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Abstract: A new relevance feedback (RF) approach for content-based image retrieval (CBIR) is presented, which uses Gaussian
mixture (GM) models as image representations. The GM of each image is obtained as an adaptation of a universal GM which
models the probability distribution of the features of the image database. In each RF round, the positive and negative
examples provided by the user until the current round are used to train a support vector machine (SVM) to distinguish
between the relevant and irrelevant images according to the preferences of the user. In order to quantify the similarity
between two images represented as GMs, Kullback–Leibler (KL) approximations are employed, the computation of which
can be further accelerated taking advantage from the fact that the GMs of the images are all refined from a common model.
An appropriate kernel function, based on this distance between GMs, is used to make possible the incorporation of GMs in
the SVM framework. Finally, comparative numerical experiments that demonstrate the merits of the proposed RF
methodology and the advantages of using GMs for image modelling are provided.
1 Introduction

In content-based image retrieval (CBIR), an image
description based solely on low-level visual features
(representing colour, texture, shape information, etc.) is
usually adopted (e.g. [1–4]). This image description is
subsequently used to compare the images of an image
database to one or more query images submitted by a user
as representative examples of his/her preferences and to
rank the database images according to their similarity
with the query. Then, the top images in the ranking are
displayed to the user as the retrieval results. For the
aforementioned comparison between the database images
and the query provided by the user, a distance measure
based on the specific image description used is needed.
The final target of this task is to retrieve images relevant
to the user query. To this end, and in order to improve
the retrieval results, a lot of effort has been devoted in
developing features and strategies appropriate to sufficiently
describe the image content (e.g. [5–10]). Nevertheless,
there is an intrinsic difficulty for low-level image features
to capture the human perception of image similarity.
Usually, it is the semantic content of an image that the
user is interested in, and this semantic content cannot be
described adequately using only low-level image features.
This well-studied problem is widely known as the semantic
gap.
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Relevance feedback (RF) is an interactive supervised
learning technique that has been proposed to bridge the
semantic gap between the low-level image features used
and the semantic content of the images and, thus, to
improve the retrieval results (e.g. [11–15]). In particular,
RF attempts to insert the subjective human perception of
image similarity into a CBIR system. In order for this to be
accomplished, the user is required to assess, in each RF
round, the retrieved images as relevant or irrelevant to the
initial query and to submit his/her assessment as a feedback
to the system. Then, the system takes into account this
feedback and updates in an appropriate way the image
ranking criterion.

Several RF approaches have been proposed that can be
classified into two main categories. The first category
concerns methods that are based on some learning model.
Among these methods are those that give the most
promising results in the field of RF for CBIR (e.g. [13, 16–
18]). It must be mentioned here that among all the learning
models used for this task, the most popular one is the
support vector machine (SVM). In what concerns SVMs,
several SVM variations have been proposed and a number
of different SVM kernels have been adopted, from typical
ones to more sophisticated (e.g. [13, 16, 17, 19–21]). In the
context of RF for CBIR, the learning models are trained in
each RF round to discriminate between the positive and
negative feedback examples provided by the user until the
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current RF round. Thus, in each RF round, a new decision
boundary between the classes of relevant and irrelevant
images is formed by the exploitation of the new feedback.
Then, the distance of each database image from the new
decision boundary is used as an updated ranking criterion.

The second category of RF methods includes those that
attempt to determine an appropriate representation for the
user query in the image feature space. This can be
interpreted as modelling the statistical distribution of
feedback examples in the feature space. These methods can
be further divided into two subcategories.

The first subcategory includes methods that make the
assumption that the feedback examples form one cluster in
the feature space, thus representing the query using the
corresponding centroid and a covariance-like matrix. Then,
the distance between the query and the database images is,
usually, expressed in the form of a Mahalanobis distance.
The cornerstone of such methods is MindReader [22].
Other methods that work under this assumption are
presented in [11, 12, 14]. Unfortunately, in most cases, the
single cluster assumption is very restrictive even for the set
of positive examples. Moreover, under this assumption the
negative feedback examples cannot be taken into account in
an easy way, because they naturally spread over different
semantic categories and, thus, it cannot be claimed that they
form one cluster.

The second subcategory includes methods which assume
that the feedback examples (either positive or negative)
form more than one cluster (e.g. [15, 23–26]). In order to
describe in a probabilistic manner a multi-cluster data set, a
multi-modal distribution model is needed that can be
obtained in two different ways. Either, when the images are
represented as vectors in a multidimensional space, it can
be used to approximate the distribution of the examples
provided by the user (e.g. [23, 24]) or, it can be used to
describe the distribution of the locally extracted feature
vectors of each image (e.g. [15, 25, 26]). In the first case, a
number of difficulties arise. In particular, in each RF round,
a new distribution model must be computed based on both
the new and the old examples. Furthermore, usually, the
user participates in few RF rounds and does not provide the
system with a sufficient number of examples in each round.
Thus, in most cases, it is difficult to robustly estimate
the distribution of, generally, very-high-dimensional
representations of the examples in the feature space. In the
second case, when one distribution model is used for each
image based on locally extracted feature vectors, the
situation is better, because a larger number of features will
be available for the distribution estimation. However, when
feature extraction techniques based on keypoint detection
are employed to extract features from the image (which
have been shown to be the most promising ones), the
extracted features are rather few and of high dimensionality.
Thus, the same question of robust distribution estimation
arises. In this work, a special technique is used to alleviate
this problem. Moreover, an efficiently computed distance
measure between these distribution models is needed. In
what concerns the multi-modal distribution models that can
be used for the previously described task, the most popular
and promising choice concerns Gaussian mixture (GM)
models.

