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Automation of chromosome analysis has long been considered as a difficult task. However the advent of
Multiplex Fluorescence In Situ Hybridization (M-FISH) made the analysis of chromosomes much easier.
Nevertheless, the chromosomes in an M-FISH image do very often partially occlude each other; hence,
their segmentation is not trivial and requires the application of a dedicated procedure. In this paper a
method is presented for the segmentation of touching and overlapping groups of chromosomes in M-FISH
images. Initially, the watershed transform is applied and the image is decomposed into watershed
regions. Next, gradient paths starting from points of high concavity are computed for each produced
region. Finally, adjacent regions are merged producing the final chromosome areas. To validate our
method a benchmark database of 183 M-FISH images has been used. The proposed algorithm resulted
in a 90.6% success rate for touching chromosomes and 80.4% for overlapping groups of chromosomes.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Chromosomes are structures that contain the genetic informa-
tion of cells. In a normal, nucleated human cell, there are 46 chro-
mosomes represented in the clinical routine by a structure called
the karyotype. The karyotype shows the complete set of chromo-
somes organized into 22 classes (each of which consists of a
matching pair of two homologous chromosomes) and two sex
chromosomes, XX in females or XY in males (Thompson et al.,
1991). Producing a karyotype of a cell is of practical importance
since it greatly facilitates the detection of abnormalities in the
chromosome structure as shown in Fig. 1. Normally, the procedure
of assigning each chromosome to a class (karyotyping) is based on
the visual scanning of chromosome images by experts (biologists
or cytogeneticists) (Thompson et al., 1991). This visual inspection
is a time consuming and expensive process. Hence automated
image chromosome analysis is still an important problem.

A technique was developed in the mid 90s to stain chromo-
somes with multiple colours so that each chromosome class
appears with a distinct colour (Speicher et al., 1996). In this tech-
nique all chromosomes are labelled with five fluorophores. Also a
DNA stain, called DAPI (40,6-diamidino-2-phenylindole), is used
to stain all the chromosomes with the same colour. The fluoro-
phores attach to specific sequences of DNA, thus each pixel of
the new multispectral image is represented as a five-dimensional
ll rights reserved.

: +30 2651007092.
vector, where each element of the vector represents the magnitude
of the dye at that pixel of the image, Fig. 2. This technique not only
facilitates the detection of subtle chromosomal aberrations (Veld-
man et al., 1997), but also makes the analysis of chromosome
images easier; both for human inspection and computerized anal-
ysis. However, in practice, fluorophore absorption is not binary and
there is significant overlap between each of the fluorophore
absorptions along with variability in signal strength. This leads to
a non-trivial classification problem, especially in the context of
touching or overlapping regions (Schwartzkopf et al., 2005).

Many attempts have been made to automate parts of the chro-
mosome M-FISH image analysis procedure (Schwartzkopf et al.,
2005; Sampat et al., 2005; Wang and Castleman, 2005; Wang
and Dandpat, 2006; Karvelis et al., 2008). However, chromosome
images are inherent with the partial occlusion and touching of
chromosomes, as shown in Fig. 3. This is one of the major factors
hindering automatic analysis. Spectrum based methods use a
pixel-by-pixel classifier to classify each pixel of the M-FISH image
and this information may be sufficient to segment touching and
overlapping chromosomes (Schwartzkopf et al., 2005). However
the measured fluorescence at a pixel may be the combination of
fluorescence in a neighbouring region leading many times to
misclassification errors. These factors make the pixel spectral
information of touching or overlapping chromosomes unreliable.
Hence the spectral information alone cannot separate the touching
and overlapping chromosomes efficiently.

