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A new approach is presented for finding near-optimal 
solutions to discrete optimisation problems that is 
based on the cooperation of two modules: an 
optimisation module and a constraint satisfaction 
module. The optimisation module must be able to 
search the problem state space through an iterative 
process of  sampling and evaluating the generated 
samples. To evaluate a generated point, first a 
constraint satisfaction module is employed to map 
that point to another one satisfying the problem 
constraints, and then the cost of  the new point is 
used as the evaluation of the original one. The scheme 
that we have adopted for testing the effectiveness of 
the method uses a reinforcement learning algorithm 
in the optimisation module and a general deterministic 
constraint satisfaction algorithm in the constraint 
satisfaction module. Experiments using this scheme 
for the solution of  two optimisation problems indicate 
that the proposed approach is very effective in 
providing feasible solutions of  acceptable quality. 

Keywords: Constraint satisfaction; Discrete optimis- 
ation; Graph partitioning; Higher-order Hopfield; 
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1. Introduction and Motivation 

Discrete optimisation problems in their general 
formulation can be defined in terms of a tuple 
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(S,S', fc), where S denotes the state space of the 
problem, S' _ S denotes the set of feasible states, 
i.e. those satisfying the problem constraints, and 
fc : S ~ 3t denotes the function that determines the 
cost of each state. The problem is to find a feasible 
state for which the cost function is optimal, i.e. to 
find a state s' E S' such that fc(S') is optimal in S' 
[1]. 

The conventional approach to tackle these prob- 
lems is to regard the given optimisation problem as 
a tuple (S,S,f'), where the function f has the form 
f '  = fp + fc, with the function fp encoding the 
constraints of the problem and taking its optimum 
value in the case of feasible states. In this way, the 
problem is reduced to an unconstrained optimisation 
one consisting of finding a state s E S for which 
the function f '  is optimal in S. 

Most search techniques applied to the solution 
of discrete optimisation problems are based on the 
above formulation which expresses the constraints 
through the penalty term fp. In that case, the 
optimisation procedure can be described as an 
iteration of a simple generate-test loop, as shown in 
Fig. 1. This approach is unavoidable when no a 
priori information about the function f is available. 
Thus, points are generated which belong to the 
domain of f and the evaluation of these points 
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Fig. I. The generate-test loop. 
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consists of computing the corresponding function 
value. The aim is to adapt the generator so that 
'better' points are generated as the iteration evolves. 
This adaptation is based on information that is fed 
back to the generator after the evaluation of each 
point. 

A factor affecting the performance of this kind 
of approach in finding near-optimal feasible solutions 
is the increased complexity of the cost function due 
to the addition of the penalty term. Another 
important factor concerns the existence of higher- 
order correlations between the values of variables 
that are used to determine the problem state. This 
is a consequence of the existence of constraints 
which specify values that cannot be assigned simul- 
taneously to groups of variables. In general, such 
higher order dependencies introduce difficulty in 
the exploration of the state space, and constitute 
the principal cause of convergence to local optima. 
The ability to escape from such local optimum 
traps requires that a set of correlated variables 
simultaneously change their value, i.e. jumps 
between states that are relatively far apart (according 
to some distance measure) must be possible. 

In this paper, we propose a novel approach to 
the solution of discrete optimisation problems, 
which is based on the incorporation of a mapping 
operation within the generate-test loop described 
above. Through the mapping operation, the output 
s E S of the generator is mapped to a feasible state 
s ' E  S'. The cost of the point s' provides the 
evaluation of the generated point s. Thus, instead 
of performing the search directly in the space of 
feasible states, the search scheme generates states 
in S, which are evaluated based on the cost of the 
transformed states. According to this approach, an 
optimisation scheme is responsible for optimising 
only the cost part of the function. Thus, the 
complexity of the cost function is not increased, 
and fewer higher-order dependencies have to be 
discovered. However, a constraint satisfaction 
scheme is required which should be capable of 
mapping arbitrary states in S to feasible states in 
S p" 

A basic characteristic of the proposed approach 
is that the constraint satisfaction scheme operates 
in an iterative way, thus its input-output behaviour 
cannot be described by a mathematical formula. 
Consequently, it is not possible to perform optimis- 
ation in a direct manner by using one of the 
well known function optimisation techniques (e.g. 
Lagrange or other). Instead, our optimisation 
scheme must rather be based on an exploration 
technique. 