GMs are a well-established methodology to model
probability density functions (pdfs), which is proven to
have a lot of merits, such as adaptability to the data,
modelling flexibility and robustness. Owing to these
advantages, GM models have been employed for a wide
532
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range of applications (e.g. [15, 20, 21, 23, 27–32]). In
what concerns the problem of CBIR, GM models have
already been considered with promising results (e.g. [15,
23, 27, 30, 33]). The critical issue to be addressed when
using GM models in RF framework for CBIR is what
distance measure between GMs will be used. It must be
one that separates well the different models and, in
addition, can be computed efficiently. The standard
distance measure between pdfs is the Kullback–Leibler
(KL) divergence. Unfortunately, this measure cannot be
computed in closed form for GM models. On the
contrary, in order to approximate KL for GMs, random
sampling Monte-Carlo methods have been proposed.
However, these methods are extremely time consuming,
making the use of KL divergence impractical for RF in
CBIR, where the main issue is the real-time interaction
between the system and the user. In order to overcome
this difficulty, some alternatives have been proposed (e.g.
[15, 33]). Furthermore, in [34, 35], two very similar KL
approximations have been introduced, which can be
computed in closed form for GMs. This work will depend
mainly on these distance measures to obtain a fast
estimation of the distance between GMs. Another issue
regarding GM models is whether there are sufficient data
for robust estimation of the model parameters. The
standard algorithm used for estimation of the parameters
of a GM is the expectation-maximisation (EM) algorithm,
which estimates the aforementioned parameters in a
maximum likelihood (ML) manner. Although, when a few
samples of the underlying distribution are available, a
more robust estimation, based on a maximum a posteriori
(MAP) principle, can be computed using a variation of the
standard EM algorithm, known as MAP-EM (e.g. [20, 21,
31, 32, 36]). In this work, the advantages of using this
technique for the estimation of model parameters of
images described by a relatively small number of locally
extracted feature vectors will be demonstrated.

This work is based on the idea of combining the classifier-
based RF methods with those based on probabilistic models
to describe the image features. In this way, it will be able to
exploit and amplify the merits of both the approaches. In
particular, GMs are used as image representations and
SVMs are employed for the task of RF. In order for this
combination to be accomplished, an appropriate SVM
kernel function is required to quantify the similarity
between GMs. The kernel function used in this work is
based on an efficiently computable distance measure
between GMs, which is an approximation of the KL
divergence [35]. To extract image features the scale
invariant feature transform (SIFT) approach [7] is used,
which is considered as a state-of-the-art feature extraction
technique [37], and, in particular, the colour-SIFT variation
[8] that exploits colour information. Furthermore, to cope
with the problem of the relatively small number of
keypoints (and thus feature vectors per image) detected by
the SIFT technique, the MAP-EM algorithm [32] is
employed to robustly estimate the parameters of the GM
model of each image. This algorithm exploits a universal
GM trained on information extracted from the whole image
database for estimating a prior that is imposed on the
parameters of each image GM model. This training strategy
of the image GMs allows for an even faster computation of
the KL approximations used, with minor losses regarding
CBIR system performance.

The rest of this paper is organised as follows. In Section 2,
GMs are described in the context of image modelling for
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CBIR and details about the algorithms used to estimate the
model parameters are provided. Furthermore, the issue of
defining an efficiently computable distance measure
between GMs is discussed further. In Section 3, the SVM
methodology for binary classification is described and put
in the framework of CBIR with RF. Moreover, an
appropriate kernel function quantifying the similarity
between GMs is presented. In Section 4, details about the
implementation of the methods used in the experiments are
provided. In Section 5, details are given about the
simulations used to assess the validity of the proposed
method, and the experimental results are presented and
discussed. Finally, in Section 6, conclusions and directions
for future research are provided.

2 GM models

As it has already been mentioned, GM models are very
popular and promising pdf models and are characterised by
many advantages. The pdf corresponding to a GM defined
in a d-dimensional space is given by the following formulas

p(x|Q) =
∑K

j=1

pjf(x|uj) (1)

Q = (p1, u1, . . . , pK , uK ) (2)

uj = (mj, Sj) (3)

f(x|uj) = N (x|uj) =
1�����������

(2p)d|Sj|
√ e−1/2(x−mj)

TS−1
j (x−mj) (4)

where x [ Rd is a vector in the previously mentioned space,
K the number of Gaussian components in the model,
0 ≤ pj ≤ 1 the mixing probabilities with

∑
j¼1
K pj, and

f(x|uj) a Gaussian pdf with mean mj and covariance Sj.
In this work, GMs will be used to model the distribution of

feature vectors extracted from the images of an image
database. In this framework, each image is described as a
bag of feature vectors that are computed locally. Then, an
iterative algorithm, for example the EM or some variation,
is employed to estimate the parameters of a GM model that
will represent the distribution of the features of the image in
the feature space.

2.1 Parameter estimation of GM models

The standard procedure to estimate the parameters of a GM
based on this set of feature vectors is the EM algorithm
[38]. This algorithm is defined as an iterative process in
which two steps, step E (expectation) and step M
(maximisation), are repeatedly executed until convergence.
The algorithm aims at estimating the model parameters that
maximise the log-likelihood function. The iterative EM
procedure monotonically converges to a local maximum of
the usually-very-complex log-likelihood function, which
depends on the initial estimates of the model parameters.

When the number of feature vectors available for training is
relatively small compared to their dimension and to the
number of components in the mixture, the robust estimation
of the model parameters using the EM algorithm has been
shown to be very problematic. Thus, in [32], and based on
the analysis given in [36], a variation of the EM algorithm,
called MAP-EM, is defined. Assume that there is somehow
available a universal GM model on the feature space,
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representing the general distribution of the feature vectors in
all database images. This universal model can be used as a
prior distribution p(Q) on the model parameters Q of each
image GM. Then, instead of maximising the log-likelihood,
the MAP approach suggests the maximisation of the MAP
likelihood function defined as

LMAP(Q) = log
∏N

i=1

p(Q)p(xi|Q)

= N log p(Q) +
∑N

i=1

p(xi|Q) (5)

For further information about this method one can refer
to [36].

The resulting scheme of model parameter adaptation
proposed in [32] is very similar to the standard EM
algorithm. In particular, the E step is exactly the same for
the two algorithms. However, in the new M step, the new
estimates of the mixture parameters are computed by

pj =
aj fj + (1 − aj)p

pr
j∑K

k=1 [ak fk + (1 − ak)p pr
k ]

(6)

mj = ajcj + (1 − aj)m
pr
j (7)

Sj = ajRj + (1 − aj)[S
pr
j + m

pr
j (mpr

j )T] − mjm
T
j (8)

In the above formulas, fj, cj and Rj are the same as those used
in the standard EM algorithm

fj =
∑N

i=1 gij

N
, cj =

∑N
i=1 gijxi∑N

i=1 gij

, Rj =
∑N

i=1 gijxix
T
i∑N

i=1 gij

(9)

where xi, i ¼ 1, . . . , N are the feature vectors extracted from
an image I. Furthermore, pj

pr, mj
pr and Sj

pr correspond to the
mixing weights, the means and the covariance matrices,
respectively, of the components of the universal GM model,
from which the parameters of the new GM model are
adapted. From (6)–(8), it can easily be seen that the new
estimations for the parameters of the model that is being
adapted are not dependent solely on the new evidence
derived by the training feature vectors xi, as this is
expressed by fj, cj and Rj, but they are computed as a
combination between the new evidence and the prior
knowledge derived from the universal model. The relative
weight with which the new evidence from the training
feature vectors is taken into account for the determination
of the new parameter estimates for the mixture component j
is denoted by aj. This coefficient is defined by

aj =
∑N

i=1 gij∑N
i=1 gij + t

(10)

with
∑

igij to be a measure about how many feature vectors
are assigned to the component j of the mixture and t to be
a parameter controlling the weight with which the universal
model parameters are taken into account in the
determination of the new estimates. Obviously, the more the
feature vectors correspond to component j (the larger the
value of

∑
igij), the more the influence of the new evidence

in the estimation of the new parameters for this component.
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On the contrary, if few feature vectors are assigned to
component j, more emphasis is given to the universal model.

Thus, in order to train a GM model for each image in
the database using the previously described MAP-EM
algorithm, at first we need a universal GM model modelling
the general distribution of feature vectors. Such a model can
be easily acquired by using a sufficiently large sample of
feature vectors from the image database and employing the
standard EM algorithm to estimate the GM parameters. After
the estimation of the parameters of the universal model, these
can be used along with the feature vectors extracted by each
image for the adaptation process described above, which will
finally result in one adapted GM per image, with the same
number of components as the universal one.

2.2 Distance measures between GM models

Given that each image is represented by one GM model, in
order to describe the similarity between images, a distance
measure between GMs must be defined.