On the other hand there is a variety of geometric separation
based methods proposed in the literature for greyscale

http://dx.doi.org/10.1016/j.patrec.2010.08.002
mailto:fotiadis@cs.uoi.gr
http://dx.doi.org/10.1016/j.patrec.2010.08.002
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


Fig. 1. (a) M-FISH chromosome image of a woman missing three chromosomes
from classes 7, 15, 19, and (b) Karyotype of the M-FISH image: 43XX, -7,-15,-19.
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chromosome images (Ji, 1989, 1994; Agam and Dinstein, 1997; Rit-
ter and Schreib, 2001). The main idea of these methods is that they
split the chromosome groups into segments and then they try to
combine these segments into chromosomes. Valley searching tech-
niques (Ji, 1989, 1994) attempt to find a ‘‘pale path” of grey values
corresponding to a separation between touching–overlapping
groups of chromosomes. Initially, all high concavity points (cut-
points) are detected along the boundary of chromosomes. Next, a
heuristic search is performed to detect the minimum density path
between touching chromosomes. The chromosome group is split
by the pale path and the segments are combined to form separate
chromosomes. Agam and Dinstein (1997) used concave points to
construct all the possible separation lines. In their work, they
determined potential chromosomes using rectangle hypothesis
testing. However this hypothesis does not always hold because of
the existence of bended chromosomes that are touching or over-
lapping to each other and thus a straight line cannot split exactly
the chromosomes.
We can conclude that when only the spectral information is
used, the segmentation accuracy relies on the pixel-by-pixel classi-
fication accuracy. On the contrary, the geometry based methods as-
sume that chromosome shape alone is sufficient for the purpose of
separation. Thus both, geometry and spectral information, has to
be merged in order to achieve better segmentation results for M-
FISH chromosome images.

In this paper we present a novel segmentation method that
tackles the problem of touching–overlapping group of chromo-
somes. Initially, the method uses the watershed transform to seg-
ment the DAPI image into watershed regions. The watershed
transform has been widely used for the separation of touching/
overlapping groups of objects from images (Beucher, 1992; Vincent
and Soille, 1991; Malpica et al., 1997; Chen et al., 2003). In our case
we propose the recursive application of the watershed transform
to each watershed region. However there exist difficult cases of
touching as also of overlapping groups of chromosomes that need
separation. For this reason we use a geometry method such as the
‘‘gradient paths” to split each group of touching–overlapping chro-
mosomes. However we do not compute the gradient paths using
the intensity of pixels of the DAPI image, but we propose the com-
putation of paths in the M-FISH image using pixels with high mul-
tichannel gradient magnitude values. This computation proves to
be more efficient than the computation of the gradient path on
the DAPI image since there are cases of touching or overlapping
groups of chromosomes where the gradient path on the DAPI im-
age is difficult to compute since the chromosomes are difficult to
disentangle. Finally, after path computation, a region adjacency
graph is computed and a region merging algorithm is used to
merge all regions. In Section 2 the methods are presented describ-
ing in detail all the steps. Section 3 presents the results of the
methodology. The discussion of the results is also presented in this
section. Finally the conclusions of our work are presented in
Section 4.
2. Method

The proposed method consists of three stages as it is shown in
Fig. 4: (a) the recursive watershed transform computation, (b) the
computation of each gradient path and (c) the region merging pro-
cess. The first stage consists of a number of steps. The first step is
the conversion of the initial DAPI chromosome image to binary. In
the second step, the Euclidean distance transform of the binary im-
age is computed. The watershed transform is applied in the next
step and an initial estimation of the segmented chromosome areas
is obtained. The watershed transform is further applied separately
to every segmented area until no more new areas are created. The
first step of the second stage is the computation of the high concav-
ity points along the boundary of each chromosome area. Next, all
gradient paths are computed and the binary chromosome area is
split along the gradient path. All gradient paths are computed
using the multichannel gradient magnitude. In the final stage a
recursive region merging procedure is applied as follows. A region
adjacency graph is computed and also each region is classified
independently using a region Bayes classifier. Then we merge all
neighbouring regions that share the same class. The identification
of the overlapping chromosomes takes place in the final step.
2.1. Recursive watershed segmentation

In the first step, the DAPI chromosome image is converted to
binary using a well known automated threshold selection process
(Otsu, 1979). Using the DAPI channel an initial estimation of the re-
gions of the M-FISH image is produced. The threshold operation at
grey level l partitions the pixel values of an image into two classes



