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In this paper, we demonstrate how the differential Earth Mover's Distance (EMD) may be used for visual
tracking in synergy with Gaussian mixtures models (GMM). According to our model, motion between
adjacent frames results in variations of the mixing proportions of the Gaussian components representing the
object to be tracked. These variations are computed in closed form by minimizing the differential EMD
between Gaussian mixtures, yielding a very fast algorithm with high accuracy, without recurring to the EM
algorithm in each frame. Moreover, we also propose a framework to handle occlusions, where the prediction
for the object's location is forwarded to an adaptive Kalman filter whose parameters are estimated on line
by the motion model already observed. Experimental results show significant improvement in tracking
performance in the presence of occlusion.
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1. Introduction

One important field in computer vision is tracking. Tracking is the
procedure of generating an inference about motion given a sequence
of images. Solutions to this problem have a variety of applications,
some of them being: surveillance, targeting, recognition frommotion,
motion-based video compression, teleconferencing, video indexing
and traffic monitoring. In tracking problems, it is assumed that the
model of the object is known, that is how the object looks like, or its
appearance. Based on a set of measurements in image frames the
object's position should be estimated. In that context, the Differential
Earth Mover's Distance (DEMD) tracking algorithm [40,41] was re-
cently presented. In this method, the object is represented by a
histogram (called a signature) and the distance between signatures in
consecutive frames to be minimized is the Earth Mover's Distance
[25]. The computational complexity of the EMD prevents a direct
implementation in many real time applications. To overcome this
drawback, the DEMD algorithm based on sensitivity analysis of the
simplex method provides an acceleration compared with its standard
counterpart [40,41].

Motivated by the efficiency of the differential EMD tracking
algorithm [40,41] and the compactness of the representation of prob-
ability densities using Gaussian mixture models [5], we propose in
this paper to first model the appearance of the target by a Gaussian
mixture model trained on a weighted likelihood and then to employ
the differential EMD approach for tracking. According to our model,
motion between adjacent frames results in variations of the mixing
proportions of the Gaussian components representing the object.
These variations affect the distance between themixtures, at the same
image location, representing the object in consecutive frames. By
these means, the gradient of the EMD, namely the differential EMD
[40,41], between Gaussian mixtures shows the direction of the
minimum and consequently the target location.

Moreover, in a second phase of this work, we propose to consider
the estimated location of the target as a measurement (observation)
of a time-varying Kalman filter in order to address cases presenting
occlusions. Hence, the prediction for the object's location is forwarded
to a Kalman filter whose state matrix parameters are not constant but
they are updated on-line based on recent history of the estimated
motion.

The contribution of the presented work is twofold. At first, the
proposed approach leads to a significant improvement in terms of
execution time with respect to the differential EMD tracking
algorithm [40,41] without compromising the accuracy of the method.
At second, based on the motion model already observed, occlusions
are successfully handled by modifying on-line the state matrix of a
Kalman filter.

The remainder of the paper is organized as follows: A review
of tracking algorithms is presented in Section 2. In Section 3, the
modeling of the object to be tracked by a Gaussian mixture is
presented. The tracking algorithm relying on the minimization of
the Earth Mover's Distance between Gaussian mixtures is presented
in Section 4. In Section 5, the extension of the algorithm in order to
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address the problem of occlusion is described. Experimental results
are shown in Section 6 which is followed by our conclusion in
Section 7.
2. Related work

Tracking algorithms may be classified in two categories [9]. The
first category is based on filtering and data association, while the
second family of methods relies on target representation and
localization. The algorithms based on filtering assume that the
moving object has an internal state which may be measured and, by
combining the measurements with the model of state evolution, the
object's position is estimated. The first method of that category is
the Kalman filter [28] which successfully tracks objects even in the
case of occlusion if the assumed type of motion is correctly modeled
[11]. Another approach in this category is the particlefilters [2,37]. This
category also includes Condensation [16] and ICondensation [17]
algorithms which are more general than Kalman filters, as they do not
assume specific type of densities and, using factored sampling, have
the ability to predict an object's location under occlusion as well.
Also, in this category, methods based on feature extraction and
tracking were also proposed [32]. The object is represented by a set of
scale invariant landmarks [18] which are tracked using optical flow
[19,27]. These methods have the drawback that the type of object's
movement should be correctly modeled.

On the other hand, tracking algorithms relying on target rep-
resentation and localization employ a probabilistic model of the
object appearance and try to detect this model in consecutive frames
of the image sequence. More specifically, color or texture features of
the object, masked by an isotropic kernel, are used to create a his-
togram. Then, the object's position is estimated by minimizing a
cost function between the model's histogram and candidate histo-
grams in the next image. A representative method in this category is
the mean shift algorithm [9] where the object is supposed to be inside
an ellipse and the histogram is constructed from pixel values inside
that ellipse. Extensions of the main algorithm are proposed in [34]
where the mean shift is combined with particle filters, in [42] where
scale invariant features are used and in [36] where various distance
measures are associated with the mean shift algorithm. Other ap-
proaches using multiple kernels [12] and a Newton style optimization
procedure [14] were also proposed. The DEMD tracking algorithm
[40,41] also belongs to the category of methods relying on target
representation and localization.