The KL divergence [23] is the most commonly used
distance measure between pdfs. In particular, for two pdfs,
p1(x) and p2(x), the KL divergence is defined by

KL( p1‖p2) =
∫

p1(x) log
p1(x)

p2(x)
dx (11)

When p1(x) and p2(x) are Gaussian pdfs, it is known [35] that
the KL divergence between them is given by

KL( p1‖p2) = 1

2
trace(S−1

2 S1) − log
|S1|
|S2|

− d

[ ]

+ 1

2
(m1 − m2)TS−1

2 (m1 − m2) (12)

where m1, S1 (m2, S2) are the mean and covariance matrix of
p1 (p2) and d is the feature space dimension. Thus, a
computation of KL in closed form and, thus, efficiently is
possible when the pdfs under comparison are Gaussians.
Unfortunately, this is not the case when GMs are
considered. In particular, the KL divergence cannot be
computed in closed form for GMs, because the integral in
(11) cannot be computed analytically. Furthermore, the
random sampling Monte-Carlo methods, which have been
proposed to estimate this integral, are extremely time
consuming and, thus, cannot be employed in the context of
CBIR with RF.

In order to overcome these computational problems, some
closed-form KL approximations have been proposed. Among
these approximations, there are two popular distance measures
that are very similar to each other. The first of them was
introduced in [34] and is defined implicitly via a similarity
measure called asymptotic likelihood approximation (ALA).

More specifically, for two GMs, p1(x) =
∑K1

i=1 p1if(x|u1i),

u1i = (m1i, S1i) and p2(x) =
∑K2

j=1 p2jf(x|u2j), u2j = (m2j,
S2j), the ALA measure is defined as

ALA(p1‖p2) =
∑K1

i=1

p1i log p2bmhl(i)
+ log f(m1i|u2bmhl(i)

)

[{

− 1

2
trace(S−1

2bmhl(i)
S1i)

]}
(13)
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where

bmhl(i) = arg min
j=1,...,K2

[(m1i − m2j)
TS−1

2j (m1i − m2j) − log p2j]

(14)

is a correspondence function between the components of the
two mixtures based on the Mahalanobis distance. It is proven
that under certain conditions, the KL divergence between p1

and p2 can be computed using ALA as follows

KL( p1‖p2) = ALA( p1‖p1) − ALA( p1‖p2) (15)

Nevertheless, the conditions are too restrictive and they do not
hold in the GM case. However, we can use the above
equation as an approximation to the KL divergence.
Moreover, taking into account that for ALA(p1‖p1) the
correspondence function is bmhl(i) ¼ i, the following
approximation of the KL divergence can be obtained

KLapprx( p1‖p2)

=
∑K1

i=1

p1i KL(f(x|u1i)‖f(x|u2b(i)))

[
+ log

p1i

p2b(i)

]
(16)

with

b(i) = bmhl(i), ∀i = 1, . . . , K1 (17)

The second KL approximation has been proposed in [35]. It is
defined in exactly the same way as the previous distance
measure; thus, for its computation, (16) is used again. The
only difference between this measure and the ALA-based KL
approximation is that a different correspondence function is
adopted. In particular, in [35] the following correspondence
function is used

bgkl(i) = arg min
j=1,...,K2

[KL(f(x|u1i)‖f(x|u2j)) − log p2j] (18)

and then, for the function b of (16), it holds

b(i) = bgkl(i), ∀i = 1, . . . , K1 (19)

Thus, the correspondence function of [35] is based on the KL
divergence between the Gaussian components of the
mixtures, instead of the Mahalanobis distance.

Both of these two KL approximations described above are
based on the determination of a correspondence between the
components of the two mixtures. Thus, for each component of
p1, the nearest component of p2 is determined using (14) or
(18), respectively. Then, both measures compute the final
distance value by combining linearly some measures based
on the KL divergence between the nearest components. It
should be reminded that the KL divergence between
Gaussians can be computed in closed form (12).

A problem related to the above measures regards the fact
that determination of the correspondence between
components has quadratic complexity with the number of
components in the mixtures. This can burden the
computation, particularly when mixtures with many
components are used. Nevertheless, in our case this
problem can be alleviated [21], since all GMs are adapted
from the same universal model via the MAP-EM algorithm.
IET Image Process., 2011, Vol. 5, Iss. 6, pp. 531–540
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In this case, first, all GMs have the same number of
components and, second, at most of the times either the
correspondence function provides the result b(i) ¼ i or,
even if b(i) = i, the assumption that b(i) ¼ i does not
result in a distance value much different from the correct
one. Thus, the final formula for the approximate but
efficient computation of the KL between two GMs adapted
from a universal model is

KLapprx( p1‖p2) =
∑K

i=1

p1i KL(f(x|u1i)‖f(x|u2i)) + log
p1i

p2i

[ ]

(20)

It is easy to observe that, in this new approximation, the
previous two KL approximations are unified, since their
only difference lies in the correspondence function they use.

In this work, this new approximate KL distance measure
(20) will be used in the context of RF for CBIR, since it is
characterised by linear complexity on the number of mixture
components and, thus, it is significantly faster than the initial
KL approximation (16) which is of quadratic complexity.