Fig. 2. An M-FISH image and its channels. (a) Cy 5.5 fluorophore, (b) Cy 5 fluorophore, (c) Spectrum Green fluorophore, (d) Spectrum Orange fluorophore, (e) Texas Red
fluorophore, (f) DAPI fluorophore, and (e) M-FISH image.
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K0 and K1 (representing background and object respectively), i.e.,
K0 = {1, 2, . . . , l} and K1 = {l + 1, l + 2, . . . , L}, where L is the total
number of grey levels in the image. An optimal threshold l* can
be determined by minimizing the following criterion function:

l� ¼ arg
l

minr2
BðlÞ;

where r2
BðlÞ is the between-class variance for the threshold value l

(Otsu, 1979).
After the computation of the threshold l* the binary image B can

be computed:

Bðx; yÞ ¼ 0 if DAPIðx; yÞ 6 l�;

1 if DAPIðx; yÞ > l�:

� �

An example of the application of the threshold operation to a DAPI
image is shown in Fig. 5.
In order to apply the watershed transform (WT) (Vincent and
Soille, 1991) to the image B it is common to first compute the dis-
tance transform (DT) (Malpica et al., 1997; Chen et al., 2003). Given
an m � n binary image B, its distance transform is a map that as-
signs to each on-pixel (p1) (with coordinates (x1, y1)) the distance
to the nearest off-pixel (p2) (with coordinates (x2, y2)). The distance

metric used is the Euclidean distance D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ

2
q

.

The distance transform provides important information for the
application of the watershed algorithm (Beucher, 1992). The num-
ber of regional minima of the negative distance transform consti-
tutes indication of the number of areas that will be segmented
by the WT. However a common problem is that the distance trans-
form contains a large number of such minima leading the WT to
over segment the initial image. On the other hand the greyscale
reconstruction (Vincent, 1993) of the negative distance transform
suppresses all minima whose depth are lower than or equal to a



Fig. 3. Touching and overlapping group of chromosomes. (a) Three chromosomes that are touching each other, (b) two chromosomes that overlap.
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threshold h 2 R Thus we apply this procedure in order to alleviate
the over-segmentation problem. An alternative for the elimination
of the over-segmentation effect could be the Gaussian blur of the
gradient image (Gauch, 1999), however the choice of the width
of the Gaussian kernel is a key parameter for these approaches.

The next step is the application of the WT. The watershed trans-
form is a popular segmentation method originated in the field of
mathematical morphology. The image is considered as a topo-
graphical relief, where the height of each point is related to its grey
level. Imaginary rain falls on the terrain and water begins to rise
filling the different catchment basins. The watersheds are the lines
separating the catchment basins that form.

In our case we apply the watershed method using the negative
distance transform. The watershed algorithm produces a tessella-
tion of the image into regions, these regions are called watershed
regions and depicted in Fig. 6(a) and (b). Whereas several methods
start with an over-segmentation of the image and iteratively merge
regions based on some measures of similarity (Haris et al., 1998),
our method introduces a new region splitting technique based on
the watershed transform. All the steps of our method – which do
not require any a priori knowledge – are recursively applied to
every watershed area until no more new areas are produced. The
result of the recursive watershed transform is shown Fig. 6(c)–(f).

2.2. Computation of gradient paths

The idea of paths has been introduced in early 90s (Ji, 1989,
1994) in order to separate touching groups of chromosomes for
greyscale images such as the G-banded chromosome images (Sum-
ner et al., 1971). It is based on two assumptions: (a) where chro-
mosomes touch the cluster boundary tends to form an acute
angle and (b) at points where chromosomes touch, the optical den-
sity is relatively low. The detection of the paths is computed via a
search algorithm. The search begins at a cut-point and proceeds in
the direction of the normal vector. A cut-point is a boundary point
at which the boundary is highly concave. It then proceeds until an-
other boundary point is found as follows: At the current point a list
of candidates is found as it is shown in Fig. 7(a). A new trace point
is found by choosing the candidate with the smallest intensity va-
lue. Finally, the searching direction is updated every d points to al-
low the path to follow the shape of its trace points, as it is shown in
Fig. 7(b). The path that starts from the cut-point and ends to a
boundary point was called a pale path.