The above methods track only one object at a time. Other works
track many objects simultaneously [1,4,7,30] and in these cases oc-
clusions may be detected more efficiently. Moreover, the object to be
tracked is usually represented by its color histogram, but this is
not always necessary. A Gaussian mixture model (GMM) was used in
[33] to represent the object in a joint spatial-color space and in [29]
for background subtraction and the contour of the object was tracked
in [26,39]. Moreover, it is well-known that a level set representation
also addresses the problem of multiple objects [10,20,22–24]. In any
case, combining multiple object representations could make the
tracking procedure more robust [15,21,31,35]. Finally, in [6], multiple
views of an object are learnt through Principal Component Analysis
(PCA) and a Support Vector Machine (SVM) classifier was also used in
[3]. A review of tracking methods can be found in [38].
3. Target appearance modeling

In this section we present the basic idea of minimizing the Earth
Mover's Distance between Gaussian mixture models for tracking. We
describe the GMM as a way of representing an object's appearance
and define the EMD as a distance between two GMM.
3.1. Background on weighted Gaussian mixture models

A one dimensional Gaussian distribution has a probability density
function given by

N In jμ ;σð Þ = 1ffiffiffiffiffiffi
2π

p
σ
exp − In−μð Þ2

2σ2

 !
ð1Þ

where In is the intensity of the nth pixel, μ is the mean value and σ2 is
the variance of the distribution.

Let two Gaussian distributions be:

f1 Inð Þ = N In jμ1;σ1ð Þ; f2 Inð Þ = N In jμ2;σ2ð Þ: ð2Þ

The Gaussian mixture model (GMM) is a convex combination of
Gaussian components [5]. A single component is given by Eq. (1) and
the GMM with m components is expressed by

f In jμ;σ;πð Þ = ∑
m

i=1
πiN In jμ i;σið Þ ð3Þ

where μ={μi}i=1,…,m, σ={σi}i=1,…,m and π={πi}i=1,…,m, are the
model parameters. The parameters πi represent the importance of
each component and satisfy the constraints ∑ i=1

m πi=1 and πi≥0,
∀ i=1,…,m.

We assume that we have grayscale images, and each object may be
described by the intensities of its pixels. An object is represented by an
ellipsoidal region, and the object's pixels are those lying inside that
region. The usual way to represent an object is by histograms of mh

bins. This approach has the disadvantage that the number of the bins
must be specified a priori. However, it is a very common and efficient
way of modeling the object to be tracked in the majority of the state
of the art trackers [9].

In this work we propose the representation of an object using a
GMM. The parameters of the GMM are estimated by clustering
the density values of the object's pixels using the EM algorithm [5].
An advantage of the GMM representation is that the number of
components m is significantly smaller than the number of distinct
intensities.

Every object may be represented by an ellipsoidal region with
finite precision. As an effect, inside the ellipse, there will be regions
not belonging to the object. Usually, these regions exist at the edges of
the ellipse. To eliminate the influence of regions not belonging to the
object, the ellipse is weighed by a kernel as will be explained below.

At first, we assume that the center of the ellipse is in the spatial
location (0,0). Then, the ellipse is normalized to a unit circle by
dividing each pixel coordinates by hx and hy, which are the sizes of the
ellipse in the horizontal and vertical directions respectively. Let the
normalized pixel locations be (xn,yn). An isotropic kernel, with profile
k(x), is applied to pixels inside the unit circle to attribute
corresponding weights at every pixel. The weight for a pixel indexed
by n is defined by

wn =
k x2n + y2n
� �

∑N
i = 1 k x2i + y2i

� � : ð4Þ

Notice that xn2+yn
2≤1 because the point (xn,yn) is inside the unit

sphere and ∑n=1
N wn=1. The kernel profile k(x) is a convex

monotonic decreasing function such that k : 0;∞Þ→R½ and g is the
negative derivative of the kernel function, g(x)=−k′(x). We use a
kernel with Epanechnikov profile [9]

k xð Þ =
1
2

1−xð Þ if x≤1

0 otherwise

8<
: ð5Þ
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Let I={In}n=1,…,N be the intensity values of the pixels inside the
unit circle as defined above and let W={wn}n=1,…,N be the
corresponding normalized weights of each sample. The weighted
likelihood of the model is expressed by

L I;W jμ ;σ;πð Þ = ∑
N

n=1
wnlog f In jμ ;σ;πð Þð Þ

= ∑
N

n=1
wnlog ∑

m

i=1
πiN In jμ i;σið Þ

� � ð6Þ

and the update equations of the Expectation-Maximization (EM)
algorithm that maximize this likelihood are:

• Expectation step: Compute responsibilities

γni =
πiN In jμ i;σið Þ

∑m
j = 1πjN In jμ j;σj

� � : ð7Þ

• Maximization step: Estimate parameters

π̂i = ∑
N

n=1
wnγni; ð8Þ

μ̂ i =
∑N

n = 1wnγniIn
∑N

n = 1wnγni
; ð9Þ

σ̂2
i =

∑N
n = 1wnγni In− μ̂ i

� �2
∑N

n = 1wnγni
: ð10Þ

The above iterations are repeated until convergence of the like-
lihood. In our method the EM algorithm is applied at the initialization
step and when significant changes are observed, in order to infer the
GMM parameters that are to be tracked in the following frames.