3 Support vector machines

SVM [38] is a popular and successful learning model which
in our case will be employed for binary classification. Let
{(xi, yi)}

N
i=1 be a training set corresponding to a binary

classification problem, where xi are the patterns and
yi [ {−1, + 1} are the corresponding labels. Given this
training set, an SVM classifier can be constructed to
discriminate between the two categories. The main
advantage of the SVM methodology is the fact that the
classification problem is solved in a high-dimensional
kernel space (through an appropriate mapping of the
original input vectors), where the problem becomes
separable. Thus, a linear decision boundary can be
computed in the kernel space, although the image of this
boundary can be highly non-linear in the initial pattern space.

In our experiments, we will be using one of the most
popular non-linear kernel functions for SVMs, Gaussian
radial basis function (RBF), which is defined by

k(xi, xj) = exp(−g‖xi − xj‖2) (21)

After training the classifier by solving a quadratic
optimisation problem (see [38] for more details), the
decision function for a new pattern x is computed as

y(x) =
∑N

i=1

ai yik(x, xi) + b (22)

where b is a bias parameter, the value of which can be easily
computed after the determination of the optimisation
coefficients in the training phase.

In what concerns the classification of a new pattern x, it
holds that the value |y(x)| is proportional to the distance of
the input pattern x from the decision boundary. Thus, the
value y(x) in (22) can be regarded as a measure of
confidence about the class of x, with large positive values
(small negative values) strongly indicating that x belongs to
the class denoted by ‘ + 1’ (‘ 21’). On the contrary, values
of y(x) around zero provide little information about the
class of x.
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3.1 Using SVMs for RF in CBIR

In the framework of CBIR with RF, in each round of RF, a
classification problem as the one described above needs to
be solved. In particular, in each round of RF, we have a set
of images that correspond to the feedback examples
provided by the user until now. Each of these images is
labelled by 21 or +1 in case the user considers it as
irrelevant or relevant to the initial query, respectively. The
initial query is considered to be one of the relevant images
and is labelled by +1.

Using the training set of feedback examples, an SVM
classifier can be trained to distinguish between the classes
of relevant and irrelevant images. Each image in the
database will be presented to the trained classifier, and
the value of the decision function (22) will be used as the
ranking criterion. The higher the value of the decision
function for an image, the more relevant this image is
considered by the system. In this context, in each RF round
a new decision boundary is learned using the additional
information derived from the new feedback examples
provided by the user and, thus, the ranking criterion and the
retrieval results are updated.

3.2 Combining GMs with SVMs

Assume now that each image is modelled using a GM. In the
context of CBIR using RF, the question that immediately
arises is how to employ an SVM classifier in each round of
RF based on this image representation. In this context, both
the training patterns and the new patterns presented for
classification will be GM models.

Taking into account both the SVM optimisation problem
and the form of decision function (22) used for category
estimation after training, it becomes apparent that nowhere
the patterns or their images in the kernel space are used
explicitly. Only the values of the kernel function are
needed. Thus, if an appropriate kernel function between
GMs could be defined, GM representations for the patterns
could be used in the SVM framework in exactly the same
way as vectors.

The kernel function is defined as the inner product of the
patterns in the kernel space, namely it is a similarity
measure. Taking inspiration from the Gaussian RBF (21), a
kernel function of similar form can be defined for GMs. In
particular, if with d(p1, p2) a symmetric distance measure
between the GMs p1 and p2 is denoted, then a kernel
function of the form exp(2gd(p1, p2)) can be used for GMs.

The KL approximations presented in Section 2.2 are not
symmetric. However, this is not a real problem, because a
symmetric version can be defined in the form

SKLapprx(p1, p2)=1

2
KLapprx(p1‖p2)+1

2
KLapprx(p2‖p1) (23)

where with KLapprx(p1‖p2) either one of the two KL
approximations proposed in [34, 35] or the KL
approximation of (20) is denoted. Based on the above
considerations, the function

k(p1, p2)= exp(−gSKLapprx(p1, p2)) (24)

can be used as a kernel function expressing the similarity
between GMs.
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4 Method implementation

Summarising the proposed method, SIFT-based image
representations are estimated using GMs adapted from a
universal model via the MAP-EM algorithm. Moreover, the
KL approximations discussed in Section 2.2 are employed
for comparison between the images and, particularly, the
one that takes advantage from the fact that all the image
GMs are adapted from a common universal model, to
achieve linear complexity over the number of mixture
components. This distance measure is used to define an
appropriate SVM kernel, which makes possible the
incorporation of GM representations in the SVM
framework. Then, SVM classifiers trained using the
feedback examples are employed, in each RF round, to
update the image ranking criterion and, thus, to improve the
retrieval results.

In order to test the validity of the proposed RF
methodology, a number of experiments were conducted. In
these experiments, a subset of Corel is used as image
database, which is a common choice for the evaluation of
CBIR systems. In particular, although the images of the
Corel database are professionally annotated and categorised,
many images containing the same semantic content are
distributed across different Corel categories. Hence, a new
semantic categorisation was defined by merging some Corel
categories to form new more distinctive ones. Finally, an
image database with 4500 images partitioned in 25
semantic categories was formed. Each of these images has a
resolution of 384 × 256 pixels and its categorisation is
considered as the ground truth in our experiments. We will
refer to this database as DB.

In order to extract appropriate features for the images in the
aforementioned database, the SIFT [7] framework was used.
In this framework, image gradients in multiple image scales
are approximated by differences between Gaussian
convolutions and, for each image, a number of keypoints
are detected by determining the local maxima and minima
of the gradients in scale space. For each of these keypoints,
an invariant descriptor is computed as the local histogram
of gradient directions around the keypoint. As histogram
quantisation 8 bins for direction and 16 bins for location are
used, thus resulting in a 128-dimensional feature vector for
each keypoint. These features have been proven to be
highly distinctive and invariant to image scale, rotation and
illumination changes, robust to noise addition and affine
distortions of the images, etc. Nevertheless, they are
extracted using grey images. Some variations have been
proposed, in order to make possible the incorporation of
colour information in the descriptors (e.g. [8, 9]). In [8], a
number of colour characteristics invariant to varying
lighting conditions have been introduced and studied. The
extension of the SIFT methodology to coloured images is
straightforwardly addressed by using, instead of grey
gradients, colour gradients based on the aforementioned
colour invariants. An open code implementation of these
colour SIFT features, which constitute an adaptation of the
standard SIFT algorithm to include colour image
descriptions, is available in [39]. This is the method
adopted in this work for feature extraction from the images.
As in [31], prior to GM training, a reduction of the feature
vector dimensionality to 50 features, using principal
component analysis (PCA), was performed. This has
significant advantages such as the decorrelation of features,
noise removal, and efficient and robust estimation of GM
parameters.
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In the following experiments, in order to train a GM in an
ML manner (as is the case of the universal model) a
variation of EM, called greedy-EM [40], has been adopted.
This method avoids the problems related to the strong
dependence of the solution on parameter initialisation, by
incrementally adding components to the mixture until the
desirable number of components has been reached.
Furthermore, in the experiments presented below, unless
otherwise stated, for the universal GM training, about 65 000
feature vectors from the DB are images are randomly
selected and used as input to the greedy-EM algorithm.

For the adaptation of each image GM, the MAP-EM iterative
algorithm presented in Section 2.1 is used. In this case, there is
no problem regarding the initialisation. The parameters of the
universal GM model are always used as initial values for
each image GM parameters. In this way, the resulting GM
model for each database image has the same number of
components with the universal model from which it has been
adapted, and each component j of the image model has been
adapted from the corresponding component j of the universal
model. In what concerns the parameter t used in MAP-EM
algorithm, in our experiments it was set to a constant value
t ¼ 15. This value was determined empirically to be a
reasonable choice resulting in good performance. Moreover,
as stated in [32], the performance is rather insensitive for
values between 8 and 20.

All GMs used in the experimental section, either the
universal or the image-based ones, assume a diagonal
covariance for each of their components. This choice has
found to be the best, because it reduces dramatically the
complexity of training and comparison of the models with
no noticeable performance deterioration.

It is also important to note that, from an efficiency point of
view, the GM parameters of all models (universal and image)
are computed once off-line and serve as alternative
representations to the histogram vectors. Consequently, the
complexity of all further computations, namely SVM
training and classification, will depend solely and linearly to
the number of kernels used.

In order to provide comparative results for the proposed
method, we implemented another RF methodology where
each image is represented by a histogram vector. To derive
such a representation, a universal vocabulary [20] of visual
words is built, based on a corresponding universal GM
trained as mentioned before. Each component of the universal
GM model corresponds to one visual word and the posterior
probabilities p( j|xi) of the components j of the universal GM
for the feature vectors xi of an image are used to form a
histogram for this image having the same number of bins as
the number of the universal GM components. The frequency
corresponding to bin j is given by

bj =
∑N

i=1 p( j|xi)

N
(25)

assuming that N is the number of feature vectors of the image.
After the histogram formation for each image, we use the vector
representation to train in each RF round (i) a RBF Neural
Network (RBF NN) and (ii) an SVM with the standard
Gaussian RBF kernel (21).

For the RBF NN, the only parameter that needs to be set is
the bias of the radial basis transfer function radbas of each first
layer neuron

radbas(n) = e−n2

, n = ‖b − w‖ · bias (26)
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where b is the input vector and w is the radial basis centre
point. For each one of our experiments, we determined the
optimal bias value by cross validation of the results. In
general, the performance of the RBF NN is highly sensitive
to bias; nevertheless, we found that for our tests the optimal
values ranged from 2.4 to 3. Furthermore, we used the
standard Matlab Neural Network Toolbox implementation
which combines linearly the first-layer RBF neurons to the
output.