The pale paths (Ji, 1989, 1994) were used to cut only touching
groups of chromosomes without addressing the case of overlap-
ping chromosomes. Moreover, these studies computed the pale
paths only for greyscale images. Using a low intensity path the sep-
aration of touching chromosomes is feasible, but fails particularly
in overlapping cases. Indeed as it is shown in Fig. 8(a) a pale path
does not exist for the case of the overlapping group of chromo-
somes since the intensity of the overlapping region is homogenous
and relatively high.

In this work, we propose a modification of the pale path ap-
proach in order to achieve separation of touching and overlapping
chromosome groups in coloured M-FISH images. This modification
uses the multichannel gradient of the M-FISH image (Karvelis et al.,



Fig. 4. Flowchart of our method.

2478 P. Karvelis et al. / Pattern Recognition Letters 31 (2010) 2474–2488
2007; Drewniok, 1994). The basic idea is the following: instead of
leading the path to follow low intensities pixels, the path now fol-
lows pixels of high multichannel gradient magnitude values. The
computation of the multichannel gradient magnitude is based on
the five channel coloured M-FISH image. This gives the advantage
that the paths follow high gradient magnitude pixel values and
these high values occur when chromosomes touch or overlap.
The path that begins from a cut-point and follows pixels of high
gradient magnitude values of the M-FISH image until it reaches a
boundary point is now called a gradient path.

To compute the cut-points we first extract the boundary from
the binary image B. Suppose that the pixels of the boundary of a
segmented region define the set (c1, c2, . . . , cPB) where ci, ci+1 are
successive points of the boundary and PB the number of pixels of
the region boundary. In order to compute the cut-points we com-
pute the curvature of the boundary (Ji, 1989, 1994; Ritter and
Schreib, 2001) since local maxima of the curvature indicate candi-
date positions of the cut-points. For each point of the boundary (ci:
i = 1, . . . , PB) we consider the triangle that is defined from the three
points ci�k, ci, ci+k (k = 3) and compute the angle a(i) defined by the
triangle:

aðiÞ ¼ arccos
ðci � ci�kÞ � ðciþk � ciÞ
kci � ci�kk � kciþk � cik

� �
� sgn½detð ci � ci�k ciþk � ci Þ�:

In Fig. 8, we demonstrate the steps for the computation of the
cut-points in a group of touching and overlapping chromosomes.
After the binarization of the chromosome group (Fig. 8(a) and
(b)) the curvature of the boundary points (Fig. 8(c)) is computed
and is illustrated in Fig. 8(d). All the cut-points are automatically
computed by choosing the boundary points that exceed an angle
threshold: a(i) P 210�, i = 1, . . . , PB. The red points in Fig. 8(d)



Fig. 5. The thresholding procedure for a greyscale DAPI image. (a) The DAPI image
and (b) the binary image.
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and (e) illustrate the cut-points that exceed this angle threshold. As
we observe in Fig. 8(e), several candidate cut-points are computed.
To overcome this problem, the neighbouring candidate cut-points
are automatically grouped and from each group of candidate cut-
points we extract the one that has the maximum angle as it is illus-
trated in Fig. 8(f).

The next step of our method is the computation of the multi-
channel gradient magnitude, as the gradient path will follow pixels
having high multichannel gradient values. The multichannel gradi-
ent magnitude is computed as follows. Assume a multichannel im-
age Iðx; yÞ : Z2 ! Rm for an M-FISH image and a direction n defined
by the angle u:

Iðx; yÞ ¼

I1ðx; yÞ
I1ðx; yÞ

..

.

Imðx; yÞ

2
6666664

3
7777775
;

n ¼
cos u

sin u

" #
;

where Ii(x, y), i = 1, . . . , 5 are the components (channels) of the
M-FISH image.
The directional derivative of I(x, y) for a direction n is computed
as follows:

@I
@n
¼
rI1 � n

..

.

rIm � n

2
664

3
775 ¼

Ix
1 Iy

1

..