Depending on the problem, it is not always 

possible to map an arbitrary state s E S to a feasible 
one using a polynomial-time constraint satisfaction 
scheme. To overcome this difficulty, we can consider 
an alternative formulation which allows an effective 
treatment of the constraint satisfaction part of the 
problem. In this formulation, the original problem 
(S,S',fc) is transformed into a new one specified as 
(S,S",f"), where S" C S denotes a set of states that 
satisfy part of the problem constraints. We shall 
refer to those states as partially feasible states of S. 
Moreover, the function f" has the form f '  = f~ + fc, 
with f~ encoding the remaining constraints of the 
problem. Our goal is to find a state s " E  S" for 
which the function f" is optimal in S". In general, 
for a given problem, there may exist many alternative 
ways to define the set S". Obviously, in favourable 
cases we can have S" = S',  and this method simply 
corresponds to the original formulation of the 
problem. The proposed approach involves a con- 
straint satisfaction technique capable of mapping 
arbitrary states to feasible or partially feasible ones. 

In the above context, we have developed an 
original constraint satisfaction scheme, which is 
established in terms of interesting theoretical results 
and constitutes a second contribution of the paper. 
The principle of the method is equivalent to using 
higher-order Hopfield networks for the solution of 
constraint satisfaction problems. 

In the next section we provide a general descrip- 
tion of the proposed method and prescribe the 
characteristics of the individual schemes involved. In 
Sect. 3 an original constraint satisfaction technique is 
presented which is used as part of the general 
approach. Section 4 concerns the optimisation part, 
which is responsible for generating sample states. 
An original scheme is considered here which falls in 
the area of reinforcement learning. Implementation 
and performance issues are discussed in Sect. 5 
through the application of the proposed method to 
well known optimisation problems which yielded 
very good results. Finally, the main conclusions are 
discussed in Sect. 5. 

2. The Integrated Approach 

Consider a discrete optimisation problem (S,S',fc), 
where, as defined above, S denotes the state space 
of the problem (which must be finite), S' denotes 
the subset of S whose states satisfy a specific set of 
constraints and fc is the cost function to be optimised 
in the domain S'. Also consider the formulation 
(S,S",f") introduced before, which is based on the 
notion of partially feasible states. In the following 
we shall use the term 'feasible' to refer to either 
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Fig. 2. The sample-map-evaluate loop. 

feasible or partially feasible states, as both are 
treated in the same manner. Accordingly, the 
notation s' (S') may actually be used in place of s" 
(S") following the case. 

The search is not performed directly in space S'. 
Instead, the optimisation scheme at each step 
suggests a state s E S, which in turn is evaluated 
based on the cost of a transformed state s' E S' 
provided by the constraint satisfaction scheme 
(Fig. 2). The whole method, which integrates the 
constraint satisfaction scheme within the optimis- 
ation scheme, is based on the iterative application 
of the three-step procedure sample-map-evaluate, 
which generates sample points in the state space S, 
maps these points to points in S', and finally, 
evaluates them based on the cost of the correspond- 
ing feasible points. 

The particular way in which the evaluation of a 
state s is performed, has as a direct consequence 
that the state space S is partitioned into groups of 
states. The number of groups is equal to the 
cardinality IS'l of the feasible state space S'. All 
states that belong to the same group are mapped 
to the same feasible state, thus receiving the same 
evaluation. In general, the constraint satisfaction 
scheme is characterised by a kind of attraction 
behaviour, similar to the one exhibited by Hopfield- 
type neural networks [2]. Therefore, the landscape 
to be searched consists of 'plateaus', i.e. large fiat 
areas where the function has the same value. To 
sample a near-optimal feasible state, it is not 
necessary for the optimisation scheme to generate 
the point itself. Instead, it suffices to generate an 
arbitrary state belonging to the same group, thus 
the exploration task is greatly facilitated. This 
argument, in conjunction with the already mentioned 
reduction of the number of higher-order dependenc- 
ies, provides strong evidence for the success of 
the proposed method. The constraint satisfaction 
scheme adopted in our integrated approach is 
described in the next section. Its operation is based 
on theoretical results which are of interest by 
themselves. 