Two SVM parameters need to be determined when SVMs
are used with both histogram and GM image representation.
These parameters are the learning parameter C and the
kernel function parameter g. The performance of the
methods is proven to be rather stable with respect to the
first of these parameters, with the precondition that a value
considerably larger than 1 has been selected. In all the
experiments presented below, the choice C ¼ 100 is made.
The second parameter is related with the range of the
distance measure used between patterns (either SKLapprx,
for SVMs handling patterns represented by GMs, or the
squared Euclidean distance, for patterns represented by
vectors). In [41], a value for this parameter equal to the
inverse of the mean (computed for a sufficiently large set of
patterns) of the distance used is adopted. On the
experiments conducted in this work, the best choice for the
value of this parameter seems not to diverge much from
this rule. Moreover, the SVM implementation available in
[42] is used for all of our experiments.

Furthermore, apart from comparing the proposed method
with the one that uses the image representation based on
visual vocabularies, a number of other comparisons have also
been performed. In particular, the use of the approximate
distance measure of (20) is compared with the use of one of
the initial KL approximations, and particularly the one
defined by (16) and (18). Moreover, the results of a
comparison between the performances obtained for different
choices for the number of components in the mixtures are
presented. Finally, a study on the performance achieved for
different choices regarding the source of the feature vectors
used to train the universal GM is included.

5 Experiments

In this section, the results of the experiments conducted in
order to quantify the performance of the proposed RF
method are presented. For these experiments, an RF
simulation scheme was designed.

In particular, a query set is formed by randomly selecting Q
images from DB. Each image in this set is presented once as
initial query to the system. Then, the system ranks the
database images according to the distance measure used
(squared Euclidean distance for vector representations, KL
approximation for GMs). In this initial stage, there are no
feedback examples and, thus, neither RBF NNs nor SVMs
can be employed yet. From the M top-ranked images, a
number P of relevant and a number N of irrelevant images
are randomly selected (in case there are more than P or N
such images, respectively) and are used as feedback
examples (and RBF centre points), along with the initial
query, to train an RBF NN and an SVM classifier to
distinguish between relevant and irrelevant images. After
training the NN and the classifier, the database images are
re-ranked using the output of the NN or the decision
function values of the new SVM model. Again, P relevant
and N irrelevant images are selected from the M top images
in the new ranking list and are used, along with the
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previous examples, to re-train the NN (with additional RBF
centre points) and the classifier, thus updating the NN
output and the SVM ranking function. This process is
repeated, until a number R of RF rounds have been
completed. As a measure of performance, the precision in
top T images in the ranking list is used. This measure is,
simply, the ratio of relevant images in the first T images of
the ranking. Images that belong to the same database
category with the initial query are considered relevant, and
those that belong to a different category are considered
irrelevant. For the experiments presented in this section, the
following choices have been made for the values of the
simulation parameters: Q ¼ 1000, M ¼ 50, P ¼ 5, N ¼ 5
and R ¼ 6. For the parameter of scope, T, results for
T ¼ 20 and T ¼ 30 are presented.

In Figs. 1 and 2 the proposed method is compared with the
RBF NN and SVM-based methods that use as image
representations the histograms obtained from visual
vocabularies. In Fig. 1, precision in scope T ¼ 20, averaged
on all the initial queries, is depicted and Fig. 2 depicts the
same measure in scope T ¼ 30. For each image GM, eight
Gaussian components are used. The proposed method is
denoted as GMM8_MAP_FKLA. The label VW256

Fig. 1 Comparison between GMs and visual vocabularies (VW)
with SVM and RBF: average precision in scope T ¼ 20

Fig. 2 Comparison between GMs and visual vocabularies (VW)
with SVM and RBF: average precision in scope T ¼ 30
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(VW128) denotes that visual vocabularies of 256 (128) visual
words are used. On the contrary, GMM8_ML_IKLA refers to
a variation of the proposed method, in which the GM models
of the images have been trained based on the standard ML
manner. In this case, the distance measure of (20) cannot be
used, because the components of the image models have
been trained independently. Thus, only one of the initial KL
approximations proposed in [34, 35] can be used. In
particular, for the experiments presented in this section,
distance measure [35] is adopted, because, after some
preliminary experiments, it seems to lead to slightly better
performance. The baseline shows how a random ranking
system would have performed, since the average precision
would have been 4% (as there are 25 one-against-all
classes). All methods clearly perform better than the
baseline. As it is apparent from the figures, the proposed
method based on adapted GMs constantly outperforms all
other methods. Furthermore, doubling the size of the visual
vocabulary used, from 128 visual words to 256 visual
words, leads to a relatively small improvement in
performance. The most interesting point is that even use of
GMs, trained in an ML manner as image representations,
results in better performance compared to that of the visual
vocabulary representation. As demonstrated in the figures,
the GMM8_ML_IKLA method starts from a lower
precision level compared to that of VW256 and VW128,
but after a few RF rounds results in a precision level higher
than that of both VW256 and VW128. These results are a
strong indication of the strength of GMs as image models.
Furthermore, it would be interesting to test whether
improvement or deterioration in terms of precision will
result from using standard SIFT instead of colour SIFT,
since, in the case of colour SIFT, the same number of
features is used to describe the properties of all three RGB
channels. In contrast, in plain SIFT, all features are used for
encoding one channel. We also note that, even though the
RBF NNs improve precision by about 30% over the
baseline, they are clearly outperformed by the state-of-the-
art SVM approach. Thus, we conduct the rest of our
comparisons only between GMs and SVMs.

