian mixture modeling, several methods have been proposed to overcome the
problem of poor initialization, which are mainly based on incremental construction of the
mixture model [19,31,32]. We have adopted such a scheme to train our RVM mixture model
and have developed a learning methodology that sequentially adds a new RVM component
to the mixture based on a component splitting procedure. Initially, we start with a mixture
model with one MKRVM component. This is done by executing the single multi-kernel
RVM learning process to estimate the initial regression parameters {α1, σ

2
1 , u1} following

the updated rules given in previous section, where we put j = 1 and znj = 1.
Now assume that we have already computed a mixture fk with k MKRVM components

(k < K ):

fk(tn |
k) =
k∑

j=1

π j p(tn |θ j ). (34)

Also, we denote as:

f − j
k (tn |
− j

k ) = fk(tn |
k) − π j p(tn |θ j ), (35)

the model containing the k−1 components of the k-order mixture model fk , after eliminating
the contribution of the j-th component. In order to add a new component, at first an existing
component j∗ is selected for splitting based on the current maximum mixing prior probability
value, i.e., j∗ = arg max j {π j }. A new regression component is then added, labeled (k + 1),
with weight πk+1 (πk+1 < π j∗ ). Thus, the new mixture density function fk+1 with k + 1
components is now given as:

fk+1(tn |
k+1) = f − j∗
k (tn |
− j∗

k ) + π j∗
new p(tn |θ j∗) + πk+1 p(tn |θk+1). (36)

The mixing weights of both the new inserted (k + 1) and the splitted ( j∗) component

are initialized as πk+1 = π j∗ new = π j∗ old

2 . For initializing the RVM parameters θk+1 =
{αk+1, σ

2
k+1, uk+1} we apply the following strategy: First, we find the samples yn that cur-

rently belong to the cluster j∗. We then select a small percentage of those samples (e.g., 20 %
in our experiments) that have the lowest probability (outliers), after sorting them in terms
of their density values p(tn |θ j∗) = N (tn |0, C j∗). Next, we execute the training procedure
of a single multi-kernel RVM component to this set of samples, in order to obtain an initial
estimation of the MKRVM parameters θk+1 = {αk+1, σ

2
k+1, uk+1}. After the above initial-

ization, the EM algorithm is used to estimate the parameters 
k+1 of the new mixture model
fk+1 with k + 1 RVM components.

The splitting procedure proceeds in this incremental fashion, adding one MKRVM com-
ponent at a time, until we receive a mixture model with the desired number (K ) of the
MKRVM components. This approach is summarized in Algorithm 1. An obvious advan-
tage of the incremental learning scheme is that of simultaneously offering solutions for the
intermediate models with k = 1, . . . , K components. This can be seen very convenient for
introducing model order selection criteria and terminating the evolution of learning: stop
training when the insertion of a new component does not offer any significant improvement
of the (penalized) likelihood function.

3.2 Model order selection

The problem of selecting a statistical model of correct order is fundamental in statistical
learning. In mixture models, this corresponds to the problem of choosing the proper number
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Algorithm 1 Incremental learning of the mixture of MKRVMs model
Initially apply the single multiple-kernel RVM training procedure to the dataset Y for estimating parameters
θ1 = {a1, σ 2

1 , u1}. Set 
1 = {π1, θ1} with π1 = 1.
1: while k < K do
2: Select a component for splitting: j∗ = arg maxk

j=1{π j }.
3: Find samples that currently belong to component j∗, i.e., Y∗ = { yn : j∗ = arg maxk

j=1 znj }. Sort them
in terms of their density values p(tn |θ j∗ ).

4: Select a subset (e.g., 10 %) Y out∗ of Y∗ with the less probable samples (outliers).
5: Run single multiple-kernel RVM training over Y out∗ for initializing new component parameters θk+1 =

{ak+1, σ 2
k+1, uk+1}.

6: Initialize mixing weights as πk+1 = π j∗ new = π j∗ old

2 .
7: Apply the EM algorithm to the new mixture of MKRVMs fk+1(tn |
k+1) and obtain 
k+1.
8: k = k + 1.
9: end while

of mixture components K . Among the various methods for model order selection, in this study
we have used the Bayesian information criterion (BIC) [26] which provides an approximation
of Bayes factors and has been successfully applied in a number of applications, see for
example [10,33]. If we recall that L(.) is the log-likelihood function as defined in Eq. 21 and let

k be the maximum likelihood estimate of the k order model, then the BIC value is given by:

BIC = −2L(
k) + G log(N ). (37)

The quantity G is the total number of model parameters, where in our case is G =
(k − 1) + kT + k + k(S − 1) = k(T + S + 1) − 1, since there are four kinds of para-
meters {π ,α, σ , u} and the constraints

∑
j π j = 1,

∑
s u js = 1 ∀ j = 1, . . . , K . In this

way, BIC includes a penalty term that depends on the number of model parameters. This
term penalizes complex models with many parameters and thus counterbalances the negative
log-likelihood term which decreases monotonically with the number of parameters.

Finally, it must be noted that, as mentioned before, the proposed incremental scheme for
building the mixture model of the MKRVM components is very convenient, since it provides
the parameters 
k and the log-likelihood L(
k) of all successive models [
1, . . . , 
K ]
simultaneously. Thus, we execute the learning procedure only once by setting a large value
to the number of components K and then we select the mixture with minimum BIC score.

4 Experimental results

The proposed mixture model has been evaluated using a variety of artificial datasets and
real benchmarks. We have considered both the general case where the samples yn consist
of input–output pairs (xn, tn) (i.e., inputs are given), as well as the tasks of time-series and
trajectory clustering. In all experiments for constructing the multi-kernel scheme for a dataset,
we calculated first the total variance of samples, λ. Next, we used a set of S = 10 RBF kernel
functions, where each one had a scalar parameter λs = ksλ, where ks = [0.1, 0.2, . . . , 1.0]
(level of percentage). Finally, the linear weights of the multi-kernel scheme were in all cases
initialized equally to u js = 1/S.

In our study, we have tested both the incremental and the typical (with random initializa-
tion) regression mixture with MKRVM components that will be referred next as iMMKRVM
and MMKRVM, respectively. In the incremental approach, the hyperparameters α are always
initialized as αl = 1/L (step 5 of Algorithm 1) at every single MKRVM training. In the case
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of time-series clustering we compared our method with two common regression mixture
models (see Sect. 4.2): the polynomial regression mixture model (MPRM) and the mixture
of autoregressive (MAR) model.

To quantify the performance and measure the quality of the clustering results obtained by
each method, we have used three evaluation criteria:

– purity, which is the percentage of correctly classified samples after labeling each cluster
with the label of the class which is most frequent among the sequences that belong to
this cluster, and

– normalized mutual information (NMI), which is an information-theoretic measure based
on the mutual information of the true labeling () and the clustering (C) normalized by
their respective entropies:

NMI(, C) = I (, C)

[H() + H(C)]/2
, (38)

where

I (, C) =
∑

k

∑
j

P(ωk, c j ) log
P(ωk, c j )

P(ωk)P(c j )
(39)

H() = −
∑

k

P(ωk) log P(ωk) (40)

H(C) = −
∑

k

P(ck) log P(ck). (41)

The quantities P(ωk), P(c j ) and P(ωk, c j ) are the probabilities of a sample belonging
to class ωk , cluster c j and in their intersection, respectively, and are computed based on
the corresponding set of cardinalities (frequencies).

– mean square error (MSE) between the original series {r j , j = 1, . . . , K } and the
estimated mean functional curves t j after convergence calculated as:

MSE = 1

K

K∑
j=1

1

L
‖r j − t j‖2, (42)

where

t j =
∑N

n=1 znj�njμnj∑N
n=1 znj

. (43)

This evaluation criterion was used in the case of artificial datasets, since we are aware of
the generative series of each cluster.

4.1 Clustering artificial functional data

At first, we have evaluated our method to a synthetic dataset created by a set of functional
data sources. In particular, we have used a pool of K functional parametric forms f j (x;ϑ j )

and a grid of L input data points {x̂i , i = 1, . . . , L}. In order to generate the n-th sample
(data object), at first a functional form f j was selected and its parameters ϑ were specified by
adding noise ε to the parameter vector ϑ j . In this way a function gn(x;ϑ) = f j (x;ϑ j + ε)

is produced. Next, we add noise to the points {x̂i } to generate the inputs {xni = x̂i + ε}.
Then, the targets tni are computed as tni = gn(xni ).
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Fig. 1 The four (4) two-dimensional RBF functions (with different centers) used for constructing synthetic
datasets with K = {2, 3, or 4} clusters

In our study, we have used K RBF functions with different centers m j , ( j = 1, . . . , K )

and constant radius (equal to 1):

f j (x; m j ) = exp(−0.5|x − m j |2). (44)

defined on a 2-dimensional (15 × 15) grid in the domain [0, 5] × [0, 5]. Figure 1 shows the
four RBF functions f j , evaluated on the corresponding L = 225 grid input points.

Three different data sets have been studied using K = {2, 3, 4} RBF functions, respec-
tively. A number of 100 noisy copies per functional class were generated (as previ-
ously described) assuming a specific noise level (variance), thus creating a dataset with
N = 100 × K samples (data objects). For every noise level, we generated 30 different
datasets and we calculated the mean value and the standard deviation of three performance
criteria: purity, NMI and MSE. The obtained results are shown in Fig. 2 for the various level
of noise. As it is obvious, the proposed method manages to distinguish well among K func-
tions, especially in cases with low level of noise. When the noise grows the results becomes
lower due to the significant overlapping among the K RBF functions.

Additional experiments have been performed in order to evaluate the BIC-based model
selection methodology. In particular, for each set (with K = 2, 3 and 4 clusters, respectively)
and noise level (small, medium, large), a group of 50 datasets were stochastically gener-
ated. The BIC-based methodology was executed and we measured the relative frequency of
the estimated number of mixture components K̂ . Note that for each dataset the proposed
incremental learning scheme of the MMKRVM was executed only once until a model with
Kmax = 10 components had been constructed. Figure 3 presents the histogram results, i.e.,
plots of the relative frequencies of the obtained estimates K̂ found. It is apparent that the
true number of clusters K can be accurately deduced most of the times in the low noise
experiments. As noise levels increase, estimation performance deteriorates as K increases.

4.2 Time-series clustering

In the task of time-series clustering, we consider each sample as a sequence of real observa-
tions measured at L successive time instances that correspond to the target values tni . At each
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Fig. 2 Performance results of the proposed method on the synthetic functional datasets. Plots illustrate the
three evaluation metrics in terms of various noise levels

time instance, the input xni is a d-dimensional vector that describes the d previous target
values, i.e., xni = (tn,i−d , tn,i−d+1, . . . , tn,i−1). During all experiments, we have considered
inputs of length d = 10. It must be noted that the objective of our experiments is to evaluate
the clustering ability of the proposed method. In the experiments with time series, we con-
sider each time series as an object to be clustered, and we are not interested in identifying
possible subsequences in every time series [17,24].

In this case of time-series clustering, we compared our method with two common regres-
sion mixture models:

– The polynomial regression mixture model (MPRM) that considers a polynomial regres-
sion function of order p for any cluster, i.e.,

tni =
p∑

l=0

w jl x
l
ni , (45)

where w jl are the p + 1 regression coefficients for each cluster. In this case, the time
instances are considered as inputs (xni = i) and a (common) Vandermonde design matrix
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Fig. 3 Results from the use of the BIC criterion on the synthetic functional dataset as histograms of the
estimated number of clusters for three noise levels

is used. Finally, in all experiments we have chosen polynomials of order p = 10, since
they showed better performance.

– The mixture of autoregressive (MAR) model that consists of K different AR models,
which correspond to the K clusters of interest. Given a time-series tn and an order p, the
AR(p) model assumes that any value tni has been generated as a linear combination of
p previous values plus a constant term, i.e.,

tni = w j0 +
p∑

l=1

w jl tn,i−l . (46)

Again, {w jl}p
l=0 are the p + 1 coefficients for the j-th cluster. In this case, the design

matrix is created by setting ones (1) to the first column, while the rest columns
have the past p values for every time instance. Experiments have made with setting
p = 10.

Both regression mixture models were trained using the EM-based maximum likeli-
hood framework [5,11,36], where we follow the typical sample-based initialization strategy
described in Sect. 3.1.
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Fig. 4 Three sets with a K = 2, b K = 3 and c K = 4 Mackey–Glass series used for generating artificial
datasets

4.2.1 Experiments with artificial data

At first, we have made a series of experiments with artificial datasets for evaluating the
performance of our method on time-series clustering. For this purpose, we have selected
the Mackey–Glass delay differential equation, which provides a classical benchmark for
time-series modeling given by the following rule:

r(t + 1) = r(t) + δ

(
0.2

r(t − τ/δ)

1 + r(t − τ/δ)10 − 0.1r(t)

)
, (47)

where the step size set to δ = 0.1. In our study, we have generated three data sets using
K = {2, 3, 4} of such series of length L = 500, respectively, by considering different values
for the delay time τ , as illustrated in Fig. 4. A number of 100 noisy copies of the orig-
inal curve per class were generated using various levels of noise. Similar to the previous
case study, for every noise level (SNR), we generated 30 different datasets and we calcu-
lated the mean value and the standard deviation of three performance criteria purity, NMI
and MSE.

Figure 5 illustrates the comparative results in terms of the SNR values. As it is obvious, the
proposed mixture of MKRMVs model improves significantly clustering quality as compared
to the polynomial and the AR regression mixture, especially for high noise. Between the two
proposed versions of MKRVM mixtures, the one based on incremental learning (iMMKRVM)
gave slightly better results, confirming its ability to offer efficient parameter initialization
and reaching high quality solutions. In what concerns MSE, it is interesting to observe the
significant improvement of the fit error criterion in the case of mixture of MKRVMs. This
is in agreement with our belief that sparseness is beneficial both not only for classification
accuracy, but also for fitting quality. The MSE results also indicate that the incremental
learning approach is superior to the randomly initialized MMKRVM.

Finally, we have made additional experiments in order to evaluate the BIC-based model
selection methodology following the same strategy as described previously. In particular, for
each of the three Mackey–Glass sets (Fig. 1), we created 50 different datasets by adding noise
to the function values (three levels of noise: small, medium and large), where we measured
the relative frequency of the estimated number of components. Figure 6 presents the obtained
histogram results, i.e., plots of the relative frequencies of the number of clusters found for
the three Mackey–Glass sets of Fig. 4 and three noise levels. It is clear that the true number
of clusters K can be accurately deduced most of the times in the low noise experiments. As
noise levels increase, estimation performance deteriorates as K increases. Nevertheless, it
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Fig. 5 Comparative results for the simulated datasets of Fig. 4. Plots illustrate the three evaluation metrics in
terms of various noise levels

must be underlined that in the case of K = 3 and 4, the time-series exhibit very high overlap
(see Fig. 4b, c); thus, it is difficult to identify separated clusters.

4.2.2 Experiments with real benchmarks

Further experiments have been conducted using various real datasets, obtained from the
UCR time-series data collection [9,18], where the ground truth is known. In Table 1, we
present a summary of thirteen (13) UCR datasets we have used in our study. The results
using two evaluation metrics, purity and NMI, are shown in Tables 2 and 3, respectively, for
the two versions of the proposed mixture of MKRVMs and the other two regression mixture
models. Since the proposed incremental learning approach (iMMKRVM) does not depend
on the initialization, we show only the result of a single run. For the rest three methods
(MMKRVM, MPRM, MAR), we provide the mean value and the standard deviation of each
measure (for 30 trials). As can be observed, the performance of the proposed mixture of
MKRVMs is obviously superior and in many cases the difference is quite noticeable.
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Fig. 6 Histograms of the estimated number of clusters by applying the BIC model selection method to the
mixture of MKRVMs for three noise levels added to the three sets of Mackey Glass series (Fig. 4) with
K = 2, 3 and 4 clusters, respectively

Table 1 Description of the 13
UCR datasets used in our
experimental study

Dataset # classes
(K )

Size
(N )

Dimension
(T )

CBF 3 930 128

Coffee 2 56 286

Diatom size reduction 3 467 166

ECG 2 200 96

Face four 4 112 350

Gun point 2 200 150

Sony AIBO robot I 2 621 70

Sony AIBO robot II 2 1,018 65

Star light curves 3 1,000 1,024

Symbols 6 1,020 398

Synthetic control 6 600 60

Trace 4 200 275

Wafer 2 1,000 152
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Table 2 Comparative results (purity metric) of regression mixture models for the UCR datasets

UCR dataset iMMKRVM MMKRVM MPRM MAR

CBF 0.94 0.85 (0.05) 0.65 (0.02) 0.60 (0.03)

Coffee 0.64 0.64 (0.00) 0.56 (0.00) 0.57 (0.00)

Diatom size reduction 0.95 0.89 (0.02) 0.78 (0.00) 0.59 (0.03)

ECG 0.78 0.78 (0.00) 0.69 (0.00) 0.72 (0.00)

Face four 0.69 0.61 (0.03) 0.40 (0.04) 0.41 (0.00)

Gun point 0.72 0.72 (0.00) 0.50 (0.00) 0.55 (0.00)

Sony AIBO Robot I 0.93 0.92 (0.01) 0.92 (0.01) 0.91 (0.00)

Sony AIBO Robot II 0.81 0.81 (0.00) 0.73 (0.00) 0.92 (0.01)

Star light curves 0.74 0.74 (0.00) 0.74 (0.00) 0.57 (0.00)

Symbols 0.81 0.75 (0.03) 0.70 (0.06) 0.60 (0.10)

Synthetic control 0.76 0.72 (0.02) 0.73 (0.01) 0.70 (0.04)

Trace 0.75 0.72 (0.02) 0.53 (0.00) 0.67 (0.08)

Wafer 0.75 0.75 (0.00) 0.61 (0.01) 0.67 (0.04)

Table 3 Comparative results (NMI metric) of regression mixture models for the UCR datasets

UCR dataset iMMKRVM MMKRVM MPRM MAR

CBF 0.79 0.60 (0.09) 0.38 (0.01) 0.36 (0.02)

Coffee 0.06 0.06 (0.00) 0.02 (0.00) 0.02 (0.00)

Diatom size reduction 0.87 0.76 (0.04) 0.83 (0.01) 0.55 (0.02)

ECG 0.35 0.35 (0.00) 0.12 (0.00) 0.18 (0.00)

Face four 0.46 0.39 (0.02) 0.31 (0.02) 0.29 (0.00)

Gun point 0.16 0.16 (0.00) 0.04 (0.00) 0.08 (0.00)

Sony AIBO Robot I 0.65 0.61 (0.02) 0.63 (0.01) 0.59 (0.00)

Sony AIBO Robot II 0.35 0.35 (0.00) 0.16 (0.00) 0.62 (0.02)

Star light curves 0.62 0.62 (0.00) 0.58 (0.00) 0.23 (0.00)

Symbols 0.74 0.74 (0.02) 0.75 (0.05) 0.58 (0.07)

Synthetic control 0.74 0.73 (0.02) 0.72 (0.01) 0.69 (0.03)

Trace 0.68 0.64 (0.03) 0.50 (0.00) 0.61 (0.07)

Wafer 0.64 0.64 (0.00) 0.00 (0.00) 0.50 (0.06)

Figure 7 illustrates the mean mixture regression functions as estimated by the proposed
iMMKRVM model (according to Eq. 43) in the case of six UCR datasets. From these results,
a significant conclusion can be drawn, about the impact of the multi-kernel scheme to the
regression modeling performance which is affected, sometimes significantly, by the choice of
the design matrix. In particular, when the input samples contain strong local variations (such
as in Coffee and Face Four datasets), the estimated regression should capture these local
details using small values of the scalar parameters λs . On the contrary, in cases where data
samples are smoother (such as in CBF and Gun Point datasets) large kernel width parameters
provide a better fit. The proposed method, incorporating the multi-kernel scheme, has the
flexibility to automatically adapt to the characteristics of input data samples, thus improving
the data fitting capability.
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Fig. 7 Some examples of the
resulting regression function for
any component (cluster) as
estimated by the proposed
method in some UCR datasets
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Fig. 8 Impact of the kernel scaling parameter λ on the clustering performance. These are plots of the purity
evaluation metric in terms of value of λ as a percentage of the total samples variance of six different UCR
datasets

In this direction, we have made additional experiments to study the influence of the multi-
kernel scheme on the performance of the clustering process. In particular, we have considered
a mixture model with single kernel RVMs where we have assumed a kernel design matrix
with constant value for the scaling parameter λ (Eq. 4). The results are shown in Fig. 8 that
plots the performance of the mixture model of single-kernel RVMs in terms of λ, while the
results for the proposed mixture model of MKRVMs are shown with dotted lines.

The results indicate that the selection of a proper value of λ is an important issue for the
performance of the clustering procedure. Moreover, there are some cases where, using the
single-kernel scheme, we are not able to determine a value for λ providing better performance
compared with the multi-kernel case. It must be noted here that we have also studied other
kernel design matrices, such as wavelet-based kernel, without obtaining better results. Our
empirical results indicate that the employment of the Gaussian multi-kernel framework is a
good choice for regression mixture modeling.
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Fig. 9 The truck trajectories shown as raw data used in our experiments. Three datasets are shown containing
trajectories of K = 2, K = 3 and K = 4 clusters, respectively

Table 4 Clustering performance
of our method on the trucks
trajectory dataset under different
number of clusters

Problem: number of clusters

K = 2 K = 3 K = 4

Purity NMI Purity NMI Purity NMI

1.0 1.0 1.0 1.0 0.87 0.76

4.3 Clustering real trajectories

We have also studied our method with a real trajectory dataset where the ground truth is
known. It consists of GPS-tracked positions of 50 trucks transporting concrete in the area
of Athens between August and September 2002 [23], and the goal is to discover complex
mobility patterns. From the original raw data, smaller trajectories were created by splitting
the recordings of a truck in subsets if there was a temporal gap between two consecutive
recordings larger than 15 min. Each trajectory yn shows a round trip performed by a truck
consisting of the target values tn and the geographical coordinates xn . A more detailed
description about this dataset can be found in [23].

There are four kinds of possible directions of trips performed by tracks that were manually
discovered. In our study we have used a subset of this dataset consisting of 50 trajectories
per each cluster of length L = 58. Following the experimental methodology on this dataset
of the original work described in [23], we conducted a series of experiments using different
portions of the trucks trajectories containing two (K = 2), three (K = 3) or four (K = 4)
clusters. Figure 9 shows these three (overlap) sets of trucks trajectories used in our study.
The obtained results (purity and NMI evaluation metrics) are shown in Table 4. The proposed
incrementally constructed mixture of MKRVMs showed excellent behavior in the case of
K = 2 and 3 clusters, while the performance somehow deteriorates for K = 4 clusters, since
as shown in Fig. 9, there is a significant overlapping between trajectories of the 3rd and the
4th cluster (green and blue colored trajectories). In our experiments with this dataset, we
have also studied the BIC model selection criterion. According to the results, the estimated
number of components was much higher than the real value of the clusters K . There are
two main reason for this behavior: first, due to the structure of data and the existence of
subclusters and secondly because of the relevant small number of data per cluster (note that
BIC is an accurate measure only in the limit; thus, it generally requires a lot of data for
making accurate decisions). As a result, the BIC criterion fails leading to an over-estimation
of the true number of clusters.
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5 Conclusions

In this work, we presented a powerful regression mixture model, where each mixture com-
ponent is a multi-kernel RVM regression model. The model is very general and can be used
to cluster a set of multidimensional functions, where each function is represented by a set of
input-target pairs. The key aspect of the proposed technique lies on the employment of RVMs
as components and the exploitation of its superior regression performance to model the data
of each latent class. We have also presented a weighted multi-kernel scheme for composing
the kernel matrix of each component that offers better fitting capabilities. Learning in the
proposed sparse regression mixture model is achieved in terms of a maximum a posteriori
(MAP) framework that allows the EM algorithm to be effectively used for estimating the
model parameters. This has the advantage of establishing update rules in closed form dur-
ing the M-step, and thus, data fitting is computationally efficient. An incremental learning
strategy has also been presented that makes the construction of the sparse regression mixture
model independent of parameter initialization. Finally, we have considered the BIC criterion
for choosing the number of components in the regression mixture model, and thus estimating
the structure of the model. Clustering experiments on several datasets using simulated func-
tional data, time-series and trajectories, demonstrated the ability of the proposed MKRVM
mixture to achieve improved clustering performance and robustness compared with other
typical regression models.

We are planning to study the performance of the proposed methodology in computer vision
applications, such as visual tracking problems and object detection in a video surveillance
domain [1,2,35]. Another future research direction is to examine the possibility of applying
alternative types of sparse priors [25,27]. Furthermore, instead of using BIC for model
selection, the fully Bayesian mixture of multi-kernel RVMs could be defined and trained
providing an alternative methodology for the estimation of the number of clusters.
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