3.2. Earth Mover's Distance between Gaussian mixture model

Having computed the parameters μ={μ i}i=1,…,m, σ={σi}i=1,…,m,
and πM={πi

M}i=1,…,m of the object's model, in the next frame we
assume that the new center of the ellipse comprising the target is
located at the normalized coordinates y of the next frame. In the above
notation, the exponent M in πM represents the object's model. We
assume that the colors of the object and the background do not change
abruptly, so the target GMM candidates have the same mean and
variance as their counterpart in the initial frame and the only difference
is the importance (mixing proportion) of each component. The model
for the background may change between frames but it should have
limited overlapwith themodel of the object. The only problem is when
pixels from the background have the same intensity with pixels
belonging to the object (camouflage). In case the mixing proportions
of the GMM do not change smoothly between frames, this is an
indication that important illumination changes occur. Therefore, the
GMM needs to be trained again to take into account the new illu-
mination conditions.

An illustrative example is presented in Fig. 1, where the number of
components m=3, highlights the change in each component's
importance. The value for m is appropriate for this example. This
parameter actually depends on the colors of the object (e.g. it can be
determined by the number of colors belonging to the object and
those belonging to the background). Statistical criteria may also be
employed in order to estimate more accurately the number of
components [13]. In the images at the left, the ellipse remains at
the same spatial location, while the racket is moving downwards. In
the right figures, the horizontal axis represents the gray levels and
the vertical axis represents the probability of each gray level (3). Each
GMM has three components. As the racket is moving outside of the
ellipse, the mixing proportions associated with the object get smaller
while the mixing proportion representing the background is
increasing.

Therefore, the GMM parameters for the candidate object in the
next frame (described by an exponent C) are μ={μ i}i=1,…,m, σ=
{σi}i=1,…,m, and πC yð Þ = πC

i yð Þ	 

i=1;…;m, where the mixing propor-

tions depend on the location y. This means that the centers μ i and
the variances σ i

2 remain unchanged through time. Also, by assuming
that πC

i yð Þ do not change dramatically through time, Eqs. (7) and (8)
of the EM algorithm may be used to estimate the proportions πC

i yð Þ.
We must point out that the EM is used only in the initial image. In all
other images, only computation of the proportion πC yð Þ is made, as
means μ and variances σ remain unchanged (due to the fact that
the color and the luminance of the object remain unchanged). By
substituting πi←πiM andπ̂i←πC

i yð Þ in Eqs. (7) and (8) respectively, the
mixing proportions for the candidate object is:

πC
i yð Þ = 1

N
∑
N

n=1
wC

n yð Þ
πM
i N ICn yð Þ jμ i;σi

� �
∑m

j = 1π
M
j N ICn yð Þ jμ j;σj

� � ð11Þ

where ICn yð Þ is the image intensity of the nth pixel of the candidate
object at location y,wC

i yð Þ are the normalized pixel weights inside the
unit circle in the next image and N is the number of the pixels.

As the means μ i and the variances σi
2 of the GMM in the initial and

the current frames are the same, the parameters for the first GMM are
defined by μ={μ i}i=1,…,m, σ={σi}i=1,…,m, and πM={π i

M}i=1,…,m

and for the second one are μ={μ i}i=1,…,m, σ={σi}i=1,…,m, and
πC yð Þ = πC

i yð Þ	 

i=1;…;m. We define the EarthMover's Distance (EMD)

between two GMM as [25]:

EMD yð Þ = min
fuv

∑
m

u=1
∑
m

v=1
fuv yð Þduv

� �
ð12Þ

subject to

∑m
u=1 fuv yð Þ = πC

v yð Þ; 1≤v≤m

∑m
v=1 fuv yð Þ = πM

u ; 1≤u≤m

∑m
u=1∑m

v=1 fuv yð Þ = 1

fuv yð Þ≥0; 1≤u≤m;1≤v≤m

ð13Þ

where duv is the symmetric Kullback–Leibler distance given by

du;v =
1
2

σ2
u

σ2
v

+
σ2
v

σ2
u
+ μu−μvð Þ2 1

σ2
u
+

1
σ2
v

� �
−2

" #
= DKL fu j fvð Þ + DKL fv j fuð Þ;

ð14Þ

whereDKL(f1| f2) is the Kullback–Leibler divergence [5] between f1 and
f2 is defined as

DKL f1 j f2ð Þ = 1
2

log
σ2
2

σ2
1

 !
+

σ2
1

σ2
2

+
μ2−μ1ð Þ2

σ2
2

−1

" #
: ð15Þ

The product fuv yð Þduv represents the work needed to transfer a
quantity of fuv yð Þ amount of solid to a distance duv. These transfers
must be performed in such a way that the total work is minimum.
Hence, EMD yð Þ represents the work which must be produced to fill
the holes of the second GMM using earth of the first GMM. We must
notice that this fill is always possible because ∑m

u = 1π
M
u = 1 and

∑m
v = 1π

C
v yð Þ = 1: In other words, the amount of earth in the hills is

exactly equal to the amount needed by the holes to be fulfilled.



Fig. 1. Variations of the GMM parameters during tracking. As the racket moves, the component that corresponds to the background (π3) increases its proportion in the GMM due to
the fact that more pixels belonging to the background are inside the ellipse. On the other hand, components corresponding to the object (π1 and π2) reduce their responsibilities γni in
the model because pixels belonging to the object get out of the ellipse. Nevertheless, the means and variances of the model components remain unchanged because the object and
background colors change smoothly.
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4. Target tracking

To locate the target, we must find the ellipse with the center
located at ŷ which is most similar to the ellipse of the model. In other
words, a local minimum of EMD yð Þ must be found:

ŷ = argmin
y

EMD yð Þ½ � ð16Þ
The computation of the EMD between the GMM of the target
model and the GMM of the target candidate is computationally
expensive if it is repeated for every possible location y in the target
frame. In order to accelerate the procedure, following the principles
proposed in [40,41], we initialize the center y at the old center
estimated in the previous frame, and we calculate the gradient of the
EMD yð Þ with respect to y and use it to determine a new location. The
same step is repeated until the value of EMD yð Þ in the new location
increases.



Algorithm 1
Differential EMD with GMM (MDEMD).

Input: The center yi−1 of the object in the previous frame
i-1 and the GMM parameters of the object to be tracked.
Output: The center yi of the object in the current frame i.

1 Initialization: Set y0 = yi−1 and evaluate EMD y0ð Þ using
Eq. (12).

2 Compute ∇yEMD y0ð Þ using Eq. (27).
3 Choose one of the 8 neighbors of y0 in the direction of the

gradient∇yEMD y0ð Þ: Let y1 be the coordinates of this pixel.
Evaluate EMD y1ð Þ using Eq. (12).

4 If EMD y1ð ÞbEMD y0ð Þ set y0←y1 and go to step 2.
Else return yi←y0.
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To solve the optimization problem (Eq. (16)), we have to calculate
the derivative ∇yEMD yð Þ and choose the neighbor pixel in the di-
rection of the derivative. Using the chain rule [40,41] yields

∇yEMD yð Þ = ∑
m

v=1

∂EMD yð Þ
∂πC

v yð Þ ∇yπ
C
v yð Þ ð17Þ

The calculation of ∇yEMD yð Þ is described in [40,41]. Here we
summarize the key steps. The difference with [40,41] is the usage of
GMM instead of color signatures, which yields to a different formula
for the computation of∇yπC

v yð Þ and consecutively for the computation

of ∇yEMD yð Þ. The formula for
∂EMD yð Þ
∂πC

v yð Þ is the same as in [40,41]. At

first, Eq. (12) and the constraints in Eq. (13) are transformed to
matrix–vector form. There are m×m variables fuv yð Þ and m×m
constants duv stacked in vectors f yð Þ and d both of size m2×1. Taking
together the first three constraints in Eq. (13), a matrix Sð of sizem2+
1)×m2 is createdwhose elements are 0 or 1.We also define the vector

b yð Þ = πC yð Þ� �T
; πM
� �T

;1
h iT

: Using these notations, Eq. (12) may be

written as

EMD yð Þ = min
f

dT f yð Þ ð18Þ

and the constraints in Eq. (13) now become

Sf yð Þ = b yð Þ
f yð Þ≥ 0 ð19Þ

The above linear programming problem is solved by the simplex
method [8]. Since the matrix S has rank 2m-1, there are 2m-1 basic
variables, which will be denoted by fB yð Þ. Also there are m2−2m+1
non basic variables, which will be denoted by fNB yð Þ. Similarly, we
denote by dB and dNB the elements of vector d = dBdNB½ �T : Finally, SB
and SNB are the columns of matrix S corresponding to the basic and
non basic variables fB yð Þ and fNB yð Þ respectively. Eq. (19) can now be
written as

SB SNB½ � fB yð Þ
fNB yð Þ
� �

= b yð Þ ð20Þ

By performing sensitivity analysis the derivatives
∂EMD yð Þ
∂πC

v yð Þ are
computed as [40,41]:

∂EMD yð Þ
∂πC

v yð Þ = kv−∑
j=1
j≠ v

m

kj
bj

∑m
l = 1
l ≠ v

bl
ð21Þ

where kv = ∑2m−1
l = 1 dBð Þl S−1

B

� �
lv:

To calculate ∇yπC
v yð Þ, which is the different part of our method

with respect to the original DEMD paper [41], the derivative of
Eq. (11) with respect to y must be computed. After some algebraic
manipulation this leads to

∇yπ
C
v yð Þ = 1

N
∑
N

n=1
BnCn;v + wn An;vI′

C
n yð Þ

h i
; ð22Þ

where

wn =
k ∥xn−y∥2
� �

∑m
i = 1 k ∥xi−y∥2

� � ; ð23Þ
An;v = ∑
m

i=1
Cn;v Ci;v

ICn yð Þ−μv

σ2
v

− ICn yð Þ−μ i

σ2
i

" #" #
; ð24Þ

Bn =
2g ∥xn−y∥2
� �

xn−yð Þ∑N
i = 1 k ∥xi−y∥2

� �
−2k ∥xn−y∥2

� �
∑N

i = 1 g ∥xn−y∥2
� �

xi−yð Þh
∑N

i=1 k ∥xi−y∥2
� �i2 ;

ð25Þ

Cn;v =
πM
v N ICn yð Þ jμv;σv

� �
∑m

j = 1π
M
j N ICn yð Þ jμj;σj

� � : ð26Þ

In the above equations, I′Cn yð Þ is the spatial derivative of the
intensity of the nth pixel of the candidate object at location y.

Substituting Eqs. (21) and (22) in Eq. (17) yields the gradient of
the EMD energy in closed form:

∇yEMD yð Þ = 1
N

∑
N

n=1

"
Bn ∑

m

v=1

∂EMD yð Þ
∂πC

v yð Þ Cn;v

� �
+ wnI′

C
n ∑

m

v=1

∂EMD yð Þ
∂πC

v yð Þ An;v

� �#

ð27Þ

The overall tracking algorithm is summarized in Algorithm 1. We
call this algorithm Mixture-based DEMD (MDEMD). After the
computation of the derivative, one of the eight neighbor pixels is
chosen. This pixel is the one that its center is closest to the line that is
defined by the gradient.
In order to handle target scaling changes, the main idea is to try
different sizes for the ellipse and select the one with the minimum
EMD. An extension to the notationmust be used to introduce the time
variable. At time t, the ellipse has axes hx

t and hy
t . The canonical

coordinates xn (used by Algorithm 1) of the pixels inside the ellipse
at time t, are computed by taking into account hxt and hy

t . The current
ellipse, representing the object, is obtained using Algorithm 1
(MDEMD). Then, two new GMMs are constructed. The first GMM is
trained using the pixels of a smaller ellipse (same center, smaller axes
with respect to the current ellipse), while the other is trained using
the pixels of a bigger ellipse (same center, bigger axes with respect to
the current ellipse). If both of the new GMMs have greater EMD with
the initial GMM compared to the EMD of the current ellipse with the
initial GMM then the procedure stops. Otherwise the ellipse with
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the smaller EMD is selected and this procedure is repeated. This
procedure is summarized in Algorithm 2.
Algorithm 2
Scale adaptation on MDEMD.

Input: The center yi−1 and the axes size hx
i−1 and hy

i−1 of
the object in the previous frame i-1, and the GMM
parameters of the object to be tracked.
Output: The center yi and the axes size hx

i and hy
i of the

object in the current frame i.
1 Initialization: Set y0 = yi−1, hx=hx

i−1 and hy=hy
i−1.

2 Call MDEMD with input y0 and axes size hx and hy. Store
the center return by MDEMD to yi:

3 Compute e = EMD yi
� �

using Eq. (27), using size axes hx
and hy.

4 Compute eþ = EMD yi
� �

using Eq. (27), using size axes
1.1hx and 1.1hy.

5 Compute e− = EMD yi
� �

using Eq. (27), using size axes
0.9hx and 0.9hy.

6 If e+be− and e+be, set y0 = yi and axes size hx=1.1hx
and hy=1.1hx. Go to step 2.

7 If e−be+ and e−be, set y0 = yi and axes size hx=0.9hx
and hy=0.9hx. Go to step 2.

8 Return yi and the axes size hx
i =hx and hy

i =hy.
5. Robustness to occlusions

In this section we combine the differential MEMD algorithmwith a
Kalman filter to handle occlusions.

5.1. Background on Kalman filter

In general, we assume that there is a linear process governed by
an unknown inner state producing a set of measurements. More
specifically, there is a discrete time system and its state at time n is
given by vector xn. The state in the next time step n+1 is given by

xn+1= Fnxn + wn ð28Þ

where Fn is the transition matrix from state xn to xn + 1 and wn is the
white Gaussian noise with zero mean and covariance matrix Q n:

The measurement vector zn is given by

zn = Hnxn + vn ð29Þ

whereHn is themeasurementmatrix and vn is thewhite Gaussian noise
with zeromean and covariancematrixRn. In Eq. (29), themeasurement
zn depends only on the current state xn and the noise vector vn is
independent of the noisewn.

The Kalman filter approach computes the minimum mean-square
error estimate of the state xk given the measurements z1;…; zk: The
solution is obtained using a recursive procedure [28].

5.2. Differential EMD with GMM and Kalman filter

The main idea behind the combined approach is to find the
position of the object with Algorithm 1 (measurement) and forward
it to the Kalman filter to obtain the current position of the object
(estimation). The transition matrix Fn is not known in the beginning
and is estimated by the algorithm.