In what concerns the optimisation scheme, it 
must be based on an exploration technique that 

appropriately samples the state space and evaluates 
the function at the sample points in an attempt 
to find an optimal solution. Three optimisation 
techniques that operate in this way are: simulated 
annealing [1,3], genetic algorithms [4,5] and 
reinforcement learning algorithms [6-9]. 

As far as the use of simulated annealing is 
concerned, its effectiveness should be affected in 
our case by the plateau-like shape of the function 
to be searched. Its application requires the definition 
of a neighbourhood around each state, from which 
the next state to be evaluated is drawn. Such a 
neighbourhood must be relatively small in general 
[1], thus to escape from large plateaus several steps 
may be required. This fact on the one hand decreases 
the speed of the method, and on the other hand, 
increases the probability of getting stuck on 'pla- 
teaus' corresponding to local maxima. 

Both reinforcement and genetic algorithms gener- 
ally possess the required property of suggesting next 
states that may be far in distance from the current 
one. Genetic algorithms are based on the evolution 
of a population, whose members represent sample 
points of the function to be optimised (fitness 
function) [5]. If the genetic approach were adopted 
as our optimisation scheme, then at each generation 
the constraint satisfaction module should have been 
called many times for the fitness of each individual 
population member to be computed. Since all 
evaluations are independent, they could be 
efficiently performed on a parallel machine. This 
implementation constitutes one of the objectives of 
our future research. 

In the approach presented in this paper we 
have selected to employ a reinforcement learning 
algorithm as the optimisation scheme. The suitability 
of reinforcement learning for function optimisation 
stems from the trial and error nature of the 
paradigm, which assumes that the only information 
provided to the learning system arises through 
sampling the function values at various points of 
the search space. This characteristic distinguishes 
reinforcement learning techniques from other neural 
network approaches to optimisation, such as the 
analogue Hopfield network or the Boltzmann 
optimiser, in which prior problem knowledge is 
incorporated in the network parameters. In Sect. 4 
an original reinforcement learning scheme is pre- 
sented, which has been used in implementing and 
testing the integrated optimisation approach. For 
comparison reasons, the pure simulated annealing 
technique has also been implemented and evaluated 
experimentally, as will be discussed in Sect. 5. 
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3. The Constraint Satisfaction Scheme 

The operation of the constraint satisfaction scheme 
is based on a general 0-1 integer programming 
formulation of the constraints (either the whole set 
or part of it) that must be satisfied. This formulation 
must be appropriately defined to express a given 
problem in terms of a set of binary variables. We 
say that such a variable is 'on'  ( 'off') if it is equal 
to 1 (0). Let  v = (vl, ..., VN) denote the vector of 
binary variables. The value of v at any given time 
instant represents the state of the system. 

A basic assumption concerning our scheme is that 
only variables that are 'on' may be responsible for 
the violation of some constraints. In this sense, the 
set C of problem constraints, which have to be 
satisfied by the scheme, contains tuples of binary 
variables that are incompatible with each other 
if they are 'on'  simultaneously. This assumption 
constitutes no restriction to the generality of the 
approach. Indeed, if the actual problem variables 
have finite discrete domains, then a binary variable 
of the type defined above can be used to represent 
the assignment of each domain value to each problem 
variable. This formulation allows the encoding of 
any type of constraint. 

We denote by Ck the set of tuples in which 
variable vk is involved. Assuming that we are in a 
given state v, we associate with each variable Vg an 
indicator Ik(v). This indicator determines whether 
a constraint violation involving variable vk would 
occur if we set vk = 1. Specifically, Ik(v) = 1 when 
at least one constraint from the set Ct, would be 
violated, otherwise it is zero. Obviously, if variable 
vk is already 'on' ,  the indicator I~ characterises 
constraint violation in the current state. 

Using the above definitions the constraint satisfac- 
tion problem can be defined as follows: 

Find a binary vector v = (vl, ..., VN) such that 
N N 

Vklk(V) + ~ (1 -- Vk)(1 -- Ik(V)) 
k = l  k = l  

= 0 .  (1)  

It is apparent that the above condition is satisfied 
iff both sums are zero. In what concerns the first 
sum, this guarantees that no constraint is violated, 
while making the second sum equal to zero ensures 
the maximality of the proposed solution, i.e. every 
variable that is zero would violate at least one 
constraint if it were set equal to one. 

