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Abstract

An operation scheme for the Boltzmann Machine Optimizer is proposed that is suit-
able for parallelization and is based on the notion of group updates. It has the ad-
vantage of suggesting transitions between states that differ in more than one unit and
exhibits greater flexibility in accepting such transitions compared to the pure sequen-
tial case. The performance of the method is evaluated on the Weighted Maximum
Independent Set problem and comparisons with the pure Boltzmann Machine are
presented concerning both solution quality and convergence speed. A parallel algo-
rithm is formulated that ensures accurate cost calculations. Implementation on both
shared memory and distributed memory architectures has yielded very good speedup.

1. INTRODUCTION

The Boltzmann Machine (Aarts & Korst, 1989; Ackley et al., 1985) constitutes an
approach to combinatorial optimization that can be considered as a neural network
implementation of the Simulated Annealing methodology (Kirkpatrick et al., 1983}
and has been successfully employed for providing near-optimal solutions to many NP-
complete problems (Aarts & Korst, 1989; Zissimopoulos et al., 1991). The function
to be minimized {energy function) is determined by the connection weights w;; and
thresholds 8; of the neural network and has the following quadratic form:
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where 7 is the number of units, ¥ = (y1,...,yn) is the binary state of the network

(y; € {0,1}) and the weight matrix is considered to be symmetric (w;; = w;i) with

zero diagonal elements (wj; = 0).

The basic idea is to encode the objective function and the constraints of the
problem at hand in terms of an energy function of the above form and employ an
annealing schedule from an initial high temperature down to a temperature near zero.
The operation of the network is strictly sequential. At each instant a new state is
generated by randomly selecting one unit i and changing its state. Then the energy
difference between the current state §f and the generated state is computed as follows:

SE(H) = (2y; — 1)()““_, wiiy; + 0i) (2)

i=1
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Based on this energy difference, a desicion is made about whether the generated state
will be accepted or not. Two kinds of acceptance criteria that are comruonly used
are the logistic criterion and the Metropolis criterion. In the logistic case the change
is accepted at temperature T with probability p; = 1/(1 + exp(6Ei(3}/T)), while
" in the Metropolis case the change is accepted with the above probability p; only if
§E; > 0, otherwise it is accepted with probability 1. We shall use the term trial to
denote the operations of next state generation and computation of 6E; and p;. The
acceptance of a suggested transition, i.e., the change of the network state will be
referred to as update. Hence, depending on the acceptance probability, a trial may
be eventually followed by an update. As the temperature value tends to zero, the
probability of performing updates that increase the energy also tends to zero, and
the network converges to an one-update equilibrium state, in the sense that there is
no other network state differing in the state of one unit that is of lower energy value.

Since a Boltzmann Machine Optimizer constitutes in essence a special case of the
Simulated Annealing method, the same results concerning asymptotic®convergence
to the global minimum point under certain assumptions that have been proved for
Simulated Annealing (Hajek, 1988; Kirkpatrick et al., 1983) carry over to the Boltz-
mann Machine case too (Aarts & Korst, 1989). The same holds for the finite time
implementations of the algorithm that attempt to approximate the global minimum.
Simulated annealing is commonly described as a sequence of Markov chains, each cor-
responding to a temperature value. Every computational step of a chain starts only
after the previous step has been completed. Thus, the operation of the Boltzmann
Machine is strictly sequential and may require large computation time as the size
of the problem grows. Moreover, in order for the annealing to be effective, the sta-
tionary distribution {or at least a quasi-equilibrium distribution) must be restored at
each temperature, thus, sufficient state transitions must take place and consequently
a large number of trials is required.

In the operation scheme presented in this paper the probability of accepting
the state transition suggested at each trial is increased, thus, the expected number of
trials performed at each temperature is reduced. The proposed scheme is based on the
notion of group update; instead of selecting a single unit to update at each time step,
we consider a group of units which are selected and updated simultaneously. Since
there exists a significant amount of parallelism in the computation of the resulting
energy difference, we have developed an operation scheme exploiting this parallelism
that examines many group configurations at each step and finally performs a trial
(and possibly an update) for the group that is characterized by the minimum energy
difference. In this way, the state space is more adequately explored and it is much
easier to escape from local minimum states than in the pure Boltzmann Machine case
which is based on one-update transitions.