We assume that the object is described by its center coordinates
(x,y) and the axes (hx,hy) of the ellipse around it and that the size
of the ellipse does not change through time. The state vector
xn = xn; yn;1½ �T is the position of the center in the image in
homogenous coordinates (xn and yn are the horizontal and vertical
coordinates respectively) and its position varies over time as
described in Eq. (28). The matrix Fn is defined as:

Fn =
1 0 dxn
0 1 dyn
0 0 1

2
4

3
5

where dxn dyn are the horizontal and vertical translations of the
object's center. Parameters dxn dyn are not constant in time, but they
are computed dynamically as it will be explained below. The noise
vector wn = wnx ;wny ;1

 �T has covariance matrix Q :

We employ Algorithm 1 to obtain the measurement vector
zn = x′n; y′n�T

h
where x′n and y′n are the horizontal and vertical

coordinates of the ellipse center. In general, these measurements
differ from the state variables xn and yn of vector xn due to the
presence of noise vn. The relation between measurement zn and state
xn is given by Eq. (29), where

H = 1 0 0
0 1 0

� �

and the measurement noise vn = vnx ; vny
 �T has covariance matrix R:

The only problem that remains to be solved is the automatic
evaluation of dxn and dyn. Using Algorithm 1 we obtain:

• the measurement zn,
• the distance between the mixture components of the model of the
target and the target candidate.

The main idea is to use the computed distance to determine if the
object was found or not. This provides a qualitymeasure of the current
estimate of the object. If the distance is small, then we have a good
chance that the object's center is near the predicted center. If this
distance is large, then, the target is lost. This distance is expressed as a
normalized coefficient:

a yð Þ = exp −cEMD yð Þð Þ ð30Þ

where EMD yð Þ is given by Eq. (12) and it is the EMD distance between
the source and target GMMat position y and c is a constant. The role of
parameter c in Eq. (30) is important as it adjusts the influence of the
observation in cases where EMD yð Þ has a relatively large value. In the
experiments performed in this work, a value for c around 10 is a good
compromise because it leads to a very small value of a yð Þ when the
object is not practically observed, which is desirable. The value of a yð Þ
is an estimation of how confident we are that the object is found. If
we are not sure the object is correctly located, then we follow the
previous movement of the object, assuming that occlusion took place.
On the other hand, whenwe are convinced that the object is inside the
ellipse, we update our knowledge about the object's movement.
Relying on the value of a in Eq. (30), parameter dn = dxn;dyn½ �T is
automatically updated by:

dn+1 = 1−a x̂n

� �� �
dn + a x̂n

� �
x̂n− x̂n−1

� �
ð31Þ

where x̂n is the vector containing the estimated values of the
horizontal and vertical coordinates of the ellipse center at time n. In
view of Eq. (31), the estimate x̂n contributes to the updates of the
displacement dn only when the current estimate resembles the
source object model, that is when a x̂n

� �
→1: On the other hand when

a x̂n

� �
→0, the displacements included in the state matrix Fn remain

nearly unchanged, as they were in step n-1, assuming that the object
is occluded. This process has the advantage that the matrix Fn
incorporating information on the object movement can be updated by
the tracking algorithm.



Fig. 2. Representative frames of the image sequences used in the experiments.
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Algorithm 3 summarizes the differential MEMD tracking algorithm
with Kalman filtering. Note that step 4 uses a tracking algorithm to
estimate the position of the object. This algorithm may also use mean
shift or DEMD instead of MDEMD.
Table 1
Tracking accuracy. The average normalized Euclidean distance between the true object
center and the estimated object center is presented for the compared methods.

Sequence Seq1 Seq2 Seq3 Seq4 Seq5 Seq6

Frames 129 80 400 221 106 285
MS (16 bins) 0.44 0.38 0.46 4.01 0.07 2.08
DEMD (8 bins) 0.16 0.17 0.39 4.09 0.05 2.56
DEMD (16 bins) 0.17 0.16 0.36 0.41 0.05 2.50
MDEMD (3 components) 0.20 0.15 0.38 0.38 0.05 2.14
MDEMD (4 components) 0.23 0.15 0.40 0.51 0.06 1.98
MDEMD (6 components) 0.97 0.27 0.48 4.03 0.05 2.11
MS-K (16 bins) 0.55 0.47 0.48 5.47 0.09 0.72
DEMD-K (16 bins) 0.19 0.22 0.42 0.44 0.06 0.56
MDEMD-K (4 components) 0.25 0.25 0.39 0.94 0.05 0.48

The numbers in bold indicate the method providing the best performance for the
respective image sequence.

Algorithn 3
Differential EMD with GMM and Kalman filter.

1 Initialization: x̂0=initial object location:

P0 =
0 0 0
0 0 0
0 0 0

2
4

3
5; Q =

hx 0 0
0 hy 0
0 0 0

2
4

3
5; R =

hx 0 0
0 hy 0
0 0 0

2
4

3
5; F0 = I3×3:

2 Compute initial GMM0 in the first frame as described in
Section 3.1.

3 Prediction:

x̂−
n = Fnx̂n−1;P

−
n = FnPn−1F

T
n + Q ;Gn = P−

n HT
n HnP

−
n HT

n + R
h i−1

:

4 Measurement: Compute the new center (zn), the new
GMM and the distance between GMM and GMM0 using
MDEMD (Algorithm 1).

5 Estimation:

x̂n = x̂−
n + Gn zn−Hn x̂

−
n

� �
;Pn = I−GnHnð ÞP−

n :

The output x̂n is the object's new location.
6 Update the elements of Fn using Eq. (31).