The purpose of the constraint satisfaction scheme 
is to map (in polynomial time) the state represented 
by the output of the reinforcement scheme to 
another one satisfying Eq. (1). This new state will 

then be evaluated to judge the appropriateness of 
the generated sample. The mapping is performed 
using the following iterative algorithm. At each 
time step, we select a variable v~ and examine 
whether any constraint of the corresponding set C~ 
is violated, assuming vk is set to the value one. If 
no constraint violation occurs we set v~ = 1, other- 
wise we set vg = 0. By proceeding in this fashion, 
a state is finally attained from which no other 
transition is possible (equilibrium state). This is 
established by the following proposition: 

Proposition 1. I f  the selection scheme guarantees 
that every variable is examined infinitely often, then 
the iterative selection process eventually terminates 
and an equilibrium state is finally attained which is 
characterised by the following two properties: (i) no 
constraint is violate& and (ii) every variable that is 
zero would violate at least one constraint in case it 
were set equal to one (maximality property). 

Proof. We define the following function, which 
will be called the energy function, corresponding to 
each state vector v 

N 

E(v) = ~ v~(I t , (v)-  cr (2) 
k = l  

where o~ is an arbitrary positive parameter  with 
value less than 1. 

The above energy function constitutes a Liapunov 
function for our system, in the sense that at each 
step either it decreases or remains the same. This 
can be verified as follows. 

Let  the system be in state v, and let AE denote 
the difference in energy that would result after 
examination of a variable v~. The following cases 
can be distinguished: 

vk changes from 0 to 1. This implies that Ik(v) = 0 
and, consequently, the I-value of no other variable 
that is in the 'on'  state is affected. Therefore,  
AE = - a  < 0. 

v~ changes from i to 0. This implies that It,(v) = 1 
and, in addition, the I-values of some (say 
K _> 0) 'on'  variables may become zero. Thus, 
A E =  - ( 1 -  a ) -  K < 0 .  

Vg does not change. Obviously AE = 0. 

Since the energy function is bounded from below 
and does not increase in any step of the algorithm, 
it is obvious that an equilibrium state will finally 
be attained with the characteristic that no change 
in the value of any variable will be possible. [] 

The operation of the proposed optimisation 
method requires that the evaluation of the output 
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generated by the exploration unit be consistent. 
This means that identical states should receive the 
same evaluation. Therefore, the mapping performed 
by the constraint satisfaction scheme should be 
deterministic, i.e. for the same input state the 
scheme should always yield the same output. Thus, 
in the iterative procedure described above, the 
binary variables are not selected in a random way, 
but they are sequentially examined following an 
order, which is specified in advance. An operation 
cycle of the constraint satisfaction scheme consists 
of the sequential examination of all variables 
following the predetermined order. To ensure deter- 
ministic operation this order remains fixed during 
all operation cycles. 

An interesting result concerning the speed of 
convergence of the above deterministic operation 
scheme is given in terms of the following proposition: 

Proposition 2. The number of  operation cycles 
required to converge to an equilibrium state is at 
most two. 

Proof. According to the operation principles of 
the scheme, when a variable Vg is considered and 
takes the value one, no constraint violation occurs 
as far as the constraints in which this variable is 
involved are concerned. In addition, all variables 
that will be considered afterwards and are linked 
by constraints with the specific variable vk will be 
prevented from taking the value one. Therefore, it 
is not possible that variable v~, will become zero in 
a subsequent cycle. Consequently, during the second 
cycle, only variables that are zero at the end of the 
first cycle may change their state. After the end of 
the second cycle the variables that have taken the 
value one cannot change their state in a subsequent 
cycle for the same reason described above. This 
also holds for the variables that remained zero after 
the end of the second cycle. The reason is that any 
subsequent state change from zero to one would 
assume that a variable that had value one at the 
end of the first cycle became zero during the second 
cycle, which is impossible as explained previously. 
From the above it is obvious that after the second 
cycle the following properties are valid: (i) there is 
no constraint violation between variables that have 
value one; and (ii)no variable that is zero can 
assume the value one, because there will be violation 
of at least one constraint. [] 