The next section concerns a brief discussion of parallel simulated annealing tech-
niques. The general group update approach, which has been introduced in {Likas
& Stafylopatis, 1996), is concisely described in Section 3. In Section 4 we present
the operation of the Boltzmann Machine under the proposed mode which is based
on group updates, whereas some relevant issues are discussed in Section 3. Experi-
mental results obtained from application of our method to the Weighted Maximum
Independent Set on both sequential and parallel hardware are discussed in Section 6.
Finally, the main conclusions are contained in Section 7.

2. PARALLELISM IN SIMULATED ANNEALING

Although the Simulated Annealing (SA) approach is of inherently sequential nature,
several attempts have been made to reduce the required computation time through
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the use of parallel machines (Aarts & Korst, 1989; Azencott, 1992; Greening, 1990;
Roussel-Ragot & Dreyfus, 1990). Parallel implementations can be obtained either
on general purpose parallel machines (for example on Transputer-based machines
(Barbosa & Lima, 1990; d’Acierno & Vaccaro, 1992)) or using special purpose VLSI
(Alspector & Allen, 1987; Skubiszewski, 1992) or optical neuroprocessors (Ticknor &
Barret, 1987).

Three kinds of parallelism can be considered with respect to the type of compu-
tation performed:

o Functional decomposition, namely parallelism in the evaluation of the cost func-
tion at each move. As can be observed from equation (2), the Boltzmann Machine
is characterized by this kind of parallelism.

e Spaiial {or domain) decomposition, where state variables are distributed among
processors and variable updates are transmitted between processors to generate
new states.

® St&te-space sharing techniques, where many trials are performed in parallel and
one or many transitions can be made simultaneously.

According to the synchronization policy adopted and the resulting convergence
properties, a comprehensive taxonomy of parallel simulated annealing techniques has
been presented in {Greening, 1990):

e Serial-like algorithms identically preserve the convergence properties of sequential
simulated annealing. Serial-like algorithms either involve functional decomposi-
tion or exploit sets of serializable transitions (Kravitz & Rutenbar, 1987}, i.e.
transitions that can be concluded in any order yielding the same result.

e Altered generation algorithms modify state generation, thus changing the pattern
of state space exploration, but perform accurate cost function calculations. They
are generally based on spatial decomposition or shared state-space techniques.

o Asynchronous algorithms do not retain the synchronization present in the above
two categories and have the disadvantage of tolerating erroneously calculated
state transitions. They are also based on spatial decomposition or shared state-
space techniques.

Each category is characterized by some sort of trade-off between solution quality
and speedup. As different schemes may be appropriate at different temperatures, sev-
eral hybrid approaches have also been examined (Greening, 1990; Kravitz & Rutenbar,
1987).

The scheme proposed here, which is based on group updates, combines several
features of the kinds of parallelism described above. Moreover, although the states
of many units may be updated in parallel, the trial is performed using the correct
energy difference, thus excluding the possibility of erroneous transitions.

3. GROUP UPDATES

The notion of group update constitutes a generalization of the notion of single update
(Likas & Stafylopatis, 1996). The diflerence lies in the way in which the generation of
the new state to be tested is performed. Instead of selecting a single unit to consider
for update, we can select a group containing a number of units. In a manner analogous
to the single unit case, we first perform a trial by calculating the difference in the
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energy that would result if the state of all units in the group were altered. Then a
decision must be made of whether a group update must take place, i.e., whether the
states of all these units must change or not.

It is clear that group operation differs from the previously mentioned synchronous
operation (Aarts & Korst, 1989), which consists of simultaneously performing indi-
vidual trials and updates (unlimited parallelism), in that it performs only one trial
using the correct energy difference.