Go to the Prediction step for the next iteration.
Scale changes could also be handled directly in the Kalman filter. In
that case, the state matrix Fn and the observation matrix H should be
changed accordingly to take into account the scale parameter. The
state vector would be xn = xn; yn; hn;1½ �T , where hn is the scale
parameter at time n. The state evolution matrix would then be:

Fn =

1 0 0 dxn
0 1 0 dyn
0 0 1 dhn
0 0 0 1

2
664

3
775

where dhn is the scale change between time instants n-1 and n. The
observation matrix would be accordingly:

H =
1 0 0 0
0 1 0 0
0 0 1 0

2
4

3
5

The measurement vector would also contain the scale parameter
zn = xn; yn;hn½ �T , as it would also be the case for the parameter vector
dn = xn; yn;hn½ �T in Eq. (31) which is still valid. Finally, in step 4 of
Algorithm 3, the new center and scale would be computed using
Algorithm 2 instead of Algorithm 1.

image of Fig.�2


Table 2
Average execution times for the compared methods (s/frame).

Sequence Seq1 Seq2 Seq3 Seq4 Seq5 Seq6

Frames 129 80 400 221 106 285
MS (16 bins) 1.64 2.91 0.66 0.55 8.05 0.36
DEMD (8 bins) 1.14 1.88 0.58 0.48 2.30 0.40
DEMD (16 bins) 2.42 3.82 1.39 1.42 4.67 2.45
MDEMD (3 components) 0.53 0.89 0.23 0.21 1.81 0.20
MDEMD (4 components) 0.52 0.77 0.24 0.20 1.71 0.22
MDEMD (6 components) 0.55 0.80 0.27 0.23 1.66 0.17
MS-K (16 bins) 2.19 3.85 0.68 0.64 10.53 0.38
DEMD-K (16 bins) 3.48 4.86 1.32 1.68 6.38 1.04
MDEMD-K (4 components) 0.58 0.49 0.24 0.16 1.56 0.28

The numbers in bold indicate the method providing the best performance for the
respective image sequence.

Table 3
Average number of iterations per frame for the compared methods (iterations/frame).

Sequence Seq1 Seq2 Seq3 Seq4 Seq5 Seq6

Frames 129 80 400 221 106 285
MS (16 bins) 2.98 3.86 1.00 1.90 2.17 1.10
DEMD (8 bins) 4.76 4.90 2.40 3.46 3.36 2.78
DEMD (16 bins) 4.71 4.82 2.56 3.77 3.46 2.77
MDEMD (3 components) 2.43 2.62 1.23 2.34 1.88 1.51
MDEMD (4 components) 2.27 2.22 1.27 2.10 1.75 1.39
MDEMD (6 components) 2.05 2.05 1.17 1.95 1.67 1.29
MS-K (16 bins) 3.86 5.31 1.03 2.37 2.93 1.34
DEMD-K (16 bins) 6.57 7.15 2.46 4.87 4.54 2.89
MDEMD-K (4 components) 2.58 1.48 1.54 1.66 1.44 1.30

The numbers in bold indicate the method providing the best performance for the
respective image sequence.

Fig. 3. Seq5. Representative frames and the normalized Euclidean distances between the
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6. Experimental results

To evaluate the proposed algorithm MDEMD, we have per-
formed comparisons with the mean shift algorithm [9] and the
standard DEMD tracking method [40,41]. In the same context, we
have also evaluated the Kalman based DEMD tracker (MDEMD-K).
The proposed adapted Kalman filter is also combined with the
mean shift (MS-K) and the DEMD algorithm (DEMD-K) in order to
have a complete overview of its behavior. Six test sequences were
employed in the evaluation consisting of outdoor testing situa-
tions. The length of the sequences varies between 80 and 400
frames with one object to be tracked in every image sequence.
Representative frames are shown in Fig. 2. Each object is described
by its center, in image coordinates, and the size of the ellipse
around it (the ellipse has axes parallel to the image axes). The
ground truth in every image was determined manually. All the
algorithms assume knowledge of the object position only in the
first frame. The object position is estimated in the following
frames, using the corresponding algorithm. In all tests, the number
of histogram bins for the mean shift is 16 and for the standard
DEMD algorithms was 8 and 16 as suggested in [9,40,41]. The
number of the components in the proposed GMM based tracker
was selected to be 3, 4 and 6. The respective number of com-
ponents may not be suitable for every problem and it depends on
the complexity of the object to be tracked. As a rule of thumb, the
number of components is equal to the colors of the object plus the
colors of the background. For instance, by using three components,
we assume that two components belong to the object (e.g. in Seq5
a red car with black windows) and one component corresponds to
the background (e.g. the gray road). All the examples were carried
out with a core 2 Duo 1.66 GHz processor with 2 GB RAM under
Matlab.
ground truth and the estimates of the ellipse center for the compared algorithms.

image of Fig.�3
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Sequences Seq1 and Seq2 show a person walking from left to
right in an underground station (PETS 2006workshop). Seq3 shows a
car moving (PETS 2001 workshop). Seq4 shows a person walking
in an outdoor environment (BEHAVE dataset, University of Edinburgh,
School of Informatics, http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/
INTERACTIONS/). The last two sequences (Seq5 and Seq6) are created by
our group. They show a red car moving from left to right without
occlusion (Seq5) and with occlusion (Seq6).