It should be pointed out that the above result 
does not depend on the existence of a predefined 
examination order for variables. This order is 
exclusively due to the necessity of deterministic 
operation of the constraint satisfaction scheme 
within the context of the overall optimisation 

approach, and does not affect the speed of conver- 
gence. Considering the constraint satisfaction 
scheme in isolation, the proposition could be 
formulated in a more general manner as follows: 
convergence is achieved in at most 2N steps, where 
N is the number of variables, provided that each 
variable is examined exactly once during the first 
N steps, and exactly once during the next N steps. 

The operation of the constraint satisfaction scheme 
can be summarised by means of the following 
algorithmic steps: 

1. (Cycle 1} Following the predetermined order 
examine each variable vk as follows: 
(a) Check Ik(v). 
(b) If it is 1 then set v~, = 0, otherwise set 

1;k ~--- ] .  

2. (Cycle 2} Following the predetermined order 
examine each variable Vk as follows: 
(a) If v~ = 1 continue. 
(b) If Vk = 0 

(i) Check Ik(v). 
(ii) If it is 1 then set vk = O, otherwise 

set ve -- 1. 

The constraints may be expressed either in the 
form of general rules or they may be described 
explicitly as tuples of the constraint set C. In any 
case, during the computation of each Ik(v) the 
checking can stop if a constraint violation is encoun- 
tered, without needing to examine the whole set of 
constraints Ck. This fact has significant impact on 
the execution speed of our algorithm, since it greatly 
reduces the required computations. 

Our constraint satisfaction scheme, which has 
been described previously in an abstract form, can 
be implemented in a connectionist manner by means 
of a discrete higher-order Hopfield network with N 
binary units. In general, if v = (Vl, ..., vN) denotes 
the state of a higher-order Hopfield network, its 
energy function is given by 

N N 

E ~ - -  E E ]2ilVi2Wili2 
i1=1i2=1 

N N N 

- - E E E V i a V i 2 V i 3 W i l i 2 i 3  
i1--1i2=1i3=1 

N N N 

�9 .. E E . . . E V i l V i 2 . . . V i N W i l i 2 . . . i N  
i 1 = 1 i 2 - - 1  iN=l 

N 

- E ViOl. (3) 
i = l  

A higher-order binary Hopfield network for 
constraint satisfaction problems can be constructed 
based on the set C of constraints which contains 
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tuples of units that cannot be 'on' simultaneously. 
Specifically, if (il,i2, ... &) E C the weights 
Wil ..... ik corresponding to any permutation of 
(il,i2, ..., &) are equal to -1 /k[ ,  otherwise they are 
equal to zero. Moreover, the threshold value of 
each unit is set equal to ot < 1. In this case the 
energy is given by the following formula 

N 

E =  E VilVi2 . . .  V i k - -  E V i O s  (4) 
(il ,i2 . . . . .  ik) E C i= 1 

Following the operation of the discrete Hopfield 
network, the update of each unit i is performed in 
the following manner: v; = 0 if ( -E( i j  ..... k)eci D 
... v~ + ~) < 0, otherwise v; = 1. Since ot < 1, if 
at least one constraint from the set C~ is violated, 
the state of the corresponding unit i becomes zero, 
otherwise it takes the value one. 

It is obvious that the operation of the network is 
similar to the one described for our constraint 
satisfaction module. Based on this similarity, the 
quantity g(~,j ..... ~)eci vj ... v~ can be considered as 
a quantitative description of the indicator /~(v): 
/k(v) = 1 if ~'(i,j ..... k ) E C  v/... vk > 0 and /k(v) = 0 
if ~( i , j  ..... k ) ~ C  V] . . .  V k = O. 

It should be noted that, to our knowledge, the 
application of the Hopfield approach to constraint 
satisfaction problems has been restricted so far to 
the case of binary constraints, thus the usual second- 
order network has been employed. Moreover, a 
result similar to that of Proposition 2 has been 
proved [10] for the class of nonpositive binary 
Hopfield networks which represent binary constraint 
satisