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Fully Unsupervised M-FISH Chromosome
Image Characterization
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Abstract—Chromosome analysis is an important and difficult
task for clinical diagnosis and biological research. A color imaging
technique, multiplex fluorescent in situ hybridization (M-FISH),
has been developed to ease the analysis of the process. Using an
M-FISH technique each chromosome class (1,2,. . .,22,X,Y) is
stained with a unique color. However, significant variations be-
tween images are observed due to a number of factors such as
uneven hybridization and spectral overlap among channels. These
types of variations influence the pixel classification accuracy of im-
age classification methods which are supervised and require a set
of annotated images for training. In this paper, we present a fully
unsupervised M-FISH chromosome image classification methodol-
ogy. Our main contributions are 1) the assumption that the intensity
of a chromosome pixel is sampled from multiple Gaussian compo-
nents [Gaussian mixture model (GMM)] such that each component
corresponds to one chromosome class, and 2) the initialization of
the GMM model using the emission information of each chro-
mosome class. This is feasible since prior to the M-FISH image
acquirement, we already know which chromosome class is emit-
ting to each of the five M-FISH image channels. The method has
been tested on a large number of M-FISH images and an overall
accuracy of 89.85% is reported. Our method is unsupervised and
presents higher classification accuracy even when it is compared
with common supervised based methods. Since the developed clas-
sification method does not require training data, it is highly conve-
nient when ground truth does not exist.

Index Terms—Chromosomes, expectation-maximization (EM),
multiplex fluorescent in situ hybridization (M-FISH), MAP-EM.

I. INTRODUCTION

CHROMOSOMES are the genetic information carriers of
the DNA. For a normal human being, the number of chro-

mosomes in a cell is 46, which consist of 22 pairs of simi-
lar, homologous chromosomes and two sex determinative chro-
mosomes (XY: male, XX: female) [1]. The latest frontier is
cancer cytogenetics analyzing chromosomal aberrations in ma-
lignant tissues [2]. The main obstacle to the wide implemen-
tation of cytogenetics prenatal screening and other diagnostic
procedures [3] is that karyotyping, the procedure of chromo-
some classification, is very time consuming and it demands high
quality of human resources. To ease the procedure of chromo-
some classification for the cytogeneticists, a color chromosome
painting technique has been proposed in the mid-90s [4], [5].
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This technique, which is called multiplex fluorescent in situ hy-
bridization (M-FISH), uses five color dyes that attach to specific
sequences of DNA in a way that each chromosome class absorbs
a unique combination of dyes. Also, a sixth dye which is called
DAPI is used to counterstain the chromosomes.

A fluorescent microscope with multiple optical filters is used
to capture an M-FISH image, where each of the dyes is visible
in one of the spectral channels. Using combinatorial labeling
for an ideal M-FISH image, it is easy to determine the most
likely chromosomal origin for each pixel as each fluor is either
present—1—or absent—0— [6]. Several sets of fluors (kits)
have been proposed for each chromosome class using three
different color kits (Appendix A: Kit-A, Kit-B, and Kit-C).

M-FISH imaging has been widely used to detect chromosome
anomalies. A common type of anomaly that is detected in can-
cer cells is translocations [7]. Translocation is a chromosome
anomaly where exchange of chromosome material between the
same or different chromosome classes takes place. This type of
chromosome anomaly is very common in cancerous cells, and
M-FISH imaging greatly simplifies the detection of such chro-
mosome translocations since a chromosome now is displayed
with two colors [8]. Fig. 1 presents two examples of transloca-
tions between two different classes of chromosomes.

Although the M-FISH imaging ease the process of karyotyp-
ing [3], [4], visual inspection of these images is a laborious
and time-consuming process. Also the characterization of chro-
mosome anomalies is difficult, since small rearrangements of
chromosome material are difficult to identify for untrained per-
sonnel. For this reason, many attempts have been made to auto-
mate the whole or part of the classification of M-FISH images
process [9]–[22].

The methods described in the literature either first segment
the image and then classify the pixels of the image [12], [15],
[17]–[21] or they directly classify all the pixels of the M-FISH
image including a class for the background [11], [13], [14], [16].
In addition, these methods can be divided into following two
categories based on the use of annotated images as a training
set.

1) Supervised [11], [13]–[17], [20]: In a typical supervised
classification scheme, the goal is to train a classifier that
can be used to predict previously unseen images. These
methods require the existence of a number of annotated
images to train a classifier (e.g., Bayes [11]).

2) Unsupervised [18], [19], [21]: These methods do not use
a set of annotated M-FISH images to train the classifier.
Although unsupervised classification methods have been
proposed, they have been tested only to a small number
of M-FISH images and they present low classification
accuracy.
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Fig. 1. M-FISH image with two translocations. Translocations between the
chromosomes classes 4 and 9. (b) Normal chromosome of class 4 appearing
with green color. (c) Abnormal chromosome of class 4 with translocation of
class 9 appearing with different colors. (d) Normal chromosome of class 9
appearing with blue color. (e) Second homologue of chromosome class 9 with
translocation of class 4 appearing with different colors.

One of the key factors limiting the supervised pixel classifica-
tion accuracy is the variations between M-FISH images. This is
due to the fact that the M-FISH imaging technique is not always
accomplished under the same conditions, e.g., humidity, tem-
perature, type of microscope, and color spread [21], [23] and
these factors affect the quality of the produced M-FISH image.
According to the color map of Kit-A, chromosome 3 should be
ideally observed only in channels 1, 2, 4, and 5 and should not
be visible in other channels.