To estimate the accuracy of the compared algorithms we measure
the normalized Euclidean distance between the true center (c) of the
object (as determined by the ground truth) and the estimated location
Fig. 4. Seq6. Representative frames and the normalized Euclidean distances between the
of the ellipse center (ĉ). The normalized Euclidean distance is defined
by

NED c; ĉ
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cx− ĉx
hx

 !2

+
cy− ĉy
hy

 !2
vuut ð32Þ

where we recall that hx and hy are the ellipse dimensions. This implies
that if NED c; ĉ

� �
b 1, then the estimated ellipse center ĉ is inside the
ground truth and the estimates of the ellipse center for the compared algorithms.

http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/
http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/
image of Fig.�4
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ground truth ellipse. By these means, the image size and the ellipse
dimensions do not influence the relative distance between (c) and (ĉ).

Table 1 summarizes the comparisons in terms of tracking accu-
racy. As it can be seen, the proposed algorithm has high accuracy (the
computed center is inside the ellipse of the actual object). The
standard DEMD algorithm confirms its efficiencywith respect tomean
shift, as it is presented in [40,41]. Moreover, the proposed algorithm
based on GMM is favorably compared with mean shift (Table 1).
Generally, all of the compared methods present high performances
with little differences. DEMD performs better at Seq1 and Seq3,
MDEMD is more accurate at Seq2 and Seq4 and all of the methods
achieve similar results at Seq5. Also, the employment of Kalman filter
has the ability to track objects when occlusions occur, while the
other methods fail. When NEDN1 the target is lost, which is the case
for themethods not using the adapted Kalman filter (Seq6). Moreover,
MDEMD-K with four components provides highly better accuracy
with respect to MS-K and DEMD-K.

As it can also be observed in Table 1 when DEMD employs
relatively few bins its results deteriorate in comparison with con-
figurations using a larger number of bins. The opposite stands for
the proposed MDEMD. This is also confirmed by Seq4 (Table 1) where
DEMD with 8 bins totally misses the target (this is also true for
MDEMD with 6 components). This is a relative difficult sequence as
an indoor camera records a person moving from left to right outside.
There is a glass between the camera and the moving person. This
sequence has particular difficulties such as reflections due to the glass
and illumination changes between frames. These difficulties are re-
sponsible for the failure of mean shift (MS) even when it is jointly
applied with the adapted Kalman filter (MS-K).

The comparison of the three algorithms employing the Kalman
filter (last three rows of Table 1) reveals that DEMD and MDEMD
show similar accuracies (in any case they are better than mean shift).

In Table 2, the execution times (s/frame) of the comparedmethods
are shown. The proposed GMM based methods (MDEMD and
MDEMD-K) are significantly faster with respect to DEMD (Table 2).
This occurs because the number of GMM components is less than the
number of histogram bins. Therefore, the integration of mixtures in
DEMD tracking preserves the tracking accuracy and simultaneously
reduces the computational complexity.

In Table 3 we present the mean number of iterations needed for
each method to converge in a single frame. The values of this table
are independent from the machine used for the experiments and
better highlight the rate of convergence of the various algorithms. As it
can be seen the new MDEMD algorithm converges in fewer iterations
than the standard DEMD. Let us also notice that DEMD converges in
approximately the same number of iterations with 8 and 16 bins.
However the average execution timeper frame (as depicted in Table 2)
is almost doubled when using 16 bins. This is due to the augmented
complexity in the optimization algorithm. Furthermore, the applica-
tion of the adaptive Kalman filter reduces the number of iterations if
the motion model is correctly estimated.

A representative example of Seq5 is shown in Fig. 3. An example
with occlusion is presented in Fig. 4 where the red car is masked by
the trees. All of the compared algorithms successfully track the object
until it reaches the trees. However, only the algorithms employing the
proposed adaptive Kalman filter achieve in predicting its motion.

7. Conclusions

We have proposed a method for visual object tracking relying
on modeling the appearance of the object in the first frame using a
Gaussian mixture. The EM algorithm is applied to compute the initial
GMM. In the following frames, the location of the object is estimated
in a differential framework by the direction of the gradient of the EMD
with respect to the bi-dimensional image space [40,41]. This gradient
is computed in closed form and the key issue in this computation, is
the change in the responsibilities of the GMM components between
adjacent frames. In these images the EM is not applied, becausemeans
and variances do not change. Therefore, the algorithm is significantly
faster than the standard DEMD tracker [40,41] while retaining the
same high tracking accuracy. Also, the proposed algorithm is
combined with a Kalman filter to efficiently handle occlusions. The
prediction of the GMM-based DEMD tracker is considered as the
observation of a Kalman filter whose state parameters are automat-
ically determined based on recent motion history. By these means,
partial or total occlusions may be successfully addressed. Future work
consists in considering multiple target tracking, as in that case, the
current algorithm has to be executed independently for each object.
Also, other probabilistic modeling approaches could be employed for
the estimation of the parameters of the state matrix of the Kalman
filter.
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