Consider a Boltzmann Machine with n binary units as defined in the previous
section. Suppose that while being in state ¥ = (y1,...,ya) during operation, we
consider a group G of units and perform a trial on this group. If the trial is successful,
a group update takes place and the new state # = (2, ...,2,) of the network will be

such that ‘ G
_fwtw ifie
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where u; = 1 — 2y;, i € G. Equation (3) simply expresses the fact that units in G
change state.

The energy of the new state Z can be obtained from (1} with z in place of yi.
Using (3) and based on the symmetry of the weights we find after performing some
algebra:
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~ Thus, the change AEg(§) = E(2) — E{¥) in the network’s energy due to the group
update is given by:

AEG(§) = Y 6E(§) -;—Z ¥ uujwy (5)

ieG i€G jEG

where, according to (2}, §E;(J) is the change in the network’s energy in case unit 1
is selected for a single update from state §. If an ordering is imposed on the units of
group G, equation (5) can be written in the following way:

AEs(H) = S SE®) - 30 3 uiujwy (6)

{1e] eG j<i

which is the formula that has been considered in our implementation. :

It can be easily verified that the change in the network’s energy due to a group
update from state § as given by (5) is equal to the sum of the individual energy
changes that would result if the units of the group sequentially changed state starting
from i and following an arbitrary order. This provides a more intuitive interpretation
of the above result and can be seen as a consequence of energy conservation.

It is obvious that in order for an operation style based on group updates to be
successful, the identification and selection of appropriate groups of units must take
place and this task is highly problem-dependent. The operation scheme described in
the next section attempts to identify promising groups by examining many groups at
each step and selecting the one with minimum energy difference.
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4. PARALLEL GROUP-UPDATE OPERATION OF THE
BOLTZMANN MACHINE

Group updates allow the Boltzmann Machine to perform a wide exploration of the
state space, since transitions are enabled to states not belonging to the immediate
neighbourhood of the current state. This is particularly desirable in the beginning of
the search process to enhance mobility so that the system can rapidly attain regions of
Jow energy. As the process advances, the search becomes more localized to perform a
refinement of the obtained solution. This implies the idea of systematically adapting
the breadth of the search area by adjusting the size of groups considered for update.
The operation scheme described next is based on applying a group-size schedule si-
multaneously with the annealing schedule concerning the temperature parameter.
Moreover, as the group-update technique provides an efficient way for computing the
energy difference at each trial, the proposed scheme can take advantage of parallelism
to achieve fast execution.

4.1 Group-Update Scheduling

Consider that, at each time step, A network units are selected and the corresponding
energy differences §E;, that would result if the state of each unit were altered, are
computed using equation (2). Then, using equation (6), several grouping possibilities
among the A selected units are considered and an appropriate group for update is iden-
tified. Obviously, among the possible groupings, the group G* with the (algebraically)
minimum A Eg would be the most desirable choice. A trial concerning this group is
then performed using either the Metropolis or the logistic acceptance criterion. If the
trial is successful, the state of the units participating in the group is appropriately
updated. From the above description it is clear that, to specify next-state generation,
two phases must be envisaged: unit selection and group selection. Both issues will be
discussed in later subsections in connection with the implementation of the algorithm.

Comparing the above scheme with the pure Boltzmann Machine operation we
can say that, although there is an increase in the number of computations performed
at each step, there are two main advantages: i) we consider group updates instead of
single updates, which provides wider search around each state, and ii) we incorporate
sophistication in the next state generation scheme, i.e., we perform trials concerning
the state with the lowest possible energy among the candidate states, thus, the prob-
ability of performing unsuccessful trials is decreased. These qualitative observations
are made more clear through the following proposition.