Fig. 2 presents the color spread for two chromosomes of
class 3 on two different M-FISH images (M-FISH1, M-FISH2).
As one can observe, the chromosome in Fig. 2(a) presents a dis-
tribution of the fluor signal along the chromosome as the distri-
bution described in the pattern of chromosome 3 [see Fig. 2(c)].
However, Fig. 2(b) presents the chromosome 3 for a different
M-FISH image, where it is obvious that this chromosome has
failed to hybridize on channel 4 [21]. Specifically, the average
fluor for chromosome 3 of the channel 4 has a similar distribution
such as the one the channel 3 [see Fig. 2(b)]. We can conclude
that when the variation of the feature distribution across images
is significant, which means the feature distribution of an un-
known image is unpredictable, classification methods that rely
on the estimation of class parameters (supervised methods) will
yield low classification accuracy [21].

In this study, we propose an unsupervised method for the
classification of M-FISH images. Unsupervised methods play
an important role in many applications where the class labels
are unavailable without requiring human visual comparisons
or comparison with a preprocessed annotated image. Although
these methods (e.g., Fuzzy C-Means [18]) have been already

Fig. 2. Two chromosomes of class 3 of two different M-FISH images
(M-FISH1, M-FISH2). (a) Chromosome class 3 and its graph of average fluor
signal along the chromosome of M-FISH1 . (b) Chromosome class 4 and its
graph of average fluor signal along the chromosome of M-FISH2 . (c)Theoretic
emission for each of the channels of chromosome class 3 and the mean value of
intensity for chromosome 3 for the M-FISH images M-FISH1 and M-FISH2 .

employed for the classification of M-FISH images, they have
been applied only to a small number of M-FISH images failing
to present a fully and robust unsupervised approach.

The main contribution of this study is the proposal of a new
fully unsupervised classification method for the M-FISH im-
ages. Our unsupervised scheme is based on a multichannel
Gaussian mixture model (GMM) with 24 components, one for
each chromosome class. In order to overcome the problem of
the initialization of the parameters of each GMM component,
the first choice would be to randomly select parameter values
or perform an initial clustering of the dataset. However, this
would not incorporate the emission information of each chro-
mosome class that we a priori had. In our case, the initialization
is based on estimating the parameters of a single GMM via
the expectation-maximization (EM) algorithm. Combining the
parameters of the single-channel GMMs and the emission infor-
mation of each chromosome class, an effective initial estimation
of the multichannel GMM can be derived.

Although this initial GMM could accurately describe the
chromosome distribution for an M-FISH image with high signal-
to-noise ratio (SNR), this does not hold for images of low SNR.
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Fig. 3. Flowchart of the proposed method.

Thus, a further adaptation of the parameters of the multichan-
nel GMM is needed. One straightforward approach is to use
the classical EM algorithm starting from the initial estima-
tion computed in the previous step. However, the large number
of chromosome classes and the emission overlap could affect
the mapping between each mixture component and each chro-
mosome class. To overcome this problem, some kind of con-
straints should be applied on the GMM parameters. These con-
straints are naturally imported in the maximum a-posteriori-EM
(MAP-EM) algorithm, which was used in our method. The es-
timation of the parameters using the MAP-EM method proves
to be more effective in terms of classification accuracy over
the classical EM algorithm. Furthermore, apart from effectively
using the GMMs, the proposed method uses the watershed trans-
form (WT) in order to segment the M-FISH image into regions
(see Fig. 3). It has been already shown [20] that by classifying
regions instead of pixels, a significant increase in the classifica-
tion accuracy is obtained. Finally, the proposed method presents
high classification accuracy, without any user interaction, even
when compared with reported results using supervised classifi-
cation methods.

The rest of the paper is organized as follows: In Section II, we
provide all the details of the proposed method for unsupervised
M-FISH image classification which is decomposed into follow-
ing four different stages: 1) chromosome mask segmentation,
where we compute an initial mask of the pixels to be classified,
2) the region segmentation stage, where the M-FISH image is
decomposed into regions, 3) region classification, where the
estimation of the parameters of the multichannel GMM takes
places as well as the classification of each region, and finally,
4) region merging, where a final classification map is provided
to the cytogeneticist. In Section III, we present numerical exper-
iments that test the proposed method using the M-FISH image
database [16]. Finally, we present discussion and conclusions in
Section IV.

Fig. 4. Segmentation mask of a DAPI image. (a) DAPI image and (b) Seg-
mentation mask BOtsu (i, j).

II. METHOD

Our method consists of four different stages (see Fig. 3). In
the first stage (chromosome mask), the segmentation of the DAPI
channel takes place using Otsu’s threshold selection method. Us-
ing the binary image produced in the previous stage, we extract
all the pixels that belong to chromosomes. The region segmenta-
tion stage decomposes the M-FISH image into regions using the
WT: the gradient magnitude of the multispectral image is com-
puted. The goal of the next stage (region characterization) is the
classification of each region of the M-FISH image. In order to
achieve this, we first estimate the parameters of single-channel
GMMs. Each single-channel GMM is used to describe the prob-
ability density of chromosome pixels from each channel of the
M-FISH image. From this GMM, we estimate the parameters
(mean, covariance, and mixture coefficient) of each chromo-
some class for a multichannel GMM. Finally, we make use of
the MAP-EM algorithm in order to adapt the parameters of the
multichannel GMM for each M-FISH image. Having computed
the class parameters, all chromosome regions are classified into
1–24 chromosome classes. The final stage (region merging) is
used to merge the classified regions producing a final classifica-
tion map for the cytogeneticist.

