
Data & Knowledge Engineering 70 (2011) 284–306

Contents lists available at ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r.com/ locate /datak
Document clustering using synthetic cluster prototypes

Argyris Kalogeratos, Aristidis Likas⁎
Department of Computer Science, University of Ioannina, 45110, Ioannina, Greece
a r t i c l e i n f o
⁎ Corresponding author. Tel.: +30 26510 08810; fa
E-mail addresses: akaloger@cs.uoi.gr (A. Kalogerat

0169-023X/$ – see front matter © 2010 Elsevier B.V.
doi:10.1016/j.datak.2010.12.002
a b s t r a c t
Article history:
Received 17 December 2009
Received in revised form 11 December 2010
Accepted 13 December 2010
Available online 24 December 2010
The use of centroids as prototypes for clustering text documents with the k-means family of
methods isnot always thebest choice for representing text clusters due to thehighdimensionality,
sparsity, and low quality of text data. Especially for the cases where we seek clusters with small
number of objects, the use of centroids may lead to poor solutions near the bad initial conditions.
To overcome this problem, we propose the idea of synthetic cluster prototype that is computed by
first selecting a subset of cluster objects (instances), then computing the representative of these
objects and finally selecting important features. In this spirit, we introduce the MedoidKNN
synthetic prototype that favors the representation of the dominant class in a cluster. These
synthetic cluster prototypes are incorporated into the generic spherical k-means procedure
leading to a robust clustering method called k-synthetic prototypes (k-sp). Comparative
experimental evaluation demonstrates the robustness of the approach especially for small
datasets and clusters overlapping in many dimensions and its superior performance against
traditional and subspace clustering methods.

© 2010 Elsevier B.V. All rights reserved.
Keywords:
Clustering methods
Document clustering
Text mining
Term selection
Subspace clustering
1. Introduction

Document clustering is an unsupervised learning approach for automatically segregating similar documents of a corpus into
the same group, called cluster, and dissimilar documents to different groups. Formally, a corpus of N unlabeled documents is given
and a solution C={cj: j=1,…, k} is searched that partitions the document into k disjoint clusters.

Even small text datasets carry large vocabularies and certain undesirable effects arise due to the curse of dimensionality [4]. The
high dimensional and sparse (HDS) feature space in combination with language phenomena such as polysemy, homosemy and
metaphors, constitute an adverse setting for clustering methods. When a labeled training dataset is provided, several statistical
options are available for feature selection [5,6], even in case of multilabeled data objects [53]. On the other hand, it is more
complicated to select features in an unsupervised setting and it is usually achieved using heuristics [49–52]. Methods such as
Latent Semantic Indexing (LSI) [47], or Latent Dirichlet Allocation [48] (LDA), may discover the term correlations but they map the
data into a feature space of much lower dimensionality.

Clustering algorithms are separated in two major categories hierarchical and partitional (for a survey see [7]). The former
produce a hierarchy of solutions, either by merging, or by dividing clusters. Partitional approaches seek to discover a set of unique
cluster representations that describe properly the underlying data classes of a dataset. An objective function Φ(C) evaluates the
quality of a data partition by quantifying how good the derived representations are for the corresponding clusters. These methods
start from a set of k cluster representations which are improved iteratively in a way that Φ(C) is optimized. Probabilistic methods
use probabilistic cluster models (or topic models) [8,9], while non-probabilisticmethods utilize representatives in the feature space,
x: +30 26510 08882.
os), arly@cs.uoi.gr (A. Likas).

All rights reserved.

http://dx.doi.org/10.1016/j.datak.2010.12.002
mailto:akaloger@cs.uoi.gr
mailto:arly@cs.uoi.gr
http://dx.doi.org/10.1016/j.datak.2010.12.002
http://www.sciencedirect.com/science/journal/0169023X

285A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
called prototypes, that are used to represent the objects of a cluster. Typical prototypes are the arithmetic mean called centroid, and
the medoid that is a real object which is representative for the cluster it belongs.

A popular partitional method is k-means [10] that represents each cluster with its centroid. Many heuristic variations of k-means
have been proposed and applied for text collections [11–14]. Spherical k-means (spk-means) [22] is amodified version that utilizes the
cosine similaritymeasure to cluster thedata bypartitioning theunit hypersphere into khypercones, one for eachcluster. Thismethod is
fast and gives better clusters than traditional k-means [12].

Special algorithms have also been developed to deal with HDS feature spaces. The clustering methodology aiming at finding
clusters in subspaces of data instead of the entire feature space is referred to as subspace clustering and its key characteristic is the
simultaneous determination of the object membership to clusters and the subspace of each cluster. Surveys on subspace clustering
in high dimensional spaces can be found in [29,46]. Recently, much attention has been received bymethods that aim to identify the
cluster structure in on-line high dimensional data streams [54,55].

This work puts forth the idea that, although the centroids are the optimal cluster prototypes with respect to certain objective
functions (e.g. based on cosine similarity), their optimality could also become a drawback in HDS feature spaces and in cases of low
data quality (e.g. outliers, noise). Especially, as the number of data objects becomes smaller compared to the complexity of a
clustering problem (i.e. number of clusters, dimensionality), the centroids become less appropriate cluster representatives. Text
documents constitute a typical example of data where such an adverse setting is met.

In this paper we present the synthetic prototype, a novel type of cluster representative that, given the object assignment to
clusters, is computed in two steps: a) a reference prototype is constructed for the cluster and then b) feature selection is applied on
it. We propose the so-calledMedoidKNN reference prototype which is based on a subset of K objects of a cluster that are close to its
medoid. This synthetic prototype favors the representation of the objects of the dominant class in a cluster, i.e. the class to which
themajority of the cluster objects belong. Finally, wemodify the generic spk-means iterative procedure by incorporating synthetic
prototypes. This leads to a novel, effective and quite simple clustering method called k-synthetic prototypes (k-sp). We conducted
an extensive evaluation of the k-sp method examining several options for the synthetic prototypes and comparing it to several
traditional clustering methods such as spherical k-means, agglomerative, spectral clustering and two soft subspace clustering
methods.

The rest of this paper is organized as follows: in Section 2, a background discussion for the document clustering problem is
provided. In Section 3, we present our novel synthetic prototype cluster representation and the k-synthetic prototypes clustering
method. In Section 4, comparative experimental results are reported and discussed, and finally in Section 5, we present concluding
remarks and future research directions.

2. Background

2.1. Document representation

A preprocessing step on the corpus decides which terms are meaningful to be included in the corpus vocabulary V, a set of |V|
unique features. Despite the fact that it is reasonable to seek for complex representations for text data, such as graphs [1–3], the
typical approach is to represent each input document as a bag-of-words [18] feature vector di∈R Vj j, i=1,…, N, whose elements are
weight values denoting the significance of each vocabulary term for the document. Typically, the weights are set using the tf× idf
scheme and document vectors are normalized to unit length with respect to Euclidean L2-norm. Hence, the i-th document is
modeled as:
di =
tfi1log N

N
1ð Þ ;…; tfi Vj jlog

N
N

Vj jð Þ

� �
∑ Vj j

j=1 tf 2ij log
2 N

N
jð Þ

� �−1=2 ; ð1Þ

tfij is the frequency of j-th term in the i-th document and N
(j)
the number of documents that contain j-th term. The proximity
where

between two documents is computed using cosine similarity, considered to be an effective measure for text clustering [19,20], that
computes the cosine of the angle between the two document vectors:
sim cosð Þ di; dj
� �

= cos θ di; dj
� �� �

=
d⊤i

‖di‖2
⋅

dj
‖dj‖2

: ð2Þ
2.2. Properties of the representation space of documents

The properties of the vector space in which text documents are represented are closely related to the nature of human
language. Even small text datasets carry very large vocabularies and, apart from the known negative effects of the curse of
dimensionality, the learning algorithms have to deal with the existence of high sparsity. It has been observed that a documentmay
have less than 1% of the global corpus vocabulary [21] (non-zero vector dimensions) since there are terms in the corpus vocabulary
that do not appear in a given document although they are relevant to its content. This is due to the fact that each document usually
is a specific semantically narrow instance of a much more general document class.

286 A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
Moreover, two authors may express exactly the same ideas using different terms, for instance using homosemous terms,
metaphors or complex expressions, which introduces additional sparsity and dimensionality. Some noise is also present in text
datasets, such as confusing polysemous terms or even irrelevant features. Under this situation, documents of the same class
present average pairwise similarity comparable in magnitude to the similarity between documents from different classes
[27,28]. For instance, let dx, dy, and dz three documents of the same class; it is possible for dx to share a set of terms with dy and a
different set of termswith dzwhereas, at the same time, dy and dzmay exhibit no vocabulary intersection although this would be
expected to hold mostly for pairs belonging to different classes. In this context certain qualitative issues arise regarding the
direct determination of a large number of nearest neighbors to an object [27,28]. For example, if an object has non-zero
similarity with K objects in the dataset (or a cluster), then the direct determination of its nearest K′NK objects would
unavoidably make guesses.

Document clustering differentiates from the high dimensional data clustering problems that seek for a single global subspace of
features in which there are observable clusters. Different document clusters are formed in generally different subspaces. Small text
datasets should be treated as document clustering cases of special interest. According to Heap's power law [40], the increase of the
corpus vocabulary is sublinear to the number of included documents. In other words, the relative dimensionality of the feature
space, empirically defined as log(|V|/N), is expected to be much larger for small datasets than for larger ones. This large vocabulary
diversity even between documents of the same class, justifies for the difficulty of clustering small document datasets.

2.3. Clustering using k-means family of methods

The k-means procedure is a generic clustering approach that assumes a prototype to represent each cluster and an objective
functionΦ(C) that evaluates the quality of a partition C. In order to solve a problemwith k clusters the k prototypes are initialized
usually by randomly selecting k objects as cluster centroids (Forgy approach) and then the algorithm iterates to optimize the
objective function:

1. Reassignment step: each object is assigned to the cluster whose prototype is nearest to the object.
2. Prototype batch update step: given the assignment of objects to clusters, each cluster prototype is updated in a way that

optimizes the objective function.

k-means minimizes the sum of squared Euclidean distances between the objects of the clusters and the centroid prototypes
Eq. (3), where the centroids are computed as the arithmetic mean μj = 1= nj

� �
∑di∈cj di of the nj objects of that cluster:
ΦSSE Cð Þ = ∑
k

j=1
∑
di∈cj

‖μj−di‖
2
2
: ð3Þ
It converges to a local minimum of ΦSSE(C) and the quality of the solution depends strongly on the initial conditions. Its time
complexity is O(tN|V|), where t is the number of iterations until convergence. The employed cluster prototypes constitute a choice
that also affects the solution quality. k-medoids is a robust method that represents a cluster with the medoid object defined as the
object that has the maximum average similarity to the objects of its cluster:
mj = argmax
di∈cj

1
nj

∑
dq∈cj

sim dj; dq
� �()

: ð4Þ
In this case, Eq. (3) is computed with respect to the medoid prototypes and in Euclidean space there is the disadvantage of
complexity O(nj2) to determine a cluster medoid.

Spherical k-means (spk-means) is a variant of k-means that utilizes the cosine similarity for the data vectors normalized with
respect to L2-norm. The maximized objective function is the clustering cohesion. The optimal prototype for a cluster is its
normalized centroid uj=sj = ‖sj‖2, where sj=∑di∈cj di, and the overall clustering cohesion of a partition C is given by:
Φcoh Cð Þ = ∑
k

j=1
∑
di∈cj

u⊤
j ⋅di = ∑

k

j=1
u⊤
j sj = ∑

k

j=1

s⊤j ⋅ sj
‖sj‖2

= ∑
k

j=1
‖sj‖2: ð5Þ
A lot of research effort has been focused in the careful initialization of this family of algorithms, due to its importance for the
final clustering quality [35,43–45]. Among the typical object-based seeding techniques is the deterministic Kaufman heuristic
(or k-farthest heuristic) [36] that tries to spread the initial centroids away from each other. It selects the most centrally located
object as the first centroid and each additional centroid is determined to be the object farthest from the objects-centroids
already selected. k-means++ [44], on the other hand, introduces stochasticity: it starts with the uniform random selection of
one object as the first centroid, then each next centroid is determined using aweighted probability distribution. Specifically, the
probability for a candidate object to be selected as a new centroid is proportional to the squared distance between the object
and its nearest centroid previously selected. In [44] it is shown that this initialization guarantees an O(logk) approximation to
the optimal k-partition. However, all the above initializationmethods select objects as seeds and this may not be efficient in the

287A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
text feature space, since a document usually contains a very small percentage of the vocabulary terms. This is further analyzed
and experimentally illustrated in this work.

Clustering refinement is the post-processing procedure aiming to improve the clusters produced by a clustering method (note
that in literature the term ‘refinement’ is also used to describe the iterative optimization of an objective function). The refinement
algorithm may be a specialized algorithm that proceeds to small changes in the clusters, such as single object reassignment [41]
and swapping the cluster memberships for pairs of objects [42]. It is also a practical choice to refine the produced clusters using a
clustering method of different characteristics to the initial one (e.g. k-means starting with the clusters produced by a hierarchical
clustering, agglomerative or bisecting k-means). An alternative approach is the hybridized centroid-medoid heuristic [14] that
applies a small number of k-means iterations and tries to replace a centroid with a medoid belonging in a set of candidatemedoids
precomputed off-line.

2.4. Text document subspace clustering

The different topics are usually described by generally different subsets of terms which, in combination with the high sparsity
of the feature space, lead to the hypothesis that the underlying cluster structure may be better to be sought in subspaces of the
original feature space. The feature selection that is applied in the preprocessing phase actually computes a single global subspace
where data clustering is performed. A more fuzzy feature selection would assign a global weight to each dimension. Subspace
clustering can be thought as to be an extension to feature selection in the sense that it determines a subspace explicitly for each
cluster during clustering.

In brief and according to [29], themain categorization of subspace clusteringmethods is based on the relation between the axes of
the subspaces they seek and the axes of the original feature space. One approach, called generalized subspace clustering, is to seek for
arbitrarily oriented subspaces. Their major difficulty is to deal with the infinite search space of the candidate subspaces. A second and
morewidely used approach is constrained to seek for subspaceswith axes parallel to the original. The projected subspace clustering lets
no intersection between the dimensions that span the different subspaces and hence, 2d-1 possible subspacesmust be examined. The
subcategory that lets different axis-parallel subspaces to have dimensions in common is called soft projected clustering and usually
different feature weights in [0, 1] are assigned for each cluster. The latter subcategory can be further split based on the searching
approach adopted regarding the feature set a method starts to work with. Top–down approaches start with the full set of features and
iteratively try to determine narrow subspaces for each cluster. On the other hand, bottom–up approaches start from single dimension
subspaces and use a strategy similar to mining frequent item set to increase their dimensionality.

Apparently, there are important methodological differences in the literature of subspace clustering, but a thorough analysis is
beyond the scope of this work. In the rest of this section we will discuss the recent research on top–down soft projected subspace
clustering methods, that develop feature weighting mechanisms and incorporate them to k-means, and have also been tested on the
document clustering problem.

An abstract framework is presented in [30] that, usingmultiple feature vectors to represent each data object, is able to integrate
the heterogeneous feature spaces in the k-means algorithm. A convex-k-means algorithm is proposed that is based on a convex
objective function constructed as a weighted combination of the distortions of each individual feature subspace. The algorithm
simultaneously minimizes the average within-cluster dispersion and maximizes the average between-cluster dispersion along all
of the feature spaces. A method that received much attention is Clustering on Subsets of Attributes (COSA) [37]. It is an iterative
algorithm that considers a feature weight vector to each data point, initially containing equal weights for all features. Larger
weights are assigned to features that present small dispersion in a neighborhood around the reference object, which means that
are more important. The next step is to use these weights to compute some other weights corresponding to each pair of objects
that, in turn, update the distances for the computation of the nearest neighbors. The algorithm stops iteratingwhenweight vectors
corresponding to objects become stable. COSA outputs a pairwise distance matrix based on a weighted inverse exponential
distance and any distance-based clustering method can produce the final clusters. The algorithm requires the user specification of
the size of neighborhood to consider, a second parameter that controls the fade of the exponential feature weighting, while the
major issue is that all the N×|V| parameters should be estimated during the process.

Some other algorithms were then developed that consider one feature weighting vector for each cluster. Feature Weighting K-
means (fwk-means) [39] aims to minimize the following objective function:
subjec
Φfwkm Cð Þ = ∑
k

j=1
∑
di∈cj

∑
Vj j

l=1
wh

jl μjl−dil
� �2

+ σ
� �

; ð6Þ

t to

∑
Vj j

l=1
wjl = 1;0≤wjl≤1; j = 1; :::; k; ð7Þ

μj is the L1-normalized centroid of the j-th cluster and hN1 a parameter that must be set in advance. The term wjl
h(μjl−dil)2
where

computes the distance between the centroid μjl and a document di on the specific l-th feature dimension. Initially, the weights are

288 A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
set to 1/|V| and the k centroids are set in a random fashion. The optimization is then performed by iterating the following steps
until convergence:

1. Object assignment to their nearest cluster using the computed centroids and feature weights.
2. Computation of the cluster centroids using the computed feature weights.
3. Computation of the feature weights for each cluster using the computed cluster centroids.

Given the cluster centroids and the k feature weighting vectors of the previous iteration, the optimal weight of the l-th feature for
cluster cj is computed by:
where
wjl =
1

∑ Vj j
t = 1

∑di∈cj
wjl μjl−dil

� �2
+ σ

� �

∑di∈cj
wjl μjt−dit

� �2
+ σ

� �
2
664

3
775
1= h−1ð Þ ; ð8Þ

σ is the average dispersion of the vocabulary measured off-line in a sample of Nsample data objects. fwk-means adds this
where
value because a feature weight is not computable if its dispersion in a cluster is zero. If we letmfvl to be the mean feature value of
the l-th feature in the data sample then σ is given by:
σ =
∑di∈csample

∑ Vj j
l = 1 dil−mfvlð Þ2

Nsample Vj j : ð9Þ
Locally Adaptive Clustering (LAC) algorithm presented in [33] is quite similar to the Entropy Weighting k-means (ewk-means)
[31]. Both share some ideas with COSA, whereas the feature weighting vectors are assigned to clusters instead of objects.
Moreover, their search strategy is more alike to fwk-means. A modified objective function is utilized, which is to add the weight
entropy ej=∑ Vj j

l = 1wjllogwjl corresponding to each cluster in order penalize the identification of clusters in subspaces spanned by
very few features. The objective function of ewk-means is:
Φewkm Cð Þ = ∑
k

j=1
∑
di∈cj

∑
Vj j

l=1
wjl μjl−dil

� �2
+ γej

" #
;γ≥0 ð10Þ

t to Eq. (7) and the value of γ controls the focus of the objective function on the feature weight entropy. The iterative
subjec
optimization is identical to that of fwk-means and differ only on the weight computation:
wjl =
exp −dispji = γ

� �
∑ Vj j

t = 1 exp −dispjt = γ
� � ; ð11Þ

dispjl = ∑
di∈cj

μjl−dil
� �2

: ð12Þ
COSA and fwk-means require the tuning of the value of the parameter controlling the size of the subspaces that are sought (the
value of γ in ewk-means). LAC introduces an ensemble approach that combines multiple clustering solutions discovered by LAC
using different γ values, which produces a superior result than that of the participating solutions. The feature weights of these
methods enable the modeling of more complex cluster shapes than the spherical of traditional k-means. However, the parameters
that need to be estimated are doubled compared to k-means: 2k×|V| for the feature weights and the cluster centroids. This
parameter increase unavoidably causes a large increase to the number of local minima of the search space. Recently, an adaptive
weight-adjusting principle was adopted in [34], which at each step adds aΔwjl to eachwjlweight computed based on the extend of
contribution of the weight to the clustering quality. Finally, in [38] an algorithm similar to LAC and fwk-means is presented, also
allowing the incorporation of constraints derived from a labeled data subset.

289A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
3. The k-synthetic prototypes clustering method

3.1. Clustering using centroids and medoids

From an optimization point of view, the normalized centroid is the prototype that maximizes cluster's cohesion Eq. (5).
However, this optimality may also become a drawback in such a feature space, especially at early clustering iterations where
clusters have low homogeneousity due to random initialization. More specifically, there exist two undesirable phenomena
concerning the use of centroids. At a data object level, the self-similarity phenomenon implies that the similarity of a document
with itself becomes the dominant factor for deciding about its nearest cluster [12,22]. This is explained by observing the
similarity between a normalized centroid uj and a document d in the respective cluster cj:
u⊤
j ⋅d =

1
‖∑di∈cj

di‖2
d⊤⋅d + ∑

di∈cj
di≠d

d⊤⋅di

0
BBBB@

1
CCCCA: ð13Þ
Due to sparsity, the term d⊤⋅di=1 can be large inmagnitude compared to the sumof similarities between d and the documents of
cj, or the documents of other clusters. In an extreme case, a document d∈cjwhich has non-zero similarity only with documents from
clusters other than cj, may still determine cj as its nearest cluster, since due to the self-similarity term it may hold that:
d⊤⋅d
‖∑di∈cj

di‖2
N

∑di∈cl
d⊤⋅di

‖∑di∈cl
di‖2

; l = 1; :::; k; l≠ j: ð14Þ
Hence, d may remain in an inappropriate cluster. This phenomenon appears more intense in cases where there is a small
number of objects per cluster in combination with high sparsity.

The second phenomenon is the feature over-aggregation that occurs when computing a centroid for an impure cluster. Supposing
that there is a feature subset fj+strongly related to eachdocument class j, and ausuallymuch larger subset fj− containing the remaining
|V|− | fj+| terms, then the learning process aims to find a cluster prototype, i.e. a weight vector in R Vj j, being discriminative for that
class. Thismeans that for eachcluster the clusteringalgorithmshould try todetermine the | fj+| representative features for its dominant
class and to estimate their relativeweight distribution in the possible presence of | fj−| irrelevant features that should be assignedwith
very lowweights. The effectiveness of such an algorithmmay be greatly affected by the level of the relative significance of the features
of fj+ to that of fj− in a cluster at a particular iteration, which can be formally expressed by the following ratio:
δj =
∑i∈fþj

uji

∑ Vj j
i = 1 uji

: ð15Þ
Feature over-aggregation appears at the initial iterations where very low δ-ratio values are observed in the clusters of poor
quality. This prevents the prototypes from becoming more class-discriminative, since the non-informative features also affect the
object assignment to clusters and hence the problem is retained.

Both self-similarity and feature over-aggregation constrain the local search flexibility of the k-means procedure and lead to poor
solutions strongly dependent on initial conditions, where often documents from two ormore classes are assigned to the same cluster.