Proposition L. Let § = {s),...,9:} be the set of randomly selected units and G* € S
the group with minimum energy difference 6Eg+. Let also H = (hi,..., hn) (hi € S,
m < )) denote an arbitrary sequence of (serial) updates concerning units of 5 and

p(T) the probability that the entire sequence of updates be accepted at temperature
T. Then for all H, it holds that

pa+(T) 2 pu(T) (7)

where pe+(T) is the probability that the group update concerning group G* be accepted
at temperature T

Proof: Let §Ej, denote the energy difference at the trial concerning unit h; and
pu,{T) the probability of accepting the update, given that all preceding updates have
been accepted following the order implied by the sequence H. Then the probability
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that all updates of the sequence be accepted is given by

= f{lphf(T)

Following the discussion of the previous section, the change in the network’s energy
due to a group update from state § is equal to the sum of the individual energy
changes that would result if the units of the group sequentially changed state starting
from 7 and following an arbitrary order. Considering the way of selecting group G*,
it holds that

§Ece < ¥ 8Ey, (8)
=1

We consider now the following two acceptance criteria:

9 Logistic criterion.

In this case py, = 1/(1 + exp{6E,,/T)) and pg« = 1/(1 + exp(6Eg+/T)). From
equation (8) we have

1
par(T) 2 T o, 8B T) &
which yields
1 ~par(T) _ < _ 71 L=nlT)
pa+(T) = xp(géﬁ'hi/rr) E‘ pai(T) (10)

Since 0 < py,(T) < 1, it holds that [I™, (1 — pa(T)) < 1 — [T, ps.(T). Thus,
from (10) we finally obtain

1 = pe+(T) _ 1= pu(T)
P (M) = pulT) (1)

which means that pg«(T") 2 pu(T).

e Metropolis criterion.
If §Eg+» < 0 we have that pg«(T) = 1, thus (7)
sequence H will contain some units 7,,...,7k (1
and

holds. If § Eg~ > 0 then each
< k £ m) for which éE;;, > 0

k
§Egr <Y SE; (12)

=]
Since for the units with §E;; < 0 it holds that py,(T) = 1 we have that

pu(T) = 1%, 2;:(T). In a manner similar to the logistic case it can be shown
that pg«(T) 2 pu(T).

B

The main implication of the above proposition is that, in the case of group-update
operation, a faster annealing schedule can be employed, especially in what concerns
the number of trials performed at each temperature. Since the probability pg« is
higher than in the sequential case, less trials are required at each temperature in
order for the corresponding Markov chain to reach a quasi-equilibrium state (Aarts &
Korst, 1989). Also the transitions that lead to a decrease in energy are more steep and
the network approaches near-optimal states faster. Moreover, the escape from local
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minima is facilitated since the generated next state {with minimum positive energy
difference) is the one that is more easy to approach. All these factors compensate for
the increase in complexity due to the group update computations.

A local minimum state under group-update operation is one for which there is
no group G having negative energy difference AFg among all the 2* — 1 possible
groups. We will refer to a local minimum state of this type as a group-update equi-
librium. It is clear that a group-update equilibrium is associated with a given set
of selected units and, therefore, refers to a particular step of the process. Since the
number of possible groups is large in general, it is not easy to check whether a given
state constitutes an equilibrium point in the above sense. On the other hand, it is
obvious that a group-update equilibrium is also an one-update equilibrium. When a
problem is mapped onto the Boltzmann Machine, the one-update local minima are
the states that are of interest, since in most cases they correspond to feasible problem
solutions (Aarts & Korst, 1989; Zissimopoulos ef al., 1991). Therefore, as a termina-
tion criterion for the group-update approach, we chose to check whether the current
state constitutes an one-update equilibrium, and, in addition, we require that for a
number of consecutive temperature values, no (group) transition has been accepted,
i.e., the equilibrium point in our approach is ‘more’ than a local equilibrium of the
pure Boltzmann Machine case.

4.2 Exploiting Parallelism

The key concept in group-update operation is the computation of AEg according
to equation (6). This computation is based on the individual energy differences
6E; that can be computed independently for each unit participating in group G.
This fundamental operation, therefore, is characterized by functional parallelism as
described in Section 2. Moreover, partitioning of this job to parallel processors may
correspond to appropriate distribution of network units to processors, thus featuring
a kind of spatial parallelism. Finally, we may observe that, since the available § E; can
be used for evaluating several candidate moves corresponding to different groupings,
a possibility of state-space sharing is also offered. Clearly, at a given time instant
during execution, the degree of parallelism provided by the parallel computing system
can be greater than, less than or equal to the group size A.