Fig. 3 demonstrates the average precision in scope T ¼ 20
per database category, after the sixth RF round. The
performance of the proposed method is compared to that of

Fig. 3 Comparison between GMs and visual vocabularies:
average precision per DB category after sixth RF round, in scope
T ¼ 20
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VW256, category by category. It can be seen that there is
no one category in the database in which the visual words
representation results in superior performance compared to
that obtained using adapted GMs. On the contrary, there are
many database categories in which the adapted GMs give
significantly better performance.

Fig. 4 concerns the influence of the number of GM
components used for the image models. Again, average
precision in 20 first images of the ranking is demonstrated. The
proposed method, GMM8_MAP_FKLA, is compared with a
number of variations using image models with different
number components. In particular, GMM4_MAP_FKLA,
GMM16_MAP_FKLA and GMM32_MAP_FKLA use
adapted GMs with 4, 16 and 32 components, respectively. As
it can be seen, the best performance is obtained when GMs of
eight components are used. GMs with four components result
in slightly worse performance. On the other hand, increasing
the number of components does not seem to improve
performance. On the contrary, it leads to degradation,
particularly in the first retrieval rounds, when few feedback
examples have been collected.

Furthermore, in Fig. 5, the degradation in performance that
results from using the fast form of the KL approximation (20) is

Fig. 5 Comparison between distance measures for GMs: average
precision in scope T ¼ 20

Fig. 4 Study on the influence of the number of mixture
components: average precision in scope T ¼ 20
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investigated. As discussed previously, with GMM8_MAP_
FKLA the proposed method is denoted. On the other hand,
GMM8_MAP_IKLA is a variation using the initial form of
distance measure (equations (16) and (18)). As one could
predict, when the initial form of the distance measure is
used, better results are obtained. But, as it is apparent, the
difference in performance is very small. Taking into account
that the average time needed to compute the distance
between two GMs is 0.004 s (on a 3 GHz PC) when the
initial form of distance measure is used, and only 0.0008 s
for the fast KL approximation, this minimal loss in
performance is compensated.

Finally, in Fig. 6, the robustness of the proposed method
is shown when reducing the number of images used to train
to universal GM. For the proposed method GMM8_MAP_
FKLA, the universal GM used for the adaptation of the
image GMs was trained using about 65 000 feature vectors
from the entire database DB. In this figure, GMM8_MAP_
FKLA_SR denotes the proposed method, when a reduced
set of only 25 randomly selected images from DB have
been used for the training of universal GM. Furthermore,
with GMM8_MAP_FKLA_ DDB, the training of the
universal GM on feature vectors from a database different
than DB is denoted. In particular, for the training of the
universal GM, about 25 000 feature vectors from the
images of database [43] were used. As it can be seen from
the corresponding results, the performance of the method is
rather robust with respect to variations in the feature set
used for the training of the universal GM, since only small
performance degradation can be observed in both
experiments.

6 Conclusions – future work

An RF methodology based on adapted GM models and
SVMs has been proposed. This methodology uses a
variation of the standard EM algorithm to adapt, in a
Bayesian manner, the GM models of the images based on a
universal GM model trained using the standard EM
algorithm and information extracted from the entire
database. Then, a fast KL approximation is used as a
distance measure between GMs, and an SVM classifier with
an appropriate kernel function is employed in each RF
round to perform the RF task.

Fig. 6 Study on the influence of training set used for the universal
GMs: average precision in scope T ¼ 20
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As indicated by our experiments, the proposed method
results in significantly higher performance compared to that
obtained using visual vocabularies for image representation
and the standard RBF NN and SVM methodology for RF.
Furthermore, even if GMs trained in the standard ML
manner are used as representations for the images, the
resulting performance is superior compared to that of visual
vocabularies. This is a proof of the efficiency and flexibility
of GMs as image representations for RF. Moreover, the
presented experimental results indicate that a small number
of mixture components are required to achieve satisfactory
performance. Additional experiments proved that the use of
a fast KL approximation, enabled by the particular
algorithm used to train the GMs (instead of that defined in
[35]), results in no significant degradation in performance.
Finally, by providing experimental results regarding the
performance of the method when the universal GM was
trained on a set of feature vectors not completely
representative of the database used for retrieval, the
noticeable robustness of the method was demonstrated.

In future, we intend to test our method using other distance
measures between GMs. Furthermore, we aim to attempt to
apply techniques for determining automatically the best
number of mixture components. Moreover, we plan to
modify our method to incorporate some feature selection
techniques in each RF round, in order to improve the
results of the corresponding classification problem.
Additionally, it would be interesting to try to use, in the
same context, other learning models appropriate for RF.
Finally, it is in our plans to test the scalability of the
proposed method using even larger image databases.
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