A. Chromosome Mask

The first step of our method is the segmentation of the DAPI
channel of the M-FISH image. This was realized using a non-
parametric threshold selection technique. Otsu’s method [24]
computes automatically an optimal threshold value l∗ that is
found by maximizing the between class variance.

The binary image created by the Otsu method is defined as
follows:

BOtsu(i, j) =
{

0, if DAPI(i, j) ≤ l∗

1, if DAPI(i, j) > l∗

}
. (1)

An example of the segmentation of the DAPI channel of an
M-FISH image is shown in Fig. 4.

As a result of this task, the image pixels are classified as
foreground pixels (called chromosome pixels) or background
pixels. Suppose that, the segmented image BOtsu contains N
chromosome pixels and let X be the set of these chromosome
pixels X = {x1 , x2 , . . . , xN }. Each chromosome pixel is asso-
ciated with a 5-D vector xk , k = 1, . . . , N containing the corre-
sponding intensities of each of the five M-FISH image channels
xk =

(
x1

k , x2
k , x3

k , x4
k , x5

k

)T
. The intensities of the chromosome
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pixels are normalized using the standard method

yj
k =

xj
k − μj

σj
, k = 1, . . . , N, j = 1, . . . , 5 (2)

where μj is the mean and standard deviation of the chromosome
pixels of the channel j. Thus, the set Y = {y1 , y2 , . . . , yN } is
obtained (where yk ∈ �5 , k = 1, . . . , N containing the corre-
sponding normalized intensities of each of the five M-FISH
image channels).

B. Region Segmentation

The WT is a widely used image-segmentation algorithm that
originated from the field of mathematical morphology. The im-
age is considered as a topographical relief, where the height of
each pixel is related to its gray level. Assuming that imaginary
rain falls on the terrain, the watersheds are the lines separating
the catchment basins [25], [26]. In order to be able to apply
the WT in a multichannel image, one has first to define the
gradient. In our approach, instead of separately computing the
scalar gradient from each image channel, we compute the tensor
gradient [20], [27], [28].

A common problem of the application of the WT to the gra-
dient image is oversegmentation [20]. This is due to the fact
that the WT defines a distinct region for each regional mini-
mum of the gradient image. On the other hand, the grayscale
reconstruction [23], [29] suppresses all minima whose depth are
lower than or equal to a threshold. Thus, we apply this proce-
dure [20], [30], [31] in order to alleviate the over segmentation
problem. The output of the WT for an image I is a tessellation
TI of the image into its different regions RI , 1 ≤ i ≤ NRi each
one characterized by a unique label li .

TI = {(R1 , l1) , (R2 , l2) , . . . , (RNRI
, lNR I

)} (3)

Thus, a new label image Lw is defined where each pixel is
assigned a label. This label is the label of the region to which
it belongs. All pixels corresponding to the watershed lines are
assigned a special label, e.g., 0

LW (i, j) =
{

lk , if the pixel (i, j) ∈ Rk

0, if the pixel (i, j) ∈ Watershed Line

}
.

(4)
From the tessellation of the M-FISH image, we create a new

labeled image WLines :

WLines(i, j) =
{

0, if LW (i, j) ∈ Wateshed Line
1, otherwise

}
. (5)

Finally, the watershed lines are used to segment the regions
produced from the binary image BOtsu .

BRegions = BOtsu • WLines (6)

where • is the logical AND operator. At the end of this step,
all connected components which are not “0” are labeled with
a unique region label. An example of the computation of the
watershed region tessellation step is shown in Fig. 5.

Fig. 5. Watershed segmentation of an M-FISH image. (a) The M-FISH image,
(b) watershed regions superimposed on the M-FISH image.

C. Region Characterization

Each chromosome pixel y ∈ �5 is associated with a 5-D vec-
tor, containing the normalized intensities of each of the five
M-FISH image channels. We wish to partition the chromo-
some pixels into σjK = 24 groups equal to the number of
chromosome classes. This can be done by using any cluster-
ing algorithm. Our approach is based on the GMM in which
one assumes that the pixels were sampled from multiple Gaus-
sian components, such that each component corresponds to one
chromosome class. The assignment of pixels to classes can then
be easily performed by computing the posterior probability of
a pixel to a class (see Section II-C3). Having described all that,
the distribution of the chromosome pixels y could be modeled
using a multidimensional GMM (called multichannel GMM)
with K components, one for each chromosome class

p(y) =
K∑

i=1

πi · N(y;μi,Σi) (7)

where πi is the mixing probability or the prior probability
of the ith chromosome class, N(y;μi,Σi) is a Gaussian dis-
tribution with μi ∈ �5 the mean and Σi the 5 × 5 covari-
ance of the ith chromosome class, i = 1, . . . , K. A standard
approach to learn the parameters of each chromosome class
(πi, μi,Σi , i = 1, . . . ,K) is the EM algorithm. However, a
common problem of the aforementioned approach (EM algo-
rithm) is the initialization of the parameters of each chromosome
class. This is due to the fact that the EM algorithm converges to
a local maximum of the likelihood that highly depends on the
initial parameter values. Next, we describe a novel process for
the initialization of the multichannel GMM.
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1) Chromosome-Distribution Estimation: At first, we com-
pute initial values (π̃i , μ̃i , Σ̃i , i = 1, . . . ,K) for the parameters
of each chromosome class. The initialization step is composed
of following two procedures:

1) Single-channel GMM estimation: For each channel a two
GMM is estimated: the first component corresponds to
pixels belonging to hybridized chromosomes (brighter in
the image) and the second component corresponds to pix-
els belonging to nonhybridized chromosomes (darker in
the image).