. ..
.

Ix
m Iy

m

2
664

3
775 ¼ J � n;

where Ix
i and Iy

i 1 6 i 6 m are the derivatives of the ith component in
the x and y direction respectively.

Next the direction n which corresponds to the maximum of the
directional derivative is found by maximizing the Euclidean norm
kJ � nk2 ¼ ðJ � nÞTðJ � nÞ ¼ nTðJT JÞn.

The maximum of this norm nT(JTJ)n is given by the maximum
eigenvalue of the matrix (JTJ) (Karvelis et al., 2008). The symmetric
matrix (JTJ) can be written as:

JT J ¼

Pm
i¼1
ðIx

i Þ
2 Pm

i¼1
Ix
i � I

y
i

Pm
i¼1

Ix
i � I

y
i

Pm
i¼1
ðIy

i Þ
2

2
6664

3
7775;

where finite differences (e.g. Sobel operators (Karvelis et al., 2008))
can be used to compute the directional derivatives Ix

i and Iy
i

1 6 i 6m in the x and y directions respectively.
Next we proceed to compute the gradient path. The initial

direction of the gradient path is set as the bisector of the angle
aðiÞ ¼ \ci�k; ci; ciþk at the starting points ci�k, ci, ci+k, as it is shown
in Fig. 9(a) and (b), where ci is the initial cut-point. The computa-
tion of the gradient path proceeds as follows: we choose from
the pixel-candidates the one that has the maximum gradient value.
We then proceed to the next pixel updating the current search
direction every d = 3 points until we reach a boundary point. Final-
ly, we delete points, of the binary image, along the gradient path.
We present the computation of the gradient path for a touching–
overlapping chromosome group in Fig. 9(c) and (d) and in
Fig. 9(e) the final regions produced from the binary image by cut-
ting along the gradient paths.

2.3. Region merging

The purpose of this stage is to connect regions that have been
split by gradient paths. In our case we call a region small if it con-
tains less than 25 pixels. This step was implemented by computing
for each region of the binary image, the Region Adjacency Graph
(Haris et al., 1998) (RAG), where two nodes (representing two dis-
tinct regions) are connected if the corresponding regions are adja-
cent. An example of a RAG is shown in Fig. 10.

Then a Region Bayes Classifier (RBC) (Karvelis et al., 2007; Land-
grebe, 1980) was employed in order to classify all the regions of
the watershed area as follows. Suppose a region R = {z1, z2, . . . , zw}
consists of w pixels. Each vector zi 2 R5; i ¼ 1; . . . ;w measures the
intensity of each of the five M-FISH channels. Also let xj,
j = 1, . . . , NC the chromosome classes, where NC = 24.

The likelihood of the region R is computed as (Landgrebe, 1980):

pðRjxiÞ ¼ pðz1; z2; . . . ; zwjxjÞ ¼
Yw
i¼1

pðzijxjÞ

¼ 1

ð2pÞ5=2jRjj1=2

 !w

exp �1
2

Xw

k¼1

ðzk � ljÞ
tR�1

j ðzk � ljÞ
 !

;

where lj is the five-component mean vector of class j, Rj is the 5 � 5
covariance matrix of class j, |Rj| and R�1

j are the determinant and
inverse respectively. The mean vectors and the covariance matrixes
for each class are computed by a training phase, from an annotated
set of M-FISH images as follows:



Fig. 6. An example of the application of the recursive watershed transform for a DAPI chromosome image. (a) DAPI image, (b) 1 iteration, (c) 2 iteration, (d) 3 iteration (e) 4
iteration and (f) 5 iteration.
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Fig. 7. Pale path computation: (a) candidates for the next path point and (b) update
of path’s direction after d = 3 points.
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lj ¼
1
Nj

XNj

k¼1;zj2xj

zk; j ¼ 1; . . . ;NC ;

Cj ¼
1

Nj � 1

XNj

k¼1;zj2xj

ðzk � ljÞ � ðzk � ljÞ
T
; j ¼ 1; . . . ;NC ;

where Nj the number of pixels of the jth class.
Using Bayes theorem (Karvelis et al., 2007; Fukunaga, 1990):

PðxjjRÞ ¼
pðRjxjÞ � PðxjÞP24
j¼1pðRjxjÞ � PðxjÞ

;

we can classify a region R to class j having maximum a posterior
probability (Fukunaga, 1990):

PðxjjRÞ > PðxqjRÞ 8q ¼ 1; . . . ;24; q – j:

The prior probabilities are estimated from the same set of anno-
tated images as follows:

PðxqÞ ¼
NqP24
i¼1Nq

; q ¼ 1; . . . ;NC :

For each small region R:(# pixels of R 6 25) of the watershed
area we use the RAG to select the neighbours NR of R: NR =
{R1, R2, . . . , Rk}. Let xi the class of region Ri e NR, i = 1, . . . , k and



Fig. 8. The computation of the cut-points for a touching–overlapping group of chromosomes. (a) The DAPI watershed area, (b) the binary image, (c) the boundary of the group
of chromosomes overimposed on the M-FISH image (the yellow point depicts the first boundary point), (d) the curvature along the boundary points with red points are
depicted the cut-points that exceed the angle threshold, (e) the cut-points (red points) overimposed on the M-FISH image, (f) the groups of the candidate cut-points and (g)
the final computed cut-points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. The computation of the gradient paths. (a) The initial search direction and the perpendicular of the search direction, (b) a gradient path reaching the other side of the
boundary (the green points depict the points of the gradient path), (c) all the gradient paths computed for all the cut-points of the chromosome group, and (d) the binary
image after the binary image has been cut by the gradient paths.
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Fig. 10. The Region Adjacency Graph after the gradient paths split the binary image. (a) The M-FISH image for a touching group of chromosomes (the thin white line depicts
the boundary of the binary image), (b) the gradient paths overimposed on the M-FISH image, and (c) the Region Adjacency Graph after the gradient paths split the
chromosomes.

Fig. 11. Region merging of the binary image. (a) Initial region adjacency graph and the classes of each of the regions of the binary image: the small region R3 is merged with
region R1, since the posterior probability P(x1|R3) P P(xi|R3), i = {1, 4}, (b) the region R1 and R4 are merged since they share the same class x1 and (c) the final region merging
result.
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Fig. 12. Two overlapping chromosome cases. The proposed method identifies them correctly. CASE A: Regions R2 and R4 are identified as an overlap since the region R3 is
connected with two regions of the class x23. CASE B: Regions R1 and R4 are identified as an overlap since the region R2 is connected with two regions of the class x1.

Table 1
Number of touching and overlapping chromosomes in the M-FISH database.

Touching chromosomes Overlapping chromosomes

Total number 1178 189

Table 2
Comparison of our work with other works presented in the literature for the touching
group of chromosomes.

Schwartzkopf
et al. (2005)

Ji (1989) The proposed
method

Separation accuracy Accuracy (%) 77 84.2 90.6
Dataset description #Images 183 183 183

#Touches 720 1178 1178
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XR = {x1, x2, . . . , xi, . . . , xk} the set of these classes. Then we com-
pute the posterior probabilities P(xi|R) of region R for xi e XR and
region R is merged to region Rj whose class xj has maximum pos-
terior: XR = {x1, x2, . . . , xi, . . . , xk}

PðxjjRÞ � PðxijRÞ 8xi 2 XR:

An example of small region merging is shown in Fig. 11(a) and (b).
The next step of our method is to classify all the regions (includ-

ing the merged ones) of the binary image using the Region Bayes
Classifier described previously. Then all regions that are adjacent
and share the same class are connected. Finally, the RAG is com-
puted and the procedure is repeated until no more regions are
connected.