In what concerns the variation of the group size A, and in particular its initial
values, we have been guided by practical considerations. First, the group size cannot
be very large, since the computational cost of searching for an appropriate group
at each step would be prohibitively high. Second, a systematic experimentation has
revealed that, even if a large value of A is considered, the average effective size of
the selected group does not exceed some observed range of values. We have thus
determined an efficient suite of values for A, that have been used in the group-size
schedule, as explained in Section 6.

Due to parallelism, we can easily compute p individual energy differences 6E; at
each step, where p > ). Therefore, the set §' = {s,...,s,} is generated at each
step and the corresponding energy differences §E,; are computed. Then ) out of the
p units of S’ are selected and the set § C 5’ is constructed. We can benefit from
this redundancy and adopt the units corresponding to the A lowest 6 E; values, since,
according to equation (6), these units are more probable to construct groups with low
AEg.

To select the p units, the network is partitioned into p regions containing equal
number (n/p) of units. One unit from each region is then randomly selected and a
set of p candidate for update units is formed. This type of partitioning can be readily
implemented on both shared-memory and distributed-memory architectures.
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¢ Map problem on Hopfield Network (Boltzmann Machine).
o [nitialize output vector § to random binary values.
& Hepeat steps 1-7 until terminating criterion is satisfied:
1. Periodically update group size A.

. Periodically update temperature T'.
. Select p out of the n units.

2

3

4. Compute §E; for every selected unit. _

5. Select the A out of the p units having the lowest §F; values.
6

. Find the most appropriate group G with energy difference
AEs.

7. Perform trial according to the Meiropolis criterion. If succes-
full, then change state y; for every uniti € G,

Figure 1: The Group-Update Algorithm

The proposed Group-Update algorithm is summarized in Figure 1.

5. COMPUTATION AND CONVERGENCE ISSUES
5.1 Implementation of Group Selection

As far as group selection is concerned, since in general A << n, a first approach
would be to compute the energy difference corresponding to all 2* — | possible group-
ings concerning the A selected units and find the group G* with the (algebraically)
minimum A Fg. This scheme has the advantage of considering all possible grouping
decisions and facilitates escape from local minima, especially at low temperature val-
ues where it is more difficult to find transitions that lead to a decrease in the energy
of the network. However, as this option risks to be computationally expensive, care
has been given to its efficient implementation and the possxblhty of restricting the
exhaustive search has been examined.

Given the set S = {s,,...,8,} of the selected units, it can be readily obtained
from equation (5) that the task of finding the group G* with the minimum energy
difference is equivalent to finding the global minimum point 7 = (ry,... 7y} (v €
(0,1}, 7 # 0) of the following function Q(7):

» A A
NN iz - 3 G (13)

i=} j=1 i=1

{-‘)-—....

b-DI'"-"

where r; = 1(0) means that unit s; belongs (does not belong) to group G*, 2;; = zji =
uiujwi; and (; = —6E,,.

If the above global minimum is to be found through explicit enumeration of the
2% —1 possible values of 7, an efficient implementation can be obtained by considering



Boltzmann Machine Optimizer 459

the vectors 7 in a sequence corresponding to Gray coding, according to which each
vector differs from the previous one in just one component. Consequently, if ¥ is the
current vector and r’ differring from 7 in component 7 is the next one in the Gray
sequence, we have:

Q) = Q) + (2rs — (L rszs + 6) (14

This possibility of incrementally computing the energy differences significantly re-
duces the required computational effort.

For large A a near-optimal group selection  can be determined using some heuris-
tic search technique. A genetic algorithm {Goldberg, 1989; Michalewicz, 1994) can
be considered for this purpose. This idea has been tested experimentally yielding
satisfactory results.

It is interesting to note that the function Q(7) can be viewed as an energy func-
tion that can be minimized by a Boltzmann Machine with A units, connection weights
z;; and threshold values (;. Therefore, a lower level Boltzmann Machine could oper-
ate within the original one, providing at each step a group appropriate for selection.
Although the idea seems appealing, we have not resorted to this approach, because it
has the disadvantage of having in many cases the zero state as an equilibrium point,
which is not acceptable in our scheme, since it does not suggest any transition.

5.2 Asymptotic Convergence

A theoretical implication of incorporating sophistication in the process of next state
generation is that one of the conditions for asymptotic convergence of the Boltzmann
Machine to the global minimum state is no longer valid. According o (Aarts & Korst,
1989), the first requirement for convergence is the ability to generate a path (finite
number of transitions) from any state to an optimal solution. The random selection
of units at the beginning of each step satisfies this requirement. The second condition
is related to the symmetry in the probability G, of performing a trial concerning
state y while being in state z, i.e. to the property G4, = Gyz. This symmetry holds in
the pure Boltzmann Machine case where the unit to be updated is randomly selected,
but it is not valid in the proposed approach since trials are performed only between
states with minimum energy difference. Therefore, if while being in a state z a trial
is performed for moving to state y with AFEg < 0, it is not likely that while being
in state y a trial would be performed for moving to state z since the corresponding
energy difference would be positive. In other words, the proposed scheme favors the
generation of next states that are of low energy with respect to the current one.
Although the lack of proof of asymptotic convergence does not seem to affect the
performance of the method, the problem can be overcome by introducing a probability
g of applying the group update scheme at each step. This means that at each step we
decide with probability ¢ whether a group trial will be performed or not. In the latter
case, a trial concerning a randomly selected single unit takes place as in the pure case.
This modified scheme still lacks symmetry, which is a sufficient, but not necessary
condition for convergence. Following the proof provided by Hajek in (Hajek, 1988),
it can be shown that under this scheme the global convergence property is retained,
provided a sufficiently slow logarithmic cooling schedule is employed. Although in
practice the probability ¢ can be set small enough so that normal group-update op-
eration is not disrupted, we have not considered this option in our implementation.
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6. EXPERIMENTAL RESULTS

The effectiveness of the proposed approach has been tested on instances of the
Weighted Maximum Independent Set (MIS) problem. The Weighted Maximum In-
dependent Set constitutes an imprortant discrete optimization problem and many
other problems (for example Set Partitioning, Set Packing, Set Covering etc. (Zissi-
mopoulos et al., 1991)) can be solved through its solution. Moreover the use of the
Boltzmann Machine for the solution of this problem has proved very successful {Aarts
& Korst, 1989; Zissimopoulos et al., 1991},

The formulation of the MIS problem (weighted case) is the following: Consider
an undirected graph G = (V, £} where V (with V] = n) is the set of vertices and
E denotes the set of edges. Let also A denote the adjacency matrix of graph G, i.e.,
a;; = 1 if (i,j) € E, otherwise a;; = 0. An independent set V' of this graph is a
subset of V that contains vertices not connected to each other. Iif c: V — Rt is a
cost function assigning a cost to each vertex, the Maximum Independent Set problem
is to find the independent set V' of maximum cost, where the cost of the set V' is
defined as f(V') = Fiev ck. ~

A neural network architecture suitable for the MIS consists of n nodes with the
following specification of weights w;; and threshold values 8; (Aarts & Korst, 1989;
Zissimopoulos et al., 1991):

) —Amax{8;,6;} +elay; if1 ¥
“"’"‘{ 0 ifi=j (15)

9.‘ = & (16)
where ¢ is a very small positive value (which is set equal to 0.5 in our experiments).
This specification of weights and thresholds ensures that every one-change local mini-
mum state corresponds to an independent set of the graph. Each such set is maximal
in the sense that no other vertex can be added to it without violating the disjoint-
ness constraint. Moreover, the resulting energy function is order preserving (Aarts &

Korst, 1989) in the sense that the lower the final energy value, the better the cost of
the final solution.

6.1 Sequential Implementation

At first we examined the performance of a sequential implementation of the group-
update approach on a Power Challenge (Silicon Graphics) machine. We considered
three graphs with 480, 800 and 1600 vertices respectively that were constructed by
deciding with probability 0.1 for each pair of vertices whether there would be an edge
connecting the vertices of this pair. The cost of each vertex was an integer value
specified through uniform selection in the range between 20 and 50.

Experiments were conducted for both the conventional and the group-update
operation schemes of the Boltzmann Machine using p = 16 and initial A = 16 in
the latter case. The annealing schedule that was used in all tests has the following
logarithmic form:

Tiy

= 1+log f(k) (17)

where flk) = f(k ~ 1){1 + r) (with f(0) = 1) and To = 20, r = 0.001 denote
the initial temperature and the reduction rate respectively. For the conventional
Boltzmann Machine we considered that n trials are performed at each temperature
step and the annealing terminates if no update has been accepted for 3n consecutive
time steps (trials).

T
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Boltzmann Machine
n | Avg. Cost | Best Cost | Avg. Time (sec) | Avg. Steps
480 | 1889.5 1983 9.4 55027
800 | 2013.7 2087 25.8 80287
1600 | 2420.5 2547 183.1 189681

Table 1: Experimental results for Boltzmann Machine

Group Update Scheme
n | Avg. Cost | Best Cost | Avg. Time (sec) | Avg. Steps
480 1988.5 2112 72.8 30082
800 | 2158.9 2260 226.9 56165
1600 2618.2 2772 952.6 113604

401

Table 2: Experiments for Group Update Scheme (pure exhaustive search)

For the Group-Update scheme n/) trials are performed at each temperature and
the annealing terminates if no update has occured for 3n consecutive time steps. As
far as the group-size schedule is concerned we considered the following fast dropping
scheme: given an initial value (which was taken equal to 16) A drops to half at
time instants, such that the intervals between successive changes of A constitute an
increasing sequence. The interval length is initially equal to 100 time steps and
is multiplied by 10 after each change of A. If A attains the value 1, it remains
unchanged until termination of the algorithm. This group-size schedule proved to be
the most efficient among the ones we have tested on this algorithm, both in terms of
solution quality and execution time. From the above it is obvious that in the case of
the Group-Update scheme we have decreased the number of steps per temperature
value when the latter is high and the effective group size is relatively large. As the
group size drops according to the schedule mentioned above, the number of trials per
temperature increases in order for the algorithm o maintain its search ability.

Finally, as already mentioned in section 5.1, we experimented on two techniques
for the task of finding the most appropriate group: (i) exhaustive search (using Gray
coding) throughout the execution, and (ii) a combination of genetic search for the
largest value of A and exhaustive search for the remaining values of A. In case (ii) we
used the Simple Genetic Algorithm with string size 16, population size 50, number of
generations 100, crossover probability 0.7 and mutation probability 0.06. The com-
putation of the fitness function was based on the energy difference formula (equation
(13)). |

The results are summarized in Tables 1-3 and concern the quality of the pro-
vided solutions, the required computation time (in seconds) and the number of steps
performed. The displayed results are average values obtained from 20 experiments
for each problem instance. It is obvious that there is a significant improvement in the
quality of the obtained solutions when the group-update approach is used, for all prob-
lern instances. It should be noted, that, in the case of the pure Boltzmann Machine,
even when a much higher initial temperature was used, the obtained improvement of
the solution was less than 2%. What is important in the new approach is the steep
decrease of the energy to much lower values than in the conventional case. Figures



462

Likas, Papageorgiou, Stafylopatis

Group Update Scheme
n | Avg. Cost | Best Cost | Avg. Time (sec) | Avg. Steps
480 | 1999.5 2112 76.2 31002
800 | 2142.2 2204 216.3 54752
1600 | 2586.8 2702 910.6 109290

Table 3: Experiments for Group Update Scheme (genetic search for largest A)

Average Energy
2,000

Group Upcate

1,000 -

2,000 -

1 2 o
10 5 0
Temparature

Figure 2: Comparison of energy evolution for n == 800

2-3 clearly depict this interesting feature. As far as genetic search is concerned, its
contribution proved effective, since the corresponding scheme provided in slighly less
time solutions that are very close to the ones obtained using pure exhaustive search.

In what concerns execution speed, the sequential execution of the group-update
scheme requires much more time with respect to the conventional case, something not
surprising, since each computational step in the new approach is much heavier than
in the Boltzmann Machine. Nevertheless, a considerable benefit has been obtained
through parallel implementation.

6.2 Parallel Implementation

From now on we will refer to the version of Group-Update scheme which uses only
exhaustive search for determining the appropriate group. The proposed approach
exhibits parallelism in the selection of the p units as well as in the computation of the
p energy differences 6E;, since these quantities can be computed simultaneously in
a straightforward manner. Another point, where parallelization can take place, is in
the evaluation of the 2* — 1 combinations of §E;. Although this task looks sequential
in principle, we can partition the set of combinations into subsets of consecutive
elements in accordance with the Gray ordering, using some kind of preprocessing,
and assign the task of finding the minimum of each subset of the sequence to one
of the available processors. These partial minima can then be accumulated and the
global minimum A Eg can be determined. However, we have not included this type of
parallelism in our implementation, because for the MIS problem A drops very fast and
the computational cost of the appropriate group selection is very low, compared to
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Figure 3: Comparison of energy evolution for n = 1600

Avg. Speedup
n | 4 proc. | 8 proc.
480 2.0 4.1
800 3.4 5.5

1600 3.9 6.6

Table 4: Speedup for shared memory implementation.

the cost of the computation of §E;. In the parallel implementation we have considered
the same nurmber of experiments per problem instance, as well as the same parameter
settings as in the sequential implementation.

The method was implemented on both shared memory and distributed memory
parallel machines. The shared memory machine used was a Silicon Graphics Power
Challenge with 14 R8000 processors, whereas the distributed memory machine was
an Intel Paragon with 48 i860XP processors. Programming was performed using the
C language with additional parallel calls for the coordination of the parallel processes.

For the evaluation of the shared memory implementation we considered execu-
tion on 4 and 8 processors. At each step, p units are selected in parallel from the
p regions containing n/p units each, and the task of computing the corresponding
energy differences §E; is automatically partitioned into almost equivalent subtasks
and automatically assigned to the available processors. Table 4 shows the average
speedup obtained on the Power Challenge machine for the three instaces of the MIS
problem.

On the distributed memory machine we followed a maneger-worker parallelization
scheme. The p regions, into which the network is partitioned, are uniformly assigned
to the available worker-processors. At each step, every worker-processor randomly
selects one unit from each region assigned to it and computes the corresponding éE;.
The manager-processor accumulates the 6F;, as well as the p selected nodes. Then
the manager-processor selects the best AEg, makes a trial and updates the cutput of
the network. Then it informs the worker processors about the changes and continues
until the stopping criterion is met. The results in Table 5 show good speedup obtained
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Avg. Speedup
n | 9 proc. | 17 proc.
480 | 3.3 7.7
800 | 4.5 11.5
1600 { 6.8 12.1 -

Table 5: Speedup for distributed memory implementation.

on the Paragon machine, especially in large instances of our problem.

From Tables 4-5 we can see that in both machines we obtained very good speedup,
especially for large problem instances. If we compare Tables 1, 2 and 4, we will see
that for n = 1600 the execution time of parallel Group Update using 8 processors is
even less than that of the Boltzmann Machine, while for the smaller sizes execution
times are comparable.

7. CONLUSIONS

A new operation style for the Boltzmann Machine has been presented that is based on
group updates. The method is general and can be applied to any problem for which
the Boltzmann Machine is appropriate. The quality of the provided solutions is better
compared to the conventional way of operation, despite the fact that the number of
required trials and updates is significantly smaller. This quality improvement can be
attributed to the fact that greater complexity is introduced in the process of generat-
ing the next state to be examined at each step. Therefore, the probability of successful
trials is increased and it is easier to discover transitions that lead to a decrease in the
network energy. Moreover, the method is characterized by a considerable degree of
parallelism and a parallel implementation makes possible the reduction of the com-
putation time required to deal with large scale optimization problems. Experimental
results from both shared memory and distributed memory implementations indicate
a very good performance of the group-update scheme in what concerns execution
speedup.
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