2) Multichannel GMM initialization: Using the above single-
channel GMMs, we compute an initialization of the 24-
component multichannel GMM that models the distribu-
tions over the 5-D M-FISH image space.

a) Single-channel GMM estimation: Each channel j of
the M-FISH image (except the DAPI channel) contains chro-
mosome pixels that either belong to hybridized chromosome
or to nonhybridized chromosomes. Thus, the distribution of the
grayscale values yj

k is modeled using a mixture of two Gaus-
sians [21]

p(yj
k ) = p(yj

k |C
j
h)P (Cj

h) + p(yj
k |C

j
nh)P (Cj

nh) (8)

where yj
k is the intensity of a chromosome pixel k in channel

j, p(yj
k |C

j
h) is the probability of pixel k to be hybridized in chan-

nel j, p(yj
k |C

j
nh) is the probability of pixel k to be nonhybridized

in channel j, and Cj
h , Cj

nh are the hybridized and nonhy-
bridized classes, respectively. Also, p(yj

k |C
j
h) ∼ N(μj

h , (σj
h)2)

and p(yj
k |C

j
nh) ∼ N(μj

nh , (σj
nh)2),X = {x1 , x2 , . . . , xN } , σj

h

are the mean intensity and standard deviation of the hybridized
pixels of channel j, respectively, whereas μj

nh , σj
nh are the mean

intensity and standard deviation of the nonhybridized pixels of
channel j, respectively. Finally, P (Cj

h ) and P (Cj
nh ) are the prior

probabilities for the hybridized and nonhybridized classes, for
channel j, respectively, that sum to 1.

For the estimation of the parameters {{μj
h , σj

h , μj
nh ,

σj
nh , P (Cj

h), P (Cj
nh)}, j = 1, . . . 5} of the GMMs, we em-

ployed the well-known EM algorithm [32]. The EM algorithm
is an iterative algorithm which at each iteration consists of
two steps, the expectation (E-step) and the maximization step
(M-step).

E-step: Given the parameter estimates at iteration t, de-

noted as {{μj ( t )

h , σj ( t )

h , μj ( t )

nh , σj ( t )

nh , P (Cj ( t )

h ), P (Cj ( t )

nh )}, j =
1, . . . 5}, we compute the posterior probabilities

P (t)(Cj
h |y

j
k )

=
P (t)(Cj

h) · p(t)(yj
k |C

j
h)

P (t)(Cj
h) · p(t)(yj

k |C
j
h) + P (t)(Cj

nh) · p(t)(yj
k |C

j
nh)

(9)

P (t)(Cj
nh |y

j
k )

=
P (t)(Cj

nh) · p(t)(yj
k |C

j
nh)

P (t)(Cj
h) · p(t)(yj

k |C
j
h) + P (t)(Cj

nh) · p(t)(yj
k |C

j
nh)

. (10)

M-step: Update the parameters using

Λh =
N∑

k=1

P (t)(Cj
h |y

j
k ) (11)

Λnh =
N∑

k=1

P (t)(Cj
nh |y

j
k ) (12)

P (t+1)(Cj
h) =

Λh

N
(13)

P (t+1)(Cj
nh) =

Λnh

N
(14)

μj ( t )

h =
∑N

k=1 P (t)(Cj
h |y

j
k ) · yj

k

Λh
(15)

μj ( t )

nh =
∑N

k=1 P (t)(Cj
nh |y

j
k ) · yj

k

Λnh
(16)

σj ( t )

h =

√√√√ 1
Λh

N∑
k=1

P (t)(Cj
h |y

j
k ) · (yj

k − μj ( t )

h )2 . (17)

The EM algorithm is a local optimization algorithm, thus, it
is sensitive to initial values of the parameters. In order to over-
come this problem, we are going to exploit prior information
about our problem. More specifically for the priors P (Cj

h) and
P (Cj

nh), we exploit the emission information about the chro-
mosome classes (see Appendix A). It is well known that the
chromosome class index reflects the size of each chromosome
in descending order (i.e., chromosome 1 is the largest and chro-
mosome 22 is the smallest [20]). Thus, it is easy to estimate the
proportion Ai of pixels belonging to chromosome class i either
from a small set of M-FISH images [20] or to define it using
medical knowledge [1]. Consequently, we can define the initial
prior P (t=0)(Cj

h) as the proportion of the pixels that belong to
the hybridized pixels for channel j as follows:

P (t=0)(Cj
h) =

∑K
i=1 ΦijAi∑K

i=1 Ai

(18)

where the matrix Φ is defined as (see Appendix A) follows:

Φij =
{

1, if chromosome class i emmits on channel j
0, otherwise

}

(19)
and P (t=0)(Cj

nh) = 1 − P (t=0)(Cj
h).

Since the data have been normalized (2) the initial values
for mean and standard deviations for the components of nonhy-
bridized pixels are set to −1 and 1, respectively, and the mean
and standard deviations for the components of the hybridized
pixels are set to 1.

μj ( t = 0 )

h = 1, σj ( t = 0 )

h = 1 (20)

μj ( t = 0 )

nh = −1, σj ( t = 0 )

nh = 1 (21)

b) Multichannel GMM estimation: The goal of this step
is to compute an initial estimation of the chromosome class pa-
rameters (π̃i , μ̃i , Σ̃i , i = 1, . . . ,K) of the multichannel GMM
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using the emission information that we are going to exploit for
each chromosome class.

First, we have to take into consideration some key points
about the emission information of each chromosome class. If a
chromosome of class Ci emits in channel j, then the probability
of a pixel k belonging to that chromosome would be equal
to the probability p(yj

k |C
j
h) of that pixel to be hybridized in

this channel. Vice versa, if a chromosome of class Ci does
not emit in channel j, then the probability of a pixel which has
been computed from the single-channel GMM belonging to that
chromosome would be equal to the probability of that pixel to be
nonhybridized p(yj

k |C
j
nh) in channel j. Based on the previous

fact, we can define the probability p̃(yj
k |Ci) of a chromosome

pixel yj
k in channel j belonging to chromosome class Ci using

the emission matrix Φ as follows:

p̃(yj
k |Ci) = Φij p(yj

k |C
j
h) + (1 − Φij )p(yj

k |C
j
nh) (22)

where Ci are the 24-chromosome classes and 1 ≤ j ≤ 5.
For example, the probability that a chromosome pixel of chan-

nel j = 4 belonging to chromosome C1 is as follows:

p̃(y4
k |C1) = Φ14p(y4

k |C4
h ) + (1 − Φ14)p(y4

k |C4
nh). (23)

Using the emission matrix Φ (from Appendix A, we can
see that chromosome 1 emits in channel 4, thus, Φ14 = 1) and
substituting in following equation, we get

p̃(y4
k |C1) = p(y4

k |C1) (24)

Using this assumption, we are going to derive our initial
estimation for the prior, mean and covariance parameters of each
class distribution (π̃i , μ̃i , Σ̃i , i = 1, . . . , K). The initial mean
of each chromosome distribution, 1 ≤ i ≤ K is computed by
estimating each μ̃j

i , 1 ≤ j ≤ 5 using (23) as follows:

μ̃j
i = Φij μ

j
h + (1 − Φij )μ

j
nh , j = 1, . . . , 5. (25)

Furthermore, the initial covariance Σ̃i of each chromosome’s
distribution, 1 ≤ i ≤ K, is computed using (23) as follows:

Σ̃i = diag(
(
σ1

i

)2
,
(
σ2

i

)2
,
(
σ3

i

)2
,
(
σ4

i

)2
,
(
σ5

i

)2) (26)

where (σj
i )

2 =(Φij )2(σj
h)2 + (1 − Φij )2(σj

nh)2 , j =1, . . . , 5.
Finally, the prior probability is the expected proportion of

pixels belonging to a specific chromosome [20]

π̃ι = Ai, i = 1, . . . ,K. (27)

2) Chromosome-Distribution Estimation: Having estimated
the initial parameters for the multichannel GMM, our goal is to
allow the parameters to be further adapted. Instead of estimating
the GMM parameters via the EM algorithm, we employ max-
imum a posteriori (MAP) for parameter estimation, since we
already have incorporated prior knowledge (such as the emis-
sion information) to our initial model. More specifically, we
have used the MAP-EM algorithm [33] which exploits prior
information. Like the EM algorithm, the MAP estimation is a
two-step estimation process. The first step is identical to the
“Expectation” step of the EM algorithm. Unlike the M -step of
the EM algorithm, in the M -step of MAP-EM, parameters are
obtained by taking into account the initial model.

The parameters {π(t)
1 , μ

(t)
1 ,Σ(t)

1 , . . . , π
(t)
K , μ

(t)
K ,Σ(t)

K } are ini-
tialized using the values from the previous step e.g.,

π
(t=0)
i = π̃i

μ
(t=0)
i = μ̃i

Σ(t=0)
i = Σ̃i

⎫⎪⎬
⎪⎭ , 1 ≤ i ≤ K. (28)

The MAP-EM estimation of the GMM parameters is de-
scribed as follows [33]:

E-step: In the E-step similarly to the previous case,
given the estimation of parameters at iteration t{π(t)

1 , μ
(t)
1 ,

Σ(t)
1 , . . . , π

(t)
K , μ

(t)
K ,Σ(t)

K }, we calculate

v
(t)
i (yk ) =

∑N
k=1 p(yk |Ci)∑K

j=1
∑N

k=1 p(yk |Cj )
(29)

E
(t)
i (yk ) =

∑N
k=1 ykp(yk |Ci)∑N

k=1 p(yk |Ci)
(30)

E
(t)
i (ykyT

k ) =
∑N

k=1 ykyT
k p(yk |Ci)∑N

k=1 p(yk |Ci)
(31)

M-step: The M -step is described by the following update
equations:

π(t+1)
ι = (1 − a)v(t)

i (yk ) + απ̃i (32)

μ
(t+1)
i = (1 − β)E(t)

i (yk ) + βμ̃i (33)

Σ(t+1)
i = (1 − γ)E(t)

i (ykyT
k ) + γ

[
Σ̃i + μ̃i μ̃

T
ι

]

− μ
(t+1)
i

[
μ

(t+1)
i

]T

(34)

where the parameters a, β, and γ are the learning rates, which
define how confident we are about the prior values π̃i , μ̃i , Σ̃i , i =
1, . . . ,K.

Note that in the M-step, the updates of the parameters (33)–
(35) are made using a combination of the updates suggested by
the typical EM (first term of the sum) and the initial model we
have computed in the initialization phase (see Section II-C1).

3) Region Classification: Having estimated the parameters
(πi, μi,Σi , 1 ≤ i ≤ K) of each chromosome class, we could
classify a pixel y ∈ �5 to a chromosome class Ci, 1 ≤ i ≤ K
using the posterior probability P (Ci |y):

P (Ci |y) =
p(y|Ci)P (Ci)∑K
i=1 p(y|Ci)P (Ci)

. (35)

The class, to which the pixel is assigned, is given by the Bayes
decision rule [34]

decide Ci if P (Ci |y) > P (Cj |y) ∀j �= i, i = 1, . . . , K
(36)

However, our goal is to take advantage of the region segmen-
tation stage and to classify each whole region of our M-FISH
image. Suppose a regions Rp, 1 ≤ p ≤ NRI , that consists of
NP pixels {y1 , y2 , . . . , yN P }, where yi ∈ �5 , i = 1, . . . ,NP
denotes a 5-D vector containing the 5-normalized intensities
of a pixel of each channel. We then compute the average poste-
rior probability for each one of the 24-chromosome classes as
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Fig. 6. Region merging of chromosomes. (a) Initial classification map (we
have used a separate color for each chromosome class), (b) merging of adjacent
regions of the same class.

follows:

PAvg(Ci |Rp) =
1

NP

NP∑
l=1

P (Ci |yl) (37)

Finally, we classify the region Rp, 1 ≤ p ≤ NRI to the chro-
mosome class j that has the highest average posterior probability

PAvg(Cj |Rp) > PAvg(Ci |Rp), ∀i �= j, 1 ≤ i ≤ K (38)

D. Region Merging

The next step of our method is region merging. Note that
there are still regions that could be merged resulting into a
meaningful classification map. First, adjacent regions that share
the same class are merged into one single region. In order to
connect the adjacent regions, the region adjacency graph (RAG)
is computed for the image [35]. The RAG is a graph where two
nodes (representing two regions) are connected if those two
regions are adjacent in the image. Thus, each region of the
image is connected to all regions that share the same class. An
example is shown in Fig. 6(a) and (b).

We must mention how our algorithm deals with cases of
touching chromosomes/overlaps. In the case of touching chro-
mosomes

1) If the chromosomes are classified into two different
classes, then the chromosomes are not merged.

2) If the chromosomes are classified into the same class, then
our method will merge them.

In our database, we excluded areas of overlaps since there is
no information in the database which chromosomes classes are
present in the overlap area.

It has been observed that small regions are often misclassified
by our region classification step. In order to tackle this problem,
we have adopted the following procedure. First, all small regions
are identified. We define a small region as the region whose
number of pixels is lower than a threshold. This threshold must
be lower than the number of pixels of the smallest chromosome
of the database and must be adapted for each M-FISH image
Mi, i = 1, . . . , F of our database (where F is the total number
of images of the M-FISH database). We define Pi the number
of chromosome pixels of the ith M-FISH image. Let us assume
that the M-FISH image with the smallest chromosome is Ms

and SCP the number of pixels of this chromosome. Thus, the
proportion of pixels for the smallest chromosome for this image
will be as follows:

Ts =
SCP
Ps

(39)

where Ps is the number of chromosome pixels of the image
containing the smallest chromosome and Ts is the proportion of
the pixels for the smallest chromosome of this image.

Finally, we compute the pixel threshold Ti for each M-FISH
image Mi, i = 1, . . . , F of our database as follows:

Ti = Ts · Pi. (40)

Assume now a small region R of an M-FISH image where
the #pixels of region R ≤ Ti . We can use the RAG to select the
neighbors of R: NR = {R1 , R2 , . . . , RG}. Let Ci the class of
region Ri ∈ NR, i = 1, . . . , G and Q = {C1 , C2 , . . . , CG} the
set of these classes. Then, we compute the posterior probabili-
ties PAvg(Ci |R) for each Ci ∈ Q and select the class Cj with
maximum posterior

PAvg(Cj |R) ≥ PAvg(Ci |R), ∀Ci ∈ Q. (41)

Then region R is merged with a region Rj whose class is Cj .
An example of the application of this step is shown in Fig. 7(a)
and (b).

III. RESULTS

A. Dataset

In order to test our method, we have used the Advanced
Digital Imaging Research (ADIR) M-FISH database [16]. This
database consists of M-FISH images that were produced using
probe sets from applied spectral imaging, PSI (former ADIR),
and Vysis—the three probes that were used for the specimens
(see Appendix A). Table I, describes the number of images for
each set [21]. Each M-FISH consists of different channels and a
DAPI channel. The quality of the spread ranges from excellent
to very low. Finally, an annotated image is provided with each
M-FISH image set. This image is labeled so that the gray level
of each pixel represents its class number (chromosome class).
In addition, background pixels are labeled as 0, and pixels in a
region of overlap are labeled as −1.
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Fig. 7. Region merging of chromosomes. (a) Initial classification map (we
have used a separate color for each chromosome class), (b) merging of adjacent
regions of the same class.

TABLE I
NUMBER OF IMAGES FOR EACH SET

There are many images that give low-classification accuracy
[21], where the classification accuracy is defined as follows:

Accuracy =
#of correctly chromosome pixels

total #of chromosome pixels
. (42)

The common factor among those images is that the image
quality is poor. These images were self-trained and tested using
a Bayes pixel-by-pixel classifier [11], [16], [20], [21]. Those
images that gave lower classification accuracy than 85% were
identified (also visually confirmed) as bad images [21] (a list of
the images is provided by Choi et al. [21]).

B. Parameter Estimation

In order to estimate the learning rates α, β, and γ, we
conducted the following experiment. We varied the values
of the learning rates as follows α = [0, 0.05, 0.1, . . . , 1], β =
[0, 0.05, 0.1, . . . , 1], and γ = [0, 0.05, 0.1, . . . , 1] and computed
the classification accuracy for these values. We then selected the
values of the parameters having the highest classification accu-
racy. The best accuracy was observed for learning rates equal

Fig. 8. Classification accuracy for several values of the learning rates α, β ,
and γ .

to α = 0.9, β = γ = 0.2. Fig. 8 presents the accuracy of our
method using these values for the ADIR M-FISH database.

The values of the parameters alpha, beta, and gamma con-
trol the certainty of how confident we are of the initial model
(π̃i , μ̃i , Σ̃i , i = 1, . . . ,K). This is described by (32)–(34). Val-
ues around zero would mean that we are not very certain of our
initial model and values around one means that we are confi-
dent of the initial model. Thus, the parameter values α = 0.9
means that we are 90% confident for the π̃i i = 1, . . . , K val-
ues and β = γ = 0.2 means that we are 20% confident for the
μ̃i , Σ̃i , i = 1, . . . ,K.

C. Classification Accuracy

The best overall classification accuracy for all the M-FISH
images was found to be 89.95%. The learning rates are com-
puted for the ADIR M-FISH image dataset. However, this
database contains three different M-FISH datasets produced by
three different kits. Thus, the estimation is not required for a
new kit. However, note that when the learning rates are set to
α = β = γ = 0.0, thus, the MAP-EM algorithm degenerates to
the classical EM estimation, the classification accuracy reduces
to 83.62%. This proves the effectiveness of the MAP-EM algo-
rithm over the classical EM algorithm. Fig. 9 presents the class
classification accuracy for the best parameters values mentioned
previously.

D. Translocation Detection and Limitations

Translocation is the most significant rearrangement. It in-
volves two nonhomologous chromosomes which result from a
break in each of the chromosomes, and subsequent reunion [36].
A change in the color of a chromosome tip may be due to noise,
staining, or an actual translocation. Fig. 10, (Case A), presents a
translocation between chromosome classes 9 and 4. As it can be
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Fig. 9. Classification accuracy for each of the chromosome classes (1,2,
. . .,22,X,Y).

Fig. 10. Two examples of accurate detection and classification of exchange of
genetic material. CASE A: Translocation between two different chromosomes
(green chromosome 4 and blue chromosome 9). (a) Two translocated chromo-
somes. (b) Translocation detected by our method. A fragment of chromosome
9 has been inserted into chromosome 4. Vice versa, a fragment of chromosome
4 has been inserted into chromosome 9. CASE B: Insertion between two dif-
ferent chromosomes (chromosome 5 and chromosome 20). (c) Chromosomes.
(b) Fragment of chromosome 5 has been inserted into chromosome 20.

observed for this example, our method segments and classifies
correctly the translocated fragments.

Insertion is the chromosome abnormality where a fragment
of a chromosome is inserted to another chromosome. However,
since our method can detect translocations where fragments
of two chromosomes are exchanged, the insertion abnormality
will also be detected by our method. Fig. 10, (Case B), displays
an example of correct segmentation and classification of an
insertion abnormality.

However, our method presents some limitations that need
discussion. One of the limitations was the misclassifications of
small regions. These regions had the number of pixels smaller
than the threshold computed by (40). In order to classify them
correctly, we select these regions (39) and reclassified them to
the neighbor, maximizing the posterior probability of this neigh-

bor. This procedure helped our method to classify correct those
regions. However, if a fragment of a chromosome belonging
to a translocation is smaller than the smallest chromosome this
will be probably merged to the neighbor chromosome. This is
a drawback of our method. However, as we have described pre-
viously, there is a tradeoff between reducing misclassifications
and detecting translocations.

Another limitation of our method has been already described
by our segmentation procedure [20]. If a segmentation error
occurs then this type of error could not be corrected by the clas-
sification procedure. A possible solution to this would be the two
procedures to be combined together. For example, each region
that is defined by the segmentation procedure could be verified
by the classification procedure. Also, if two chromosomes of
the same class are adjacent then our merging procedure would
erroneous merge them.

IV. DISCUSSION AND CONCLUSION

We described a novel fully unsupervised method for the clas-
sification of M-FISH images. The method first uses a watershed
based algorithm to segment the M-FISH image into regions.
Next, our goal is to partition the chromosome pixels by a GMM
with K = 24 components, one for each chromosome class.
However, following two main problems had to be overcome.