The final step of our method is the identification of the overlap-
ping chromosomes. The key idea in this step is that when two
chromosomes overlap, a cross shaped object is formed. In this case
our method splits the binary image in way that one region of the
image separates two regions that share the same class. This is illus-
trated in Fig. 12. Thus the final step of our method is to identify
these overlapping cases by checking for each region of the binary
image whether it has two neighbouring regions of the same class.
3. Results and discussion

3.1. Dataset

To validate our method we used the ADIR M-FISH database
(Schwartzkopf et al., 2005) which is a database of M-FISH images.
The database consists of 183 multispectral M-FISH images. Each
image has 517 � 645 pixels of 8-bit resolution. The database con-
tains five-channel image sets recorded at different wavelengths.
In addition, a DAPI image file is included for each M-FISH image.
The dataset includes also a classification map (karyotype image),
stored as an image file established by experienced cytogeneticists.
This image is labelled so that the grey level of each pixel represents
its class number (chromosome class). In addition, background pix-
els are 0, and pixels in a region of overlap are �1. This data file
serves as ‘‘ground truth” to test the accuracy of our method.

As a ground truth for the touching chromosomes, we used the
binary image produced by the DAPI image to identify the cases



Fig. 13. Examples of three different cases of bended chromosomes. The proposed method handles them successfully after the region merging stage.

Table 3
Comparison of our work with other works presented in the literature for the
overlapping group of chromosomes.

Schwartzkopf
et al. (2005)

The proposed
method

Separation accuracy Accuracy (%) 34 80.4
Dataset description #Images 183 183
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of touching chromosomes in an M-FISH image. For each object pro-
duced by the binarization procedure we determined the cases of
touching. Finally as a ground truth for the cases of overlapping
we used the characterized karyotype image of the M-FISH database
since an overlapping region is represented in that image by pixels
having the value of �1. The number of touches and overlaps in the
M-FISH database is shown in Table 1.
#Overlaps 189 189
3.2. Touching chromosomes

The separation accuracy for the touching group of chromo-
somes was measured by our method. A correct separation occurs
when two or more touching chromosomes are segmented
correctly. The results of our method for the touching groups of
chromosomes are shown in Table 2. We have also compared
our method with the method of pale paths (Ji, 1989) for the
touching groups of chromosomes as the method of pale paths
cannot handle overlapping cases. In order to compute the pale
path we have used the DAPI image since the pale path uses a
greyscale image.

It is interesting to mention the robust behaviour of our method
in the case of isolated bended chromosomes. It is common in the
M-FISH chromosome database to find cases where isolated
chromosomes bend, as shown in Fig. 13. For these cases, cut-points
are found and gradient paths begin to split the chromosome into
two regions. However the region merging stage merges these
regions to form one chromosome again.
3.3. Overlapping chromosomes

The separation accuracy for the overlapping group of chromo-
somes is also measured. The results of our method for the overlap-
ping groups of chromosomes are shown in Table 3.

We have described a novel method for the separation of touch-
ing and overlapping groups of M-FISH chromosome images. Our
method is based on the recursive application of the watershed
transform and the computation of gradient paths for each wa-
tershed area. A region merging stage is finally applied to merge re-
gions that have been wrongly split by the gradient paths. Our
method is evaluated using an M-FISH chromosome image database
and an overall separation accuracy of 90.6% and 80.4% for the
touching and overlapping groups of chromosomes respectively
has been found.

In fact, only one method has been presented in the literature for
the separation of M-FISH images testing its ability to separate



Fig. 14. Six examples of touching and overlapping groups of chromosomes where straight lines between cut-points cannot separate correctly the chromosomes.
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touching and overlapping groups of chromosomes for the whole
M-FISH database (Schwartzkopf et al., 2005). Our method uses
the information from all the channels (the five channel M-FISH im-
age including the DAPI image) whereas Schwartzkopf et al. (2005)
use only the information provided by the five channel M-FISH
image.

To best of our knowledge the pale paths were able to separate
only touching groups of chromosomes without handling overlap-
ping chromosomes (Ji, 1989, 1994). In this paper, we expand the
idea of the paths in order to address also the case of overlapping
groups. More specifically we introduce the gradient paths which
more effectively segment not only touching but also overlapping
groups of chromosomes for the M-FISH images. The gradient path
is superior to other proposed splitting techniques for two reasons:

(A) Unlike other methods (Agam and Dinstein, 1997), we do not
assume that a path is a straight line between two cut-points.
Fig. 14 depicts some examples of touching and overlapping
chromosome groups, none of which can be split by a straight
line without fragmenting a chromosome. Such cases usually
happen where more than two chromosomes are involved in
a group of touching–overlapping or one of the chromosomes
is bent.
(B) The paths have been appropriately modified in order to sep-
arate overlapping and touching groups of chromosomes in
M-FISH images by computing the multichannel gradient
and the running of the path through high gradient magni-
tude values. Fig. 15 illustrates some examples of the compu-
tation of the pale path (Ji, 1989, 1994) using the DAPI image
versus the gradient path which uses the multichannel gradi-
ent magnitude of the M-FISH image.

While previous methods were based only on region merging
techniques (Karvelis et al., 2008), the proposed method utilizes re-
gion merging and region splitting techniques to correctly segment
the chromosome touching and/or overlapping groups. More specif-
ically the proposed method starts with an initial number of seg-
mented regions and recursively split or merge the regions until
no more regions are produced. Fig. 13 is an indicative example of
how the region merging step corrects erroneous separations of
the region splitting step. Although, the region splitting technique
separated the chromosome into two distinct regions, region merg-
ing corrected this error by merging the regions again to form one
chromosome.

There is a tradeoff between the choice of this angle threshold
and the number of cut-points. If we choose a smaller threshold a



Fig. 15. Pale path versus gradient path. Three examples where the pale path fails to separate correctly the chromosomes while the gradient path correctly separates them.
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larger number of cut-points is computed. However, the grouping of
neighbouring cut-points and the selection of those with the maxi-
mum angle (among their neighbours) result in the same final cut-
points. On the other hand the choice of a larger angle threshold will
result to a smaller number of cut-points and thus less gradient
paths will be computed. Thus, the separation of the touching or
overlapping group of chromosomes will not be feasible. In our
experiments we have heuristically determined the best value for
this parameter.

Tables 2 and 3 show a comparison between the proposed study
and the method which proposed by Schwartzkopf et al. (2005).
While the number of overlapping cases is the same, the number
of touches differs between the two methods. This is done due to
the different approaches employed by the two methods for the
determination of touching groups of chromosomes. In our case
we used the binary image produced by the DAPI image to identify
the number of touching chromosomes in an M-FISH image
whereas Schwartzkopf et al. (2005) has manually chosen the num-
ber of touches. In general, it is difficult to compare the two meth-
ods directly since they are not handling the same number of
touching chromosomes. However our method is employed in the
same M-FISH database and the number of touches is higher than
that reported in Schwartzkopf et al. (2005). We have also com-
pared our method with the method of pale paths (Ji, 1989, 1994)
for the touching groups of chromosomes as the method of pale
paths cannot handle overlapping cases. Touching and/or overlap-
ping chromosome groups are highly likeable to appear in a chro-
mosome image making time consuming and difficult the effort of
the cytogeneticist. Therefore, the efficient treatment of this prob-
lem is very important for the biologists. Since our method provides
sufficiently accurate results in identifying touching and overlap-
ping chromosomes, it is expected to be a very useful tool that will
greatly facilitate the task of the cytogeneticist.
4. Conclusions

A method for the separation of touching and overlapping groups
of chromosomes in M-FISH images was presented. The method is
based on the recursive application of the watershed transform
and the splitting of groups of chromosomes by multichannel gradi-
ent paths. These paths split these groups of chromosomes from
points of high concavity and follow pixels of high multichannel
gradient magnitude. Then a region merging stage is applied to
merge neighbouring regions producing the final chromosome
areas. The computation of the gradient path based on multichannel
gradient values instead of the computation of the pale path which
is based on low intensity values proves to be more robust. Also the
gradient paths can now handle overlapping cases of chromosomes
whereas the pale paths could only handle touching groups of chro-
mosomes. As for future work an unsupervised method will be
developed for the classification of M-FISH images. In this way we
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avoid the use of already characterized M-FISH images in order to
train the Bayes classifier.
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