In what concerns the use of medoid as cluster prototype, it does not present the self-similarity and feature over-aggregation
effect. However, as mentioned in Section 2.2, since each document is a specific semantically narrow instance of the more general
topics of its class, it contains a very small fraction of vocabulary terms. Thus it is unlike for a single document to be a good cluster
representative.

3.2. Synthetic cluster prototypes

Traditionally, feature selection (in our case term selection) takes place in the preprocessing phase. However, we adopt a
dynamic selection scheme implemented in the form of synthetic cluster prototypes, which are computed by first selecting objects
and then features from each cluster (Fig. 1). As clustering proceeds we exploit the information progressively produced in the
formed clusters to retain the important features for each cluster. To compute a synthetic prototype we must define:

i. a reference prototype, an initial representative of the cluster constructed by a subset of its objects, and
ii. feature selection on prototypes in order to select features from the reference cluster prototype.

The L2-normalized cluster representative derived by filtering the features of a reference prototype is a synthetic prototype. These
prototypes are generic, in the sense that they can be constructed by considering any reference prototype or feature selection
scheme. Omitting the feature selection step is also a viable option, thus a reference prototype is also a synthetic prototype. In this

Fig. 1. The k-sp framework using synthetic prototypes.

290 A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
case, feature selection is achieved implicitly since the reference prototype is computed using a subset of the cluster objects and it
may not contain all the vocabulary terms.

The proposed clustering algorithm is called k-synthetic prototypes (k-sp) and incorporates the synthetic prototypes into the
spk-means procedure. Note that spk-means is a special case of k-sp where the cluster centroids are used as reference prototypes
and no feature selection is applied. By using synthetic prototypes the k-sp procedure aims to discover dynamically a different
feature subspace in which each document class can be better separated but, at the same time as we explain, to mitigate the
negative effects of the self-similarity and the feature over-aggregation phenomena. The explicit feature selection scheme we have
considered is the simple thresholding on the feature weights of a reference prototype to keep the P most significant features of a
cluster (see Section 3.3). Contrary to the typical preprocessing feature selection techniques, k-sp does not affect the original data
objects and hence, does not constrain future iterations with previous cluster representations. In a later phase, one could consider
much more detail (i.e. more objects and features) from the clusters to fine-tune the solution.

A straightforward option for reference prototype is the Centroid(r)1 of a cluster. The assumption behind this choice is that many
of the representative features for the dominant class in a cluster would have high weights in the respective centroid. Thus, the
feature selection on it would keep the highly descriptive features for this class. Obviously, this is not true for a cluster containing
documents of more than one class none of which is clearly dominant (Fig. 2b).

We propose MedoidKNN(r), an approach to construct the reference prototypes by computing the centroid of a subset Y of
documents assigned to a cluster that are descriptive of its dominant class. The set Y can be formed by selecting the K documents of
the cluster being the nearest neighbors to the medoid of that cluster, including the medoid itself. As explained in Section 2.2, it
would not be very efficient to directly determine a large number of nearest neighbors of a medoid using its pairwise similarities,
since the medoid document may contain only a part of the features present in the cluster. This issue is further discussed on real
world examples in Section 4.4.1. Therefore, we propose an incremental procedure to form the set Y that avoids computing a large
number of nearest neighbors directly from the medoid object. Let λ be the number of desired steps and βi, i=1,…,λ a sequence of
values such that 0bβibβi+1b...bβλ=1. Starting with the medoid Y0={m}, each subset Yi (iN1), is formed by the ⌈βiK⌉ documents
nearest to the centroid of subset Yi−1. For a two-step examplewith β1=0.2, and β2=1, we first determine themedoid for a cluster
cj and then: i) we determine the ⌈0.2K⌉ objects in cj nearest to themedoid and compute their centroid rp1, ii) we locate the K objects
in cj nearest to rp1 and compute rp2 which is the final MedoidKNN(r). Notice that for K=nj, the rp coincides with the centroid of
cluster cj, while for K=1 it is the cluster medoid. Typically, up to three steps (λ=3) are sufficient to determine a proper final set Yλ.

One could argue that the set Y should contain the nearest documents to the cluster centroid and not to the medoid. As a matter
of fact, the medoid is close to centroid in a homogeneous cluster and the nearest objects to medoid may also be the nearest objects
to the centroid. However, if there are objects of more than one class in a cluster, the medoid-based construction of Y is more
probable to lead to a sharp preference for one of the overlapping classes (see Fig. 2). This argument is strengthened by a usually
holding property called intracluster rNN-consistency: any data object in a cluster and its r nearest objects in the same cluster will
belong to the same class with high probability. We should remark that intracluster rNN-consistency is expected to be higher than
the rNN-consistency of the whole dataset that can be similarly defined [13].

A proper synthetic prototype should cope with the two undesirable phenomena discussed in Section 3.1. When selecting
features from Centroid(r): i) the role of self-similarity is degraded, but only for objects containing features that are represented
with lowweight values in the centroid. Since those features are eliminated, the data objects could be reassigned to another cluster.
ii) Most of the eliminated terms belong to the fj

− set of the noisy features for the cluster which increases its δ-ratio and help the
1 In cases where we need to be more specific we denote explicitly with the superscripts (r) and (s) the reference and the synthetic prototypes, respectively
.

Fig. 2. A cluster example that combines two data classes. It illustrates the rationale of using objects around the cluster medoid to favor the representation of the
dominant class A and to enable the reassignment of the objects of the other class(es) to other clusters. (a) Object-level view of a cluster where themedoid's nearest
neighbors belong mostly to the dominant class. (b) Feature-level view of a multidimensional cluster that illustrates the imaginary histogram of the feature
frequency for each of the classes. On the horizontal axis, we suppose an ordering where features that exist in both class (probably noisy) lay between the two peaks
of representative class features. (c) The histogram of the cumulative feature frequency over both classes. The respective distributions are also presented for the
medoid and the MedoidKNN(r) cluster prototypes.

291A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
cluster to become more class-discriminative. When considering the MedoidKNN(r): i) the self-similarity may affect only the
objects included in the Y set for each cluster and again the feature selection on the MedoidKNN(r) also helps some of these objects
to move to another cluster, ii) the feature over-aggregation effect is reduced since we use only the vocabulary terms contained in a
subset of core objects of a cluster.

Another advantage of k-sp method is that by ignoring some documents that are far from the synthetic prototypes, it provides
robustness and ensures that possible outlier and noisy objects will not affect any cluster representation (similarly for noisy
features). These objects are not discarded from the dataset. Besides, one object may be ignored as a noisy-outlier at an iteration
when computing a cluster representative, while it could be later considered as one core object in case it is reassigned to another
cluster, or its current cluster changes dramatically, and the object is now located near the new cluster medoid.

The k-sp exhibits some similarity with the soft subspace clustering methods. The object selection of the reference prototype
defines implicitly a feature subspace for a cluster while the feature selection on it explicitly prunes this subspace. Instead of using a
separate feature weighting mechanism per cluster, which also doubles the parameters need to be estimated, k-sp uses a heuristic
way to directly determine better vector representations for the clusters. Using object selection it actually tries to favor the
representation of the dominant class in a cluster which implicitly results in subspace cluster representation. Another worth
mentioning difference is that we claim that after having concluded to a set of synthetic representatives defined in certain feature
subspaces, then we may take into account the complete feature space to refine the clustering.

Algorithm 1 provides the pseudocode for the k-sp method that incorporates the synthetic prototypes, constructed using
Algorithm 2, into the spk-means algorithm. The clustering cohesion is computed with respect to the synthetic prototypes. It must
be noted that k-sp cannot guarantee the monotonicity of convergence. In the case of Centroid(s), we compute the cluster centroid

image of Fig.�2

292 A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
as reference prototype that maximizes the cluster cohesionΦcoh(cj), but this optimality is lost after filtering its features. Similarly,
for MedoidKNN(s) prototypes, it is not possible to guarantee that cluster cohesionwill increase at all iterations and it is essential for
k-sp to monitor the objective function and to terminate the procedure if a deterioration of the overall cohesion is observed (the
conditionHbH(prev) in Algorithm 2). In this case, the clusters of the previous iteration are considered as the solution to the problem
produced by the main k-sp procedure.

Algorithm 1. k-synthetic prototypes clustering method

function k_S_P (k, pdocs, pterms, ref_flag)
input: the number of clusters k, two parameters pdocs, pterms

(see Algorithm 2), a flag ref_flag that enables refinement
output: the k clusters and the set of final prototypes
let: C, S, H, a partition, the synthetic cluster prototypes and the

respective clustering cohesion
ConstructS P (C, pdocs, pterms) Algorithm 2 for constructing prototypes for each cluster of the partition C
RefineSolution (C) k-sp using Centroid(s) prototypes

(regular spk-means) initialized by the partition C
end let
1: {C, S }← InitializeClusters ()
2: H←Cohesion (C, S)
3: repeat
4: {C(prev), S(prev), H(prev)}←{C, S, H}
5: C←AssignDocsToClusters ()
6: S←ConstructS P (C, pdocs, pterms)
7: H←Cohesion (C, S)
8: until C≡C(prev) or H≤H(prev)

9: if HbH(prev) then
10: {C, S, H}←{C(prev), S(prev), H(prev)}
11: end if
12: if ref_flag==TRUE then
13: C←RefineSolution (C)
14: end if
15: return {C, S}

3.3. Definition of parameters

The k-sp parameters for computing the MedoidKNN(s) prototype can be defined with respect to the volume of cluster
information, namely the number of cluster members nj and the distribution of feature weights aggregated in the reference
prototype of a cluster. Two parameters, both in [0, 1], must be specified by the user: pdocs, pterms. The number of medoid neighbors
Kj is computed as:
Kj = pdocsnj

l m
: ð16Þ
Note that different numbers of neighbors are considered for each cluster cj. In what concerns the feature selection, an option is
to find the Pj=⌈pterms|Vj

(r)|⌉ terms of highest frequency in the reference prototype of rpj that would cost O(|Vj
(r)|). Our

implementation uses amore efficient approachwhich is to select the highest weighted features (including the idf component) that
contain a fraction pterms of the total feature weight sum∑V

i = 1 rpji (total information) of the reference prototype vector rpj. Let (i),
i=1,...,Pj, a function that indexes the selected features which represent the specified pterms information fraction, then Pj is described
by:
Pj≤ jV rð Þ
j j : ∑

Pj
i = 1 rpj ið Þ

∑ jV rð Þ
j j

i = 1 rpji

≃pterms: ð17Þ
The more uniform the weight distribution of rpj, the more features are selected to represent the cj cluster. Typically, the cost of
this operation is O(|Vj

(r)|log(|Vj
(r)|)), due to the need of weight ordering. However, this can be reduced to O(|Vj

(r)|+zlogz) by
splitting the range of feature weight values of a cluster into several intervals (bins), where only a small number of features z
contained in one bin may be needed to be ordered and then to select the most informative subset out of them.

293A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
Algorithm 2. Construct MedoidKNN synthetic prototype

function ConstructSP (c, pdocs, pterms, λ, β)
input: a cluster c, a threshold pdocs∈[0, 1] that determines the

number of documents used for reference prototype construction, pterms∈[0, 1] for feature selection on it, the
number of steps λ, and a vector β of length λ that control
the incremental construction (see Section 3.2)

output: the synthetic prototype MedoidKNN(s) for cluster c
let: nc the number of documents in cluster c

NNDocs (c, rp, r) determines the r nearest documents
to rp vector in cluster c
Centroid (Yc) computes the centroid of a set Yc
FS onRP (rp, pterms) applies feature selection on the ref-
erence prototype rp based on the parameter pterms and
normalizes the final prototype to unit length (L2-norm)

end let
1: Yc←{Medoid(c)}
2: rp←Medoid(c)
3: Kc ← ⌈Pdocsnc⌉
4: if KcN1 then
5: do for i=1,…,λ
6: Yc←NNDocs (c, rp, ⌈βiKc⌉)
7: rp←Centroid (Yc)
8: end for
9: end if
10: sp←FSonRP(rp, pterms)
11: return {sp}

3.4. Refining the solution of k-synthetic prototypes

The robustness of the proposed k-sp method is the result of its ability to overcome adverse situations in initial clustering
iterations and hence to avoid poor locally optimal solutions. After the termination of the basic procedure of k-spmethod, the result
may be further refined by considering the centroids of the obtained clusters as the initial prototypes for a final run of k-sp that now
coincides with the regular spk-means (this option is enabled by the flag ref _flag in Algorithm 2). This refinement strategy: i) aims
to improve the result of k-sp method by using more detailed information for homogeneous clusters already produced by the basic
k-sp phase, ii) assists in reducing the sensitivity of the k-sp to parameter definition K and P (see Section 4), and iii) constitutes a
straightforward approach to choose the best clustering solution among those obtained for different k-sp parameter settings by
comparing the values of the objective function after the refinement step. This procedure is described in the next section.

The experimentally observed improvement achieved by refinement supports our basic assumption that centroids do not
provide sufficient flexibility when clusters are not homogeneous and object reassignments should be encouraged. To tackle this
problem one could try to improve the initialization of an iterative method with specialized object-based seeding techniques, or
using the clusters produced by a clustering method of different characteristics as the initial partition. Interestingly, the k-sp
method is self-refined by simply using different values for method parameters, since spk-means is a special k-sp case. The
clustering improvement achieved by k-sp refinement phase also confirms that self-similarity and feature over-aggregation play a
crucial negative role mostly due the clusters' impurity at the initial iterations of the search procedure. The clusters obtained by the
basic phase of k-sp need only a few refining reassignments, thus the self-similarity phenomenon is not a very important issue.
Moreover, each respective cluster centroid would have a high δ-ratio (Eq. (15)) that enables the fine-tuning of its |V| feature
weights which would lead to an improvement in its class-discrimination.
3.5. Selecting the k-sp parameters

An additional advantage of the refinement phase of k-sp, which uses the centroids as cluster prototypes, is that it enables the
direct comparison of the results obtained using different values for k-sp parameters. The latter is a very important aspect of k-sp,
since it allows the selection of the best setting for parameters pdocs and pterms. More specifically, the user could specify two sets of
candidate parameter values, the set Spdocs

for pdocs and the set Spterms
for pterms. Then, using the same random initial conditions, k-sp

runs several times for each combination of the two parameter values and by monitoring the average value of the refined objective

294 A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
function (Eq. (5)), we can determine which parameter values provide the best average performance. The procedure can be
summarized by the following steps:

1. The sets of values Spdocs
and Spterms

are specified by the user.
2. Run k-sp with refinement (Algorithm 2) several times for each combination of parameter values pdocs∈Spdocs

and pterms∈Spterms
.

3. Compare the average value of the refined objective function of each set to determine the best k-sp average performance and the
corresponding parameter values.

Furthermore, the above procedure may reveal important information about the dataset characteristics. As we will see in the
experimental section, the observation of better performance provided by smaller synthetic prototypes may indicate that the data
clusters are overlapping in many dimensions (i.e. vocabulary terms in common), or that there are a lot of noisy objects/terms.

3.6. Implementation and complexity

In the present context, where document vectors and cluster centroids are normalized with respect to L2-norm, it is easy to show
that the medoid of a cluster is the cluster object with maximum cosine similarity (dot product) to the centroid of that cluster. Let
uj = ∑di∈cj di = ‖∑di∈cj di‖2 the normalized centroid of cluster cj with respect to L2 norm, then Eq. (4) can be expressed as:
mj = argmax
d∈cj

d⊤⋅ ∑
di∈cj

di

()
= argmax

d∈cj
d⊤⋅uj

n o
: ð18Þ
Hencewe can determine themedoids of all clusters with linear cost O(N) to the size of the corpus. Thus, both ‘spherical’ version
of k-medoids and k-means method have the same asymptotic cost. It must be noted that it is possible for a cluster to have more
than one ‘medoid’, i.e. objects whose total similarity to the other cluster objects has exactly the same maximum value. Moreover,
those objects are equally distant to the cluster centroid. None of them can be considered superior to the others, hence, we can
randomly select any of them to construct our synthetic prototype.

Suppose we are given for every object d an ordered list containing the other N-1 objects in descending order with respect to their
similarity to d. Then it is possible to determine the K-1 objects in a cluster that are nearest to its medoid by linearly traversing the
respective list (K-1≤N). By taking advantage of the intracluster rNN-consistencyproperty,we canprecompute off-line a number ofKnn

(K-1≤Knn≤N) nearestneighbors for eachdocument in thedataset. If a list has less thanK-1 objects that are assigned to the samecluster
with the medoid object d, we have to necessarily apply greedy search in cluster to locate the rest nearest neighbors to d, up to the
desired K-1. Supposing that we have set a proper Knn value that eliminates the previously mentioned greedy search, then the non-
incremental (λ=1) construction of a MedoidKNN(r) prototype costs O(nj+Knn+K|V|). This includes the cost: i) to determine the
medoid document: O(nj), ii) to locate medoid's K-1 nearest neighbors in the cluster: O(Knn), and iii) to compute the centroid of the K
objects: O(K|V|). The latter is the first step of the incremental MedoidKNNr construction (λN1). For the steps other than the first we
have to seek the nearest documents to the partial centroid (synthetic prototype) computed so far. For the j-th cluster, this can be done
by computing and then sorting the pairwise similarities between the nj

(i) data objects and its synthetic prototype in step i, where
i=2,...,λ. Thus, if a subset of K(i) cluster objects are used to construct the MedoidKNNr for cluster cj at step iN1, then the construction
complexity is O(nj(i)|V|+nj

(i)log(nj(i))+K(i)|V|).

4. Experimental evaluation

4.1. Clustering methods

To provide a comparison of k-sp performance to other clustering methods, we implemented spk-means, k-medoids, hierarchical
agglomerative clustering (HAC), and spectral clustering. HAC has been extensively tested on text data [23], herein we have used the
average-link clustermerging criterionbased on the cosine similarity [24]. In addition,we compare k-spwith featureweightingk-means
(fwk-means) [39] and entropy weighting k-means (ewk-means) [31] which, according to the comparative result in the latter work,
performs better than a series of other soft and hard subspace clustering methods. It is noteworthy that these two methods use the
Euclidean distance measure instead of the cosine similarity, whereas for normalized document vectors with respect to the L2-norm,
Euclidean and cosine measures determine the same proximity ordering between data objects. The parameters h and γ, respectively,
were both set to 1.5 for all datasets. This valuewas used aswell in [39] to apply fwk-means on the 20-Newsgroups dataset thatwe also
use in our experiments. In addition, in [33] it is also reported ewk-means to performwell on the same datasetwithγ=1.5. Besides, it is
also illustrated that ewk-means is not sensitive to the setting of γ value. Actually, we conducted a number of preliminary tests for these
algorithms using parameter values within a wide range, but the observed differences in clustering performance was insignificant.

The spk-means [22] is the baseline approach, the same algorithm is also utilized to refine the solution produced by HAC and
k-medoids. In order to show that in the HDS feature space marginal clustering improvement should be expected by the careful
selection of objects as initial seeds for spk-means, since as explained single objects are inappropriate for representing groups of many
objects, some spk-means initialization techniques were also tested : i) the random clusterswhere each object is randomly assigned to
one cluster, ii) the Forgy approachwere k objects are randomly selected as cluster centroids, and iii) the effective k-means++method
[41] that try to spread the initial centroids away from each other.

Table 1
Datasets used in the experimental evaluation.

Dataset Source docs/topic Classes Docs Class
balance

|V| Consistency OS CS

1NN 10NN

Talk3 20-NGs: guns, mideast, religion.misc 3 900 1.0 7051 .952 .854 98.8 98.2
RS4(S) 20-NGs: autos, motorcycles, crypt, electronics 4 800 1.0 3451 .853 .694 98.5 97.2
RS4(M) 1600 1.0 7818 .939 .807 99.3 98.7
RS4(L) 3928 .980 12708 .963 .872 99.6 99.2
M6

(S) 20-NGs: pc.hardware, autos, baseball, hockey, electronics, med 6 1200 1.0 7154 .885 .767 99.3 98.2
M6

(M) 3000 1.0 12082 .932 .816 99.6 98.9
M6

(L) 5891 .980 17955 .953 .862 99.7 99.2
M8

(S) 20-NGs: atheism(50,795), hockey(100,989), 8 600 .500 4350 .767 .578 98.9 96.9
M8

(M) windows.x(100,959), for sale(100,957), 2000 1.0 9608 .824 .690 99.4 98.4
M8

(L) electronics(100,975), politics.misc(100,770) mac.hardware(50,955),
graphics(50,955)

7355 .780 20592 .912 .783 99.7 99.2

NG4 20-NGs: comp.⁎, rec.⁎, sci.⁎, talk.⁎ 4 12000 .985 31498 .954 .877 99.8 99.6
Mini20 20-NGs: from all of the 20 newsgroups 20 1870 .970 10463 .666 .494 99.4 97.5
Wap20 WebACE 20 1560 .015 8460 .696 .636 98.6 95.8
K16 WebACE 6 2340 .043 13879 .954 .909 99.1 98.1
Rev5 TREC 5 4069 .043 23220 .878 .834 99.2 98.
A4
(1) Artificial

dataset
generator

4 4000 1.0 9401 .951 .916 99.7 99.5
A4
(2) 4000 1.0 9461 .922 .875 99.7 99.5

A4
(3) 4000 1.0 9437 .849 .792 99.6 99.5

A4
(4) 4000 1.0 9469 .693 .630 99.6 99.3

The asterisks in Table 1 denotes that each class contains all the topics of each subject.

295A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
Spectral clustering is based on spectral analysis of the similarity matrix of the dataset. We have used the standard algorithm
described in [25]. The basic idea is to project the data in the subspace spanned by the k largest eigenvectors of the Laplacianmatrix L,
which is computed from the similaritymatrix A(N×N) of pairwise document similarities. The similaritymatrix A is computed using the
cosine similaritymeasure. The Laplacianmatrix is computed as L=D−1/2AD−1/2, whereD is a diagonalmatrixwithDii=∑N

j = 1 Aij the
sum of i-th row of similarities. To solve for k clusters, the algorithmproceedswith the construction of amatrix X(N×k)= {xi :i=1,…, k}
whose columns correspond to the k largest eigenvectors of L. X is then normalized so that each rowhas unit length in Euclidean space,
let Z(N×k) be theobtainednormalizedmatrix. Finally, the clusteringprocedure takes place in the embedding space, i.e. the rowsof Z are
clustered using the standard k-means algorithm, assuming that i-th row of Z represents the i-th document.

Generally, the proposed k-sp variants are denoted by the respective synthetic prototypes they consider, e.g. Centroid-P(pterms),
MedoidK(pdocs)NN−P(pterms).2 The set of values considered for pdocs are: Spdocs={.90, .80, .60, and .40}, and for pterms: Spterms

={.98, .95, .90,
.80, .60, and .40}. In all cases,MedoidKNN(r) has been constructed incrementally in three steps (λ=3)with β1=0.2, β2=0.6, and β3=1
(see Section 3.2). In Table 2,weprovide the percentage of the original features retained after computingvarious synthetic prototypes for
a specific cluster example to provide a notion of the feature selection that is caused by object selection in a HDS feature space.

4.2. Datasets

4.2.1. Real data
In order to conduct controlled experimentswith respect to the corpus size, cluster sizes andoverlap, both real and artificial datasets

were used (see Table 1). We constructed a series of clustering problems from real collections, by first selecting certain topics from a
collection and then by producing different instances of these problems. In particular, we considered several subsets of the popular 20-
Newsgroups3 collection using as ground truth the provided class label of each document. As an example,M6

(S), M6
(M), andM6

(L) are three
datasets generated from same topics butwith increasing cluster sizes: small, medium, and large that includes all the documents of the
selected topics.Mini204 contains 100 documents fromeachoneof the twenty newsgroups,whileNG4 is a subset containing all the four
largest subjects in collection, namely computer, records, science and talk. Moreover, we used three datasets from the Cluto package5:
K16 andWap20 are from theWebACEproject and containweb pages fromdifferent directories of Yahoo!, Rev5 is derived from the San
Jose Mercury newspaper articles that are distributed as part of the TREC collection (TIPSTER Vol. 3).

In brief, in the preprocessing of each dataset, we eliminated trivial terms (stopwords), headers and special tags, we applied Porter's
stemming transformation [15] anddocument frequency thresholding (DF) [17] to discard terms that appear inonly onedocument (dft=1).
Thus, all rare terms that have high discriminating powerweremaintained. Finally,we used only documents havingmore than five terms.
In Table 1,we report for eachdataset the balance of class sizes, the 1NNand10NN-consistency (leave one out classification accuracy), the
overall sparsity (OS) of eachdatasetwhich is the averagenumber of zerodimensions that a data vector presents, and the sparsity of each
class (CS) when considering only the vocabulary used by the class members (note that OS≥CS). It is also reported for the datasets we
constructed the number of documents per class that were used in cases of sensible imbalance of class sizes (Docs/Topic).
2 MedoidK(·)NN is also denoted as K(·)NN for brevity.
3 Available at: http://people.csail.mit.edu/jrennie/20Newsgroups/.
4 Available at: http://kdd.ics.uci.edu/databases/20newsgroups/.
5 Available at: http://www.cs.umn.edu/~karypis/cluto.

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://kdd.ics.uci.edu/databases/20newsgroups/
http://www.cs.umn.edu/~karypis/cluto

296 A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
4.2.2. Artificial data
In order to construct the artificial text collections we implemented a corpus generator. To generate a corpus with k clusters, our

algorithmassumes that the terms (the feature space) are partitioned into k+1disjoint topic vocabulary bags. EachbagBi, i=1,...,k contains
the terms related to i-th topic, while an additional bag Bk+1 contains general terms that could be used in the documents of any cluster.

Each text document is considered to be a sequence of terms and each term of a sequence is generated in two steps: 1) selecting a
vocabulary bag, and then 2) selecting a term from that bag. The correlation between a data cluster and the vocabulary bags is user-
defined in a k×(k+1)matrixW,where eachelementWji is theprobability of selecting thebagBiwhenproducing a term for adocument
of the j-th cluster. To sample a term fromanalready selected bag (step 2)weused the Zanette–Montemurro stochastic process (ZM) [32]
that has been proposed for generating a single long artificial text that has similar statistical characteristics to real texts, such as the Zipf's
power law [16] of term frequencies and the sublinear increase of the vocabulary size as the text becomes longer. To achieve these goals
theZMprocess considers a time decreasing probability controlled by a parameter v of inserting a previously unseen term in the text, i.e.
pt= α⋅tv−1. Otherwise an already selected term of a bag is reselected with a probability proportional to the number of times that has
already been used in the created sequence. This property of the process (called ‘memory’) permits high frequencies for some terms,
while themajority of terms present low frequency. In our algorithm, the generation of documents is conducted in cluster order, i.e. the
documents of the first cluster then that of the second etc. The memory of the general bag Bk+1 is maintained during the whole
procedure, but the memory of all the other bags is reset when starting the generation of the documents of a new cluster. Using this
strategy, in the documents of each cluster a generally different set of terms from all the bags would present high frequencies.

To demonstrate the superiority of k-sp performance under situations of clusters that overlap in many dimensions we
constructed four artificial datasets called A4

(i), i=1,...,4 using the above algorithm. All datasets have four clusters (k=4), each of
them containing 1000 documents and five topic vocabulary bags were considered with 2000 terms each. The datasets exhibit
increasing cluster overlap (fromA4

(1) to A4
(4)), by lowering the probabilitiesWii (i=1,...,4) and increasing the probabilitiesWij (j≠ i)

of selecting a term from the rest of the bags. The probability matrices W are presented in Fig. 5 (the fifth bag contains the general
vocabulary). The length of each document was randomly set by an exponential distribution with mean value λexp=1/100. The
parameter values that we used for the ZM process are α=0.3 and v=0.9.

4.3. Cluster evaluation measures

Since we are given the ground truth labeling of the documents in all datasets, clustering evaluation is based on the two popular
supervised measures Normalized Mutual Information (NMI) and Purity. At this point, we denote: C the clustering solution of k
clusters, c1,…,ck, C(L) the grouping based on ground truth document labels c1(L),…,ck(L) (true classes), N the number of documents in
a dataset, Ni the size of ci(L), nj the size of cj, and nij the number of documents belonging to ci

(L) that are clustered in cj. Let us further
denote the probabilities p(cj)=nj/N, p(ci(L))=ni

(L)/N, and p(ci(L),cj)=nij/N. The [0, 1]-Normalized MI measure, as used in [26], is
computed by dividing the MI by the maximum between the cluster and class entropy:
NMI C Lð Þ
;C

� �
=

∑ ci∈C Lð Þ
;

cj∈C

p ci; c
Lð Þ
j

� �
log2

p c Lð Þ
i ; cj

� �
p c Lð Þ

i

� �
p cj
� �

max H C Lð Þ� �
;H Cð Þ� 	 : ð19Þ
When C and C(L) are independent the value of NMI equals to zero, and to one if these groups contain identical clusters.
The Purity of a cluster can be interpreted as the classification accuracy by assuming that all objects of a cluster are assigned to its

dominant class. The clustering Purity is the weighted average of cluster-wise purity:
Purity Cð Þ = 1
N

∑
k

j=1
max

i
nij

n o
: ð20Þ
Generally, we seek to find a clustering solution that maximizes both NMI and Purity to values close to unit. For each dataset and
method we report the values of these indexes. For the methods depending on initialization we also report the average value of
each index over the runs on a dataset, while we also report (denoted as ‘best’) the value of each index (NMI or purity)
corresponding to the solution with the highest clustering objective function Φcoh among the 50 runs.

Moreover, in order to evaluate a method's behavior during iterations, we introduce the Q-index:
Qt = 1−Φ tð Þ
ics Cð Þ

Φ t−1ð Þ

ics Cð Þ; t N 0; ð21Þ

Φics
(t)(C) is the intracluster similarity measure defined as the sum of pairwise cosine similarities between objects in the same
where

cluster at iteration t:
Φ tð Þ
ics Cð Þ = ∑

k

j=1

2

N nj−1
� � ∑

di∈cj

∑
dr∈cj ;ibj

d⊤i ⋅dr

2
4

3
5; ð22Þ

Fig. 3. T
The dat
noisy cl
the obje

297A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
nj the size of cluster cj. Initially, we assume thatQ0=0holds. Higher values ofQ-index indicate greater relative improvement of
where
the clustering quality after one iteration.

Finally, the statistical t-test was applied to estimate the significance of the average performance difference between k-sp and the
methods under comparison for each dataset, except for HAC that is deterministic.Within a confidence interval of 95% and for the value of
degrees of freedom equal to 2⋅number_of_runs-2 we can test if our method is significantly superior, otherwise the null hypothesis is
accepted.

4.4. Experimental results

4.4.1. Robust cluster representation
Our first intention in the experiments is to demonstrate the robustness and effectiveness of synthetic prototypes in favoring the

representation of the dominant class in a cluster that contains documents frommore than one class. To this endwe constructed three sets
of documents from the topics of Talk3 dataset: a) a pure set of 300 documents from the first topic (0% noisy objects), b) the previous set
along with 50 documents from each of the other two topics (25% noisy objects), c) a set of 300, 130, and 70 documents from each topic
1 50 100 150 200 250 300
0

.1

.2

.3

.4

.5 Pure dataset

objects nearest to prototype

av
er

ag
e

si
m

ila
rit

y
to

 p
ro

to
ty

pe

Centroid
Medoid
MedoidK(.6)NN−nincr
MedoidK(.6)NN

a

1 50 100 150 200 250 300
0

.1

.2

.3

.4

.5 Objects of dominant class (75%)

objects nearest to prototype

av
er

ag
e

si
m

ila
rit

y
to

 p
ro

to
ty

pe

1 50 100 150 200 250 300

Objects of noisy classes (25%)

b

c

1 50 100 150 200 250 300
0

.1

.2

.3

.4

.5 Objects of dominant class (60%)

objects nearest to prototype

av
er

ag
e

si
m

ila
rit

y
to

 p
ro

to
ty

pe

1 50 100 150 200 250 300

Objects of noisy classes (40%)

he decrease of average similarity between different types of cluster prototypes and the nearest objects around them as the number of neighbors increase.
asets consist of objects belonging to a dominant class and two other classes corresponding to noise. We considered three percentages for the objects of the
asses: (a) a pure dataset (0%), (b) 25%, and (c) 40%. MedoidK(.6)NN-nincr denotes the reference prototype constructed non-incrementally using the 60% of
cts of each dataset.

image of Fig.�3

298 A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
(40% noisy objects). In all three cases the medoid of the complete dataset belongs to the dominant class (i.e. the first topic). Fig. 3
demonstrates the decrease of average similarity between different types of cluster prototypes considered for the above cases and the
nearest objects around themas the number of neighbors increase.We can observe the high average similarity of themedoidwith its very
close neighbors that decreases rapidly as we consider wider neighborhoods. This indicates that the medoid exhibits high intracluster
rNN-consistency (see Section 3.2) and empirically explains why the medoid-based construction of synthetic prototype is more
class-discriminative than the centroid-based. The result is the higher average similarity to the members of the dominant class, and the
lower similarity values to thedocumentsof other classes (consideredasnoisy). Furthermore, the incremental constructionofMedoidKNN
performs better than the direct construction based on the K nearest neighbors of the medoid. Table 2 reports the percentage of features
thathavenon-zeroweights after the implicit (i.e. features retained in the referenceprototype)andexplicit (i.e. additional feature selection
on reference prototype) feature selection.We can see the extent to which synthetic prototypes can summarize the characteristics of the
document clusters, as well as that synthetic prototypes can discover feature subspaces to represent data clusters.

In another experiment we intend to demonstrate the robustness of k-sp under adverse initial conditions. We considered theM6
(S)

dataset and examined the case where clusters are initialized by randomly assigning each document to a cluster. Table 3 reports the
average and best values of the evaluationmeasures, and the average number of iterations until convergence (t) for 50 random restarts
without refinement. Fig. 5 illustrates how the average Q-index value evolves with iterations for each method. An efficient approach
should maximize the area under its corresponding curve, either by executing many iterations or by making larger improvements in
shorter time. Fig. 4 indicates theweakness of centroid representation: it defines an optimal cluster representative assuming that all its
documents should stay in that cluster. This constrains to a great extent the representationflexibility and forces the procedure to reach
poor locally optimal solutions not far from the bad initial clusters. As k-sp becomes more selective on the cluster's features, as in the
case of Centroids(r) (e.g.with P(.4)),we observe immediate clustering improvement in thefirst iterations. However, themain problem
remains: the features are selected from the centroids of impure clusters. Despite the fact that medoids lead to a major initial
improvement related to a sharper preference to represent one class out of many others in a cluster, subsequently, the procedure
converges too early (2.5 iterations on average). On the other hand, the k-sp with MedoidK(.8)NN is a more balanced choice that
combines efficiently the advantages of keeping a compact cluster representation and that of considering awider set of objects around
medoid for computing cluster representatives.
4.4.2. Clustering performance results
In this section, we provide experimental results using the procedure described in Section 3.5 for the datasets of Table 1 for the

two sets of values Spdocs
and Spterms

mentioned in Section 4.1. The results are displayed using the line-plots presented in Figs. 5–7. The
reported ‘refined’ solutions are obtained by k-sp refinement phase using centroids as cluster prototypes (see Section 3.4) on the
final clusters of each of the 50 runs of basic k-sp. The bar-graphs in each row of plots present the results for spk-means initialized
with the k-means++ heuristic (Spkm++), k-medoids (Medoid), the refined k-medoids (Med-ref), HAC, refined HAC (HAC-ref)
using spk-means, and finally the spectral clustering method.

The results on artificial datasets are presented in Fig. 5. For a dataset of small cluster overlap, such as the A4
(1), the performance of k-sp

and spectral clustering are quite similar. However, in a more confused setting, such as the A4
(3) and A4

(4) datasets the superiority of k-sp
Table 2
The percentage of features retained in the synthetic cluster prototypes for a cluster containing 300 documents from the first topic of Talk3 dataset. The centroid
contains all the 4264 non-zero dimensions of the cluster.

Reference prototype pterms

1.0 .98 .95 .90 .80 .60 .40

Centroid 100 84.0 72.5 59.3 42.0 21.5 9.8
Medoid 4.6 – – – – – –

MedoidK(.9)NN 98.0 82.2 71.1 58.0 40.8 20.7 9.4
MedoidK(.8)NN 95.7 80.6 69.5 56.7 39.6 20.0 9.1
MedoidK(.6)NN 89.5 75.8 65.4 53.1 36.7 18.5 8.5
MedoidK(.4)NN 76.7 65.5 56.4 45.8 31.9 16.2 7.3

Table 3
Clustering results on the M6

(S) dataset using k-sp variants.

Reference prototype pterms NMI Purity

avg. best avg. best t

Centroid 1.0 .480 .564 .630 .751 17.1
Centroid 0.8 .484 .644 .632 .798 16.1
Centroid 0.4 .528 .679 .655 .807 16.3
Medoid 1.0 .286 .424 .504 .648 2.5
MedoidK(.4)NN 1.0 .564 .681 .688 .833 6.9
MedoidK(.8)NN 1.0 .686 .792 .777 .899 13.9

Fig. 4. The evolution of the average Q-index with clustering iterations for 50 randomly initialized runs using the M6
(S) dataset.

299A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
becomesmore clear.Moreover, as the overlap between clusters increases, k-sp performs significantly better than the othermethods even
with lower values of pdocs parameter (e.g. 0.6 or 0.4) where the best result is closer to the average performance of the method.

The results on real datasets that are displayed in Figs. 6 and 7 support as well the main idea of this paper. In all cases the k-sp
method produced much better results than spk-means. Using MedoidKNN(s) prototypes, the best results for larger datasets are
obtained for theK(.9)NNandK(.8)NN cases. Especially for the experimentswherewe considered three instances of the sameproblem
with increasing size of clusters from small to large (datasets RS4, M6, andM8), it is clear that k-sp using synthetic prototypesmanages
to overcome the issues arising in the case of small datasets where the number of objects per cluster is not sufficient, such as self-
similarity and feature over-aggregation. The proposed refinement phase leads to even better results, while reducing the sensitivity of
setting improper values for k-sp parameters. All the experimentally compared clusteringmethods performed better whenmore data
objects became available for a specific problem, but the proposed k-sp remained the best among them.

By observing both curves of average and best values of the evaluation measures, we can realize the trade-off in setting k-sp
parameters. When limiting the size of synthetic prototypes, k-sp avoids the bad solutions and produces much better clusterings. On
the other hand, as synthetic prototypes discard toomuch information ‘detail’ from clusters, the basic k-sp procedure becomes unable
to identify the fine differences between data classes. This explains the sudden drop of the performance of K(.6) and K(.4) synthetic
prototypes for medium and large datasets (e.g. RS4(M), RS4(L), RS4(M), RS4(L), M6

(M), M6
(L), and M8

(L)) when no refinement is applied.
The information of the formed clusters can be further exploited by larger synthetic representatives in the refinement phase

(where the centroids are used). Apparently, when larger synthetic prototypes are used in the main phase, the contribution of
refinement turns out to be much smaller.

Table 4 summarizes the best and average performance of eachmethod focusing on the refined solutions of k-sp, HAC, and k-medoids.
Regarding k-sp, its refinement phase uses the complete feature set and centroids which, as explained in Section 3.5, enables the direct
comparison of the solutions corresponding to different parameter values. The supervised evaluation measures that are presented in
Table 4 correspond to the set of experiments with the maximum average value of the refined objective function determined by the
procedure described in Section 3.5. The k-sp setting that provided this result in each dataset is indicated near the dataset name. The
reported best refined k-sp clustering is the best solution using the latter setting of parameter values,whereas it is possible that a different
parameter settingmay have produced a better solution. The column t-val presents the t-value of the significance t-tests between the best
k-sp average performance and the average performance of the othermethods. For two sets of 50 experiments each, the critical t-value is
tc=1.999 (pc=5% for p value). This means that if the computed t-value≥tc, then the null hypothesis is rejected (p≥5%, respectively), i.e.
our method is superior, otherwise the null hypothesis is accepted indicating a marginal improvement achieved by k-sp. If the t-value is
negative, k-sp performs worse than the compared method. In Table 4 the t-values ≤1.999 are underlined.

According to the significance t-tests, k-sp is clearly superior to the baseline methods such as spk-means, spk-means initialized
with the k-means++ technique, k-medoids and HAC as well as their refined solutions using spk-means, and the soft subspace
clustering methods fwk-means, ewk-means. Compared to spectral clustering k-sp is superior in most datasets, in terms of both
NMI and Purity. Spectral clustering seems to be clearly superior only for datasets M8

(M) and K16. It is also worthmentioning that the
computational complexity of spectral clustering is O(N3) which is significantly higher than that of k-sp. It must be also emphasized
that for all datasets the best solutions were provided by the k-sp method.

4.4.3. Discussion

As a general conclusion about the experimental study, it turns out that the refined k-sp approach using MedoidKNN with
pdocs=.9 or .8 seems to be the best method exhibiting superior clustering performance as well as robustness in the case of small, or
noisy datasets where the clusters overlap in many dimensions. High values of pterms (e.g. .98 or .95) may also help in some cases.
However, we explained in Section 3.5 that the user specifies only the two sets of parameter values Spdocs

, Spterms
, and the best result

can then be identified automatically by examining the values of the objective function of the refined k-sp clusterings. We should
also remark that k-sp's feature selection on reference prototypes can efficiently summarize to a great extent the characteristics of
the document clusters, since inmost cases its application does not deteriorate the clustering performance.When pdocs value is kept
fixed and small number of features is considered (e.g. pterms=.6 that is expected to be about 20% of cluster's features, see Table 2)
then, in most cases, the quality of the clusters produced using MedoidK(pdocs)NN(s) is comparable to the respective results of the
respective unfiltered reference prototypes. As for the Centroid(s), it is the k-sp variant that mostly profits by the prototype filtering.

Fig. 5. Experimental results on four artificial datasets of increasing cluster overlap, from A4
(1) to A4

(4), where the line-plots indicate the solutions of k-spmethodwith
different parameter values. The respective results for the refined solutions are also reported.

300 A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306

image of Fig.�5

Fig. 6. Experimental results for instances of the RS4 and M6 problems with different cluster sizes.

301A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
These findings indicate the straightforward applicability of k-sp method to corpus summarization problems or off-line term
selection.

In both artificial and real document datasets neither the sophisticated k-means++ initialization, nor the refined k-medoids
helped the spk-means to discover much better clusterings. There are also cases where these methods perform equally or worse
than typical spk-means. For the refined k-medoids the reason for this observation is explained in Section 3.1 and is related to the
inability of any data object to represent a large group of objects in HDS feature space. Thus, spk-means is seeded in a little better
way than Forgy random selection. The fact that spk-means++ and the refined k-medoids perform similarly implies that the
probability introduced by the former in order to select objects that are far from each othermay not reflect their respective semantic
distance, since it does not take into account the special properties of text feature space, such as sparsity.

An interesting remark is that the soft subspace clustering methods tested, fwk-means and ewk-means, did not manage to
provide satisfactory solutions. In Sections 2.4 and 3.1, we reported as one of their disadvantages the fact that, by introducing
explicit feature weights per cluster, the parameters to be estimated are doubled. This becomes more problematic for the very
high dimensional datasets used in our experiments. It is worthmentioning that in the experiments in [39] and [33] at most 2000
features were used to represent the documents of datasets containing 2000 to 15905 objects. Apparently, this experimental
setting focuses on high dimensional data but of lower scale. The very large scale of dimensionality in our experiments seems to
reveal their weakness regarding the number of parameters they use. In most cases, ewk-means presented better results to that
of fwk-means with respect to the average evaluation measures. At the same time for many datasets, e.g. A4

(3), A4
(4), and RS4(L), the

best clustering of ewk-means is evaluated to be of lower quality than the average clustering found by the algorithm. This

image of Fig.�6

Fig. 7. Experimental results for instances of the M8 problem with different cluster sizes, Talk3, Mini20 and NG4 datasets.

302 A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
observation indicates that the feature weight entropy term ej introduced in Eq. (10) may dominate the value of the objective
function. We tried to lower down the γ value without observing any improvement. This implies that the feature weight entropy
may not always capture the quality of a cluster, whereas numerical issues may also arise for the entropy computation in a HDS
feature space.

5. Conclusions

In this paper we have proposed the k-synthetic prototypes (k-sp) clustering method that incorporates the synthetic prototypes into
the spherical k-means (spk-means) procedure for document clustering. Through the computation of synthetic prototypes (such as
MedoidKNN) cluster-based dynamic feature selection is achieved that favors the representation of the dominant class of a cluster and
enables the reassignment of the improperly clustered documents to other clusters. The proposedmethod is general, simple and effective
and includes spherical k-means as a special case. As indicated by extensive experimental results using several datasets, the method
provides robust clustering performance especially in cases of small datasets, or noisy clusters that overlap in many dimensions, and
compares favorably against spk-means (withForgyandk-means++initialization), k-medoids,HAC, spectral clustering, and thesubspace
clusteringmethods fwk-means andewk-means. It is remarkable that in theHDS feature spacesof thedatasetsweused, state of the art soft
subspace clustering methods did not manage to achieve better solutions even than baseline methods such as spk-means.

image of Fig.�7

Table 4
The NMI, Purity measures for the refined solutions found for each dataset. Bold values indicate the best result per column. The underlined t-values denote the cases where according to the statistical t-test k-sp appears not to
be significantly better (0bt-valb1.999), or appears to be worse than the compared method (t-valb0).

Method A4
(1)-k-sp: KNN(.90)-P(.98) A4

(2) - k-sp: KNN(.90)-P(1.0) A4
(3) - k-sp: KNN(.80)-P(.98) A4

(4) - k-sp: KNN(.60)-P(.98)

NMI Purity NMI Purity NMI Purity NMI Purity

avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val

k-sp .901 .914 .968 .978 .866 .880 .960 .968 .756 .774 .916 .930 .433 .527 .740 .816
Centroid-P(.6) .803 .846 06.46 .917 .958 03.49 .714 .801 07.25 .866 .941 05.10 .483 .665 11.84 .730 .886 08.89 .056 .193 25.05 .376 .518 24.29
spk-means .785 .832 07.51 .909 .950 11.66 .674 .775 09.12 .847 .928 06.48 .394 .626 16.00 .668 .868 12.07 .042 .176 26.34 .357 .512 25.94
spk-means++ .768 .843 07.81 .894 .955 04.55 .692 .779 08.63 .860 .933 05.77 .416 .624 13.98 .691 .862 10.37 .038 .157 27.05 .350 .491 27.19
Medoid-ref .784 .843 08.08 .911 .955 04.11 .699 .769 08.97 .868 .930 05.86 .423 .628 14.52 .690 .865 10.72 .055 .176 24.96 .373 .512 24.18
fwk-means .051 .262 80.48 .366 .574 58.60 .289 .160 97.58 .334 .311 81.48 .016 .032 99.83 .314 .360 81.96 .006 .007 30.38 .286 .290 34.75
ewk-means .131 .302 43.50 .400 .460 34.62 .073 .274 63.02 .372 .540 45.02 .032 .003 57.87 .336 .266 64.44 .009 .006 30.10 .296 .283 33.50
HAC-ref .851 .936 .802 .936 .450 .659 .156 .418
Spectral .850 .869 04.86 .942 .965 02.15 .849 .869 02.05 .941 .965 02.47 .738 .763 02.41 .891 .926 02.55 .021 .021 29.01 .230 .305 32.84

Method RS4(S) k-sp: KNN(.80)-P(.95) RS4(M)-k-sp: KNN(.80)-P(1.0) RS4(L)-k-sp: KNN(.90)-P(.80) Talk3-k-sp:KNN(.80)-P(1.0)

NMI Purity NMI Purity NMI Purity NMI Purity

avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val

k-sp .529 .689 .760 .875 .738 .773 .900 .926 .771 .798 .916 .935 .587 .762 .816 .935
Centroid-P(.6) .277 .383 14.92 .565 .695 11.65 .625 .737 06.65 .813 .910 05.12 .691 .786 05.23 .851 .931 04.12 .431 .657 05.78 .728 .900 04.23
spk-means .226 .307 17.97 .532 .605 13.78 .598 .706 07.93 .798 .892 05.80 .677 .766 07.18 .838 .921 04.79 .401 .540 06.97 .715 .875 04.88
spk-means++ .209 .343 18.35 .508 .623 15.08 .606 .723 08.11 .801 .899 05.97 .700 .778 04.54 .864 .926 03.36 .400 .588 06.68 .717 .823 04.54
Medoid-ref .285 .427 15.59 .550 .675 13.77 .535 .682 12.91 .730 .876 10.88 .669 .781 06.59 .823 .929 05.50 .468 .617 04.58 .751 .916 03.34
fwk-means .095 .153 27.86 .420 .493 21.57 .116 .196 53.89 .448 .548 37.55 .140 .257 56.67 .470 .610 39.73 .082 .119 24.20 .510 .551 17.77
ewk-means .134 .219 24.34 .457 .498 18.86 .219 .357 39.59 .519 .619 29.64 .248 .020 23.85 .499 .288 21.76 .174 .197 17.52 .589 .689 11.90
HAC-ref .022 .285 .533 .680 .489 .492 .480 .734
Spectral .453 .413 04.99 .647 .628 07.91 .725 .740 01.19 .896 .913 00.34 .747 .754 02.77 .911 .919 00.53 .504 .533 04.18 .785 .790 02.05

Method M6
(S) - k-sp: KNN(.80)-P(.95) M6

(M) - k-sp: KNN(.90)-P(1.0) M6
(L) - k-sp: KNN(.90)-P(.98) Wap20 - k-sp: KNN(.80)-P(1.0)

NMI Purity NMI Purity NMI Purity NMI Purity

avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val

k-sp .711 .798 .808 .904 .741 .807 .835 .907 .761 .799 .861 .905 .592 622 .658 .696
Centroid-P(.6) .552 .657 13.12 .670 .814 09.57 .667 .768 05.86 .755 .880 04.97 .693 .780 06.36 .773 .893 06.31 .556 .574 07.56 .621 .637 06.38

(continued on next page)

303
A
.K

alogeratos,A
.Likas

/
D
ata

&
K
now

ledge
Engineering

70
(2011)

284
–306

Table 4 (continued)

Method A4
(1)-k-sp: KNN(.90)-P(.98) A4

(2) - k-sp: KNN(.90)-P(1.0) A4
(3) - k-sp: KNN(.80)-P(.98) A4

(4) - k-sp: KNN(.60)-P(.98)

NMI Purity NMI Purity NMI Purity NMI Purity

avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val

spk-means .510 .644 17.05 .647 .803 11.56 .648 .741 07.36 .742 .870 12.87 .689 .782 06.85 .769 .895 06.74 .538 .544 11.35 .609 .624 08.48
spk-means++ .509 .673 15.85 .641 .831 11.34 .647 .750 07.77 .743 .876 06.12 .698 .785 06.27 .783 .899 05.92 .545 .547 11.15 .616 .609 08.00
Medoid-ref .527 .622 14.30 .648 .759 10.55 .660 .751 06.28 .753 .876 05.00 .701 .784 05.86 .781 .887 06.17 .548 .576 11.08 .628 .643 06.06
fwk-means .133 .186 54.59 .372 .443 37.00 .148 .188 53.78 .390 .440 36.52 .160 .241 75.31 .398 .484 51.23 .369 .357 45.34 .486 .487 31.71
ewk-means .245 .313 49.58 .456 .475 33.78 .323 .295 40.21 .470 .377 29.86 .352 .097 54.27 .461 .271 39.68 .439 .433 09.37 .531 .535 08.52
HAC-ref .489 .492 .647 .648 .709 .793 .527 .573
Spectral .652 .659 06.76 .726 .754 07.03 .662 .649 08.33 .754 .729 06.34 .690 .720 09.37 .771 .821 08.52 .596 .602 −1.21 .664 .665 −1.43

Method M8
(S) - k-sp: KNN(.60)-P(.98) M8

(M) - k-sp: KNN(.90)-P(1.0) M8
(L) - k-sp: KNN(.90)-P(.98) Rev5 - k-sp: KNN(.80)-P(1.0)

NMI Purity NMI Purity NMI Purity NMI Purity

avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val

k-sp .615 .642 .706 .738 .692 .796 .786 .904 .786 .839 .854 .928 .577 .676 .767 .833
Centroid-P(.6) .331 .459 28.81 .511 .582 19.59 .610 .709 08.92 .704 .839 07.45 .734 .828 05.22 .795 .919 04.44 .542 .659 02.67 .745 .828 02.26
spk-means .275 .367 33.20 .473 .528 23.71 .578 .667 12.14 .688 .812 08.88 .733 .826 05.33 .791 .919 04.74 .535 .651 02.41 .733 .822 02.31
spk-means++ .261 .361 40.56 .450 .537 30.60 .517 .619 20.07 .610 .735 15.66 .622 .661 31.82 .711 .751 20.85 .540 .663 02.42 .739 .819 02.18
Medoid-ref .332 .445 27.61 .510 .635 18.99 .565 .697 14.13 .668 .833 10.45 .733 .817 05.75 .788 .911 05.14 .526 .653 03.00 .717 .819 03.33
fwk-means .152 .197 56.08 .360 .400 39.85 .145 .195 59.75 .340 .420 40.94 .156 .246 72.02 .353 .473 45.20 .234 .367 20.82 .566 .700 15.16
ewk-means .188 .288 49.45 .400 .442 35.13 .281 .279 42.86 .418 .388 32.34 .316 .279 53.99 .418 .364 36.85 .278 .078 05.57 .561 .388 02.27
HAC-ref .302 .335 .607 .640 .664 .706 .237 .515
Spectral .615 .620 00.00 .645 .650 08.86 .733 .733 −5.48 .817 .818 −3.24 .741 .774 05.57 .832 .886 02.26 .406 .411 14.46 .664 .671 11.95

Method NG4 - k-sp: KNN(.90)-P(1.0) Mini20 - k-sp: KNN(.80)-P(.90) K16 - k-sp: KNN(.90)-P(1.0)

NMI Purity NMI Purity NMI Purity

avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val

k-sp .547 .607 .734 .799 .557 .597 .546 .603 .701 .802 .834 .897
Centroid-P(.6) .510 .561 02.62 .702 .751 02.31 .459 .501 12.59 .442 .484 18.73 .690 .785 01.00 .837 .887 00.37
spk-means .507 .548 02.73 .699 .748 02.45 .420 .454 30.07 .418 .455 22.24 .675 .725 02.52 .831 .838 01.59
spk-means++ .506 .568 02.70 .696 .755 02.69 .422 .451 30.81 .425 .446 21.99 .680 .770 02.09 .833 .883 01.30
Medoid-ref .492 .568 03.66 .694 .756 03.00 .431 .484 28.47 .424 .484 20.94 .685 .767 01.59 .829 .885 01.90
fwk-means .081 .152 42.94 .412 .494 28.20 .081 .152 91.60 .412 .494 64.11 .303 .454 28.07 .715 .756 13.18
ewk-means .063 .001 27.76 .316 .253 24.93 .286 .312 08.78 .314 .308 46.82 .417 .537 16.36 .762 .827 08.00
HAC-ref .375 .591 .444 .348 .582 .860
Spectral .492 .497 05.43 .711 .714 02.48 .566 .573 −04.04 .522 .539 04.66 .741 .763 −5.16 .847 .860 −1.87

304
A
.K

alogeratos,A
.Likas

/
D
ata

&
K
now

ledge
Engineering

70
(2011)

284
–306

305A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
The proposed k-sp approach exhibits similarity to subspace clustering methods, since the introduced synthetic prototypes define
different subspaces in which data classes are more distinguishable. Therefore, one could argue that k-sp in high dimensional and sparse
spaces is also a subspace clusteringmethod. To clarify thedifferences,we remark thatmanyof the subspace clusteringmethods [39,33,31]
construct each cluster prototypeby explicitly computingweights for eachdimensionusing all cluster objects. On the other hand, k-spfirst
appliesobject selection to construct a referenceprototype (resulting in implicit feature selection), and thenproceedswithoptional explicit
feature selection on the reference prototype. Moreover, the motivation of k-sp is to address the self-similarity and feature over-
aggregationphenomena that are very intense in theHDS feature spaces.Wehave also shown that the solutions obtained from the basic k-
sp phase can be refined by the refinement k-sp phase using thewhole feature set, which is in contrast with the traditional idea of subspace
clustering.

A direction for future work is to extend the feature selection procedure to a continuous weighting scheme, instead of the current
binary weighting. It is interesting to investigate the possibility of developing a gradual adjustment of the k-sp parameters aiming to
achieve a gradual change of the prototype behavior from medoid-like to centroid-like. This would also eliminate the separate
refinement phase. We also aim to test the proposed method to other problems, such as term selection for cluster summarization,
organization of noisy document collections, on-line document clustering, and semi-supervised document clustering [56].
References

[1] A. Schenker, M. Last, H. Bunke, A. Kandel, Clustering of web documents using a graph model, in: A. Antonacopoulos, J. Hu (Eds.), Web Document Analysis:
Challenges and Opportunities, World Scientific Publishing Company, 2003, pp. 3–18.

[2] A. Kalogeratos, A. Likas, A significance-based graph model for clustering web documents, Proc. 4th Hellenic Conference on AI (SETN'06), Springer, 2006, pp. 516–519.
[3] K.M. Hammouda, M.S. Kamel, Efficient phrase-based document indexing for web-document clustering, IEEE Transactions on Knowledge and Data

Engineering 16 (10) (2004) 1279–1296.
[4] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
[5] Y. Yang, J.P. Pedersen, A comparative study on feature selection in text categorization, Proc. 14th Intern. Conf. on Machine Learning, 1997, pp. 412–420.
[6] N.M. Wanas, D.A. Said, N.H. Hegazy, N.M. Darwish, A study of global and local thresholding techniques for text categorization, Proc. 5th Australasian Conf. on

Data Mining and Anal, ACS, 2006, pp. 91–101.
[7] R. Xu, D. Wunsch II, Survey of clustering algorithms, IEEE Transactions on Neural Networks 16 (3) (2005) 645–678.
[8] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation, Journal of Machine Learning Research 3 (2003) 993–1022.
[9] S. Zhong, J. Ghosh, Generative model-based document clustering: a comparative study, Knowledge and Information Systems 8 (3) (2005) 374–384.

[10] J. McQueen, Some methods for classification and analysis of multivariate observations, Proc. 5th Berkley Symposium on Mathematical Statistics and
Probability, 1967, pp. 281–297.

[11] L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: an Introduction to Cluster Analysis, Wiley, 1990.
[12] I. Dhillon, Y. Guan, Iterative clustering of high dimensional text data augmented by local search, Proc. 2nd IEEE Intern. Conf. on DataMining,Mining, 2002, pp. 131–138.
[13] C. Ding, X. He, K-nearest-neighbor consistency in data clustering: incorporating local information into global optimization, Proc. Symposium on Applied

Computing, 2004, pp. 584–589.
[14] N. Grira, M.E. Houle, Best of both: a hybridized centroid-medoid clustering heuristic, Proc. 24th Intern. Conf. on Machine Learning, 2007, pp. 313–320.
[15] M.F. Porter, An algorithm for suffix stripping, Program 14 (3) (1980) 130–137.
[16] G.K. Zipf, The Psycho-biology of Language, an Introduction to Dynamic Philology, MIT Press, 1936.
[17] D.D. Lewis, Feature selection and feature extraction for text categorization, Proc. Speech and Natural Language Workshop, 1992, pp. 212–217.
[18] G. Salton, A. Wong, C. Yang, A vector space model for automatic indexing, Communications of the ACM 18 (11) (1975) 613–620.
[19] A. Strehl, J. Ghosh, R. Mooney, Impact of similarity measures on web-page clustering, Proc. AAAI 2000 Workshop on AI for Web Search, 2000, pp. 58–64.
[20] J. Ghosh, A. Strehl, Similarity-based text clustering: a comparative study, Grouping Multidimensional Data, Springer, 2006, pp. 73–97.
[21] I.S. Dhillon, J. Fan, Y. Guan, Efficient clustering of very large document collections, in: R. Grossman, G. Kamath, R. Naburu (Eds.), Data Mining for Scientific and

Engineering Applications, Kluwer, 2001.
[22] I.S. Dhillon, D.S. Modha, Concept decomposition for large sparse text data using clustering, Machine Learning 42 (2001) 143–175.
[23] Y. Zhao, G. Karypis, Hierarchical clustering algorithms for document datasets, Data Mining and Knowledge Discovery 10 (2005) 141–168.
[24] M. Steinbach, G. Karypis, V. Kumar, A comparison of document clustering techniques, Proc. KDD Workshop on Text Mining 2000 (2000) 20–23.
[25] A. Ng, M. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, In Advances in Neural Information Processing Systems 14 (2001) 849–864.
[26] D. Cai, X. He, J. Han, Document clustering using locality preserving indexing, IEEE Transactions onKnowledge andData Engineering 17 (12) (2005) 1624–1637.
[27] K. Beyer, J. Goldstein, R. Ramakrisnan, U. Shaft, When is nearest neighbors meaningful? Proc. Intern. Conf. on Database Theory (ICDT99), 1999, pp. 217–235.
[28] A. Hinneburg, C.C. Aggarwal, D.A. Keim,What is the nearest neighbor in high dimensional spaces? Proc. 26th Intern. Conf. on Very Large Data Bases (VLDB00),

Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, 2000, pp. 506–515.
[29] H.P. Kriegel, P. Kröger, A. Zimek, Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering, ACM

Trans. Knowledge Discovery from Data 3 (1) (2009) 1–58.
[30] D.S. Modha, W.S. Spangler, Feature weighting in k-means clustering, Machine Learning 52 (3) (2003) 217–237.
[31] L. Jing, N. Liping, K. Michael, J.Z. Huang, An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data, IEEE Transactions

on Knowledge and Data Engineering 19 (8) (2007) 1026–1041.
[32] D.H. Zanette, M.A. Montemurro, Dynamics of text generation with realistic Zipf's distribution, Journal of Quantitative Linguistics 12 (1) (2005) 29–40.
[33] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, D. Papadopoulos, Locally adaptive metrics for clustering high dimensional data, Data Mining and

Knowledge Discovery 14 (1) (2007) 63–97.
[34] C.Y. Tsai, C.C. Chiu, Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm, Computational Statistics and Data Analysis

52 (10) (2008) 4658–4672.
[35] J.M. Pe Test, Article sample title placed here, Pattern Recognition Letters 20 (10) (1999) 1027–1040.
[36] L. Kaufman, P.J. Rousseeuw, Finding Groups in Data. An Introduction to Cluster Analysis, John Wiley & Sons, Inc, Canada, 1990.
[37] J.H. Friedman, J.J. Meulman, Clustering objects on subsets of attributes, Journal of the Royal Statistical Society 66 (1) (2004) 815–849.
[38] H. Cheng,K.A.Hua,K. Vu, Constrained locallyweighted clustering, Proc. Intern. Conf. onVery LargeData Bases (VLDB08), Auckland,NewZealand, 2008, pp. 90–101.
[39] L. Jing, M.K. Ng, J. Xu, J.Z. Huang, Subspace clustering of text documents with feature weighting k-means algorithm, Proc. 9th Pacific-Asia Conf. on Knowl. Disc.

and Data Mining (PAKDD05), Vietnam, 2005, pp. 802–812.
[40] H.S. Heaps, Information Retrieval: Computational and Theoretical Aspects, Academic Press, Orlando, USA, 1978.
[41] I.S. Dhillon, Y. Guan, J. Kogan, Refining clusters in high-dimensional text data, Proc.Workshop on Clustering High Dimensional Data and Its Applications at the

2nd ACM-SIAM Intern. Conf. on Data Mining (ICML98), Philadelphia, USA, 2002, pp. 71–78.
[42] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, A local search approximation algorithm for k-means clustering, Computational

Geometry: Theory and Applications, 28 (2-3) (2004) 89–112.
[43] P.S. Bradley, U.M. Fayyad, Refining initial points for k-means clustering, Proc. 15th Intern. Conf. on Machine Learning, 1998, pp. 91–99.

306 A. Kalogeratos, A. Likas / Data & Knowledge Engineering 70 (2011) 284–306
[44] D. Arthur, S. Vassilvitskii, K-means++: the advantages of careful seeding, Proc. 18th ACM-SIAM symposium on Discrete algorithms (SODA07), New Orleans,
Louisiana, 2007, pp. 1027–1035.

[45] R. Maitra, Initializing partition-optimization algorithms, IEEE/ACM Trans. Computational Biology and Bioinformatics (TCBB09) 6 (1) (2009) 144–157.
[46] L. Parsons, E. Haque, H. Liu, Subspace clustering for high dimensional data: a review, ACM SIGKDD Explorations Newsletter 6 (1) (2004) 90–105.
[47] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman, Indexing by latent semantic analysis, Journal of the American Society for Information

Science 41 (1990) 391–407.
[48] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation, Journal of Machine Learning Research 3 (2003) 993–1022.
[49] P. Mitra, C.A. Murthy, S.K. Pal, Unsupervised feature selection using feature similarity, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (3)

(2002) 301–312.
[50] N. Wiratunga, R. Lothian, S. Massie, Unsupervised feature selection for text data, Proc. 8th European Conf. on Case-Based Reasoning, 2006, pp. 340–354.
[51] Q. Wu, Y. Ye, M. Ng, H. Su, Hanjing, J. Huang, Exploiting word cluster information for unsupervised feature selection, Proc. Trends in Artificial Intelligence

(PRICAI10), 2010, pp. 292–303.
[52] D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, Proc. 16th ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining

(KDD10), 2010, pp. 333–342.
[53] Y. Zhang, Z.H. Zhou, Multilabel dimensionality reduction via dependence maximization, ACM Trans. on Knowledge Discovery from Data 4 (3) (2010) 1–21.
[54] Y.B. Liu, J.R. Cai, J. Yin, A.W.C. Fu, Clustering text data streams, J. Comp. Sci. Tech. 23 (1) (2008) 112–128.
[55] J.W. Leea, N.H. Park, W.S. Lee, Efficiently tracing clusters over high-dimensional on-line data streams, Data and Knowledge Engineering 68 (3) (2009) 362–379.
[56] R. Huang, W. Lam, An active learning framework for semi-supervised document clustering with language modeling, Data and Knowledge Engineering 68 (1) (2009)

49–67.
Argyris Kalogeratos received the B.Sc. and M.Sc. degrees in Computer Science from the University of Ioannina, Ioannina, Greece, in
2006 and 2008, respectively. Currently, he is pursuing the Ph.D. degree in the Department of Computer Science, University of Ioannina.
His research interests include machine learning, data clustering, text representation and mining.
Aristidis C. Likas received the Diploma degree in electrical engineering and the Ph.D. degree in electrical and computer engineering
from the National Technical University of Athens, Greece, in 1990 and 1994, respectively. Since 1996, he has beenwith the Department
of Computer Science, University of Ioannina, Greece, where he is currently an Associate Professor. His research interests include
machine learning, data mining, multimedia content analysis and bioinformatics.

Unlabelled image
Unlabelled image

	Document clustering using synthetic cluster prototypes
	Introduction
	Background
	Document representation
	Properties of the representation space of documents
	Clustering using k-means family of methods
	Text document subspace clustering

	The k-synthetic prototypes clustering method
	Clustering using centroids and medoids
	Synthetic cluster prototypes
	Definition of parameters
	Refining the solution of k-synthetic prototypes
	Selecting the k-sp parameters
	Implementation and complexity

	Experimental evaluation
	Clustering methods
	Datasets
	Real data
	Artificial data

	Cluster evaluation measures
	Experimental results
	Robust cluster representation
	Clustering performance results

	Discussion
	Conclusions
	References