1) The initialization of the multichannel GMM: We first es-
timate five, two-component single-channel GMMs where
the first component corresponds to the hybridized class
and the second to the nonhybridized class. We then com-
bine those GMMs in order to estimate an initial multichan-
nel GMM. Furthermore, we incorporate to this model the
emission information that we had from the M-FISH ex-
periment (presented in Appendix A).

2) The adaptation of the parameters of the multichannel
GMM: Although we could adapt this multichannel Gaus-
sian model using the EM algorithm, we chose to employ
the MAP-EM method which uses the initial model build in
the previous step. This proves to be more efficient in terms
of classification accuracy from the classical application of
the EM algorithm. More specifically the MAP-EM method
(89.95%) attains an increase 6.33%, over the application
of the classical EM (83.62%).

Having estimated the multichannel GMM, we then classify
each region of the M-FISH image. Finally, a region merging
step is utilized in order to produce a final classification map to
the cytogeneticist.

Several methods have been proposed in the literature for
the M-FISH chromosome image classification. Most of these
methods are supervised requiring a small number of images
to train the classifier. Supervised classification methods, such
as the Bayes classifier and k-nearest neighbor require train-
ing data [14]. However, collecting and labeling a large set of
samples can be extremely costly. Additionally significant vari-
ations have been observed between the M-FISH images. These
variations are often due to a lot of factors such as long expo-
sure times, humidity, temperature, type of microscope, and color
spread [21]. When a supervised classification method is used, the
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TABLE II
COMPARISON OF THE PROPOSED METHOD AND OTHER METHODS REPORTED IN

THE LITERATURE IN TERMS OF CHROMOSOME CLASSIFICATION ACCURACY

classification accuracy will be high when the sample distribu-
tions of both training and testing data are the same. However,
this is often not the case making the need for a fully unsupervised
M-FISH image classification method a necessity. Our method
requires only the knowledge of the emission matrices (Appendix
A) which is available upon the purchase of the kit; thus, making
the M-FISH technique attractive for use when ground truth does
not exist.

Table II, presents a comparison of several different classifica-
tion algorithms presented in the literature. Most of the methods
employ pixel-by-pixel classification schemes and use the whole
or part of the ADIR M-FISH dataset. Supervised based meth-
ods were the first methods [11] that have been introduced for
the classification of M-FISH images. The classification accu-
racy for the whole ADIR M-FISH database is 82.5%. However,
the classification accuracy when we tested our method without
the bad images [21], is 89.95%. Unsupervised based methods al-
ready have been tested for the whole database and their reported
accuracy is 77.8% [21]. We have also tested the K-means al-
gorithm for the ADIR M-FISH database, where we have used
the emission information for each chromosome class in order

to initialize the cluster centers [37]. The classification accuracy
was 72.48%. Our method is superior to both unsupervised and
supervised methods as shown in Table II.

Fluorescent in situ hybridization (FISH) technology has been
widely recognized as a promising molecular and biomedical
optical imaging tool to screen and diagnose different types of
chromosome anomalies that could be evolved in different types
of cancer (e.g., trisomy of chromosomes 3, 7, X has a signifi-
cant impact on cervical cancer development and prognosis [38]).
One of the advantages of our method could be the application
using different types of multichannel FISH images in order to
correctly segment and classify not only chromosomes but also
chromosome spots in general [38]. Furthermore, our method
is independent of the number of channels used by the FISH
technology (e.g., a two-image channel image is used by Wang
et al. [38] to detect cervical cancer). The proposed approach
could be employed to other color images that use the FISH
technology. However, the matrices for the emission of each class
like those described in the appendixes should be provided. Fi-
nally, the average time for the segmentation/classification stage
is 55.4 s (±8.5) using an Intel Core 2 Duo Processor PC, with
1 GB of RAM. Specifically, the average classification time was
27.3 s (±8.1).

Summarizing, in this paper, we have proposed a new fully un-
supervised automated approach for the segmentation and classi-
fication of M-FISH images. First, we segment the multichannel
M-FISH image making use of the WT in order to segment the
image into regions. This has the advantage that we classify re-
gions that share the same spectral information and thus, acquire
better classification results. However, the main novelty of this
paper is the proposed GMM-based methodology for region clas-
sification. We propose an initialization of the GMM using the
emission information of each chromosome class used in the M-
FISH experiment. Then, we adapt this initial model using MAP
estimation. As our experiments demonstrated, the use of this
MAP approach acquires better classification results when com-
pared with the classical EM algorithm. Finally, our method does
not require any ground truth images and its classification accu-
racy is higher even when compared with supervised methods.
We have not tested our methodology to other type of unsuper-
vised imaging classification problems. This is due to the fact
that the emission information for each class must be provided.

However, as for future work we intend to test our method to
image analysis problems that use the FISH technology. Detec-
tion of chromosome abnormalities such as translocations is the
final stage of a method for automated chromosome classifica-
tion. However, one must first deal with the classification pro-
cedure and then focus on detecting chromosome abnormalities.
This is the reason why we focused on developing an unsuper-
vised method for M-FISH chromosome classification minimiz-
ing the misclassification rate.

APPENDIX

M-FISH emission charts for each chromosome class. Three
different kits were used to produce the ADIR M-FISH database
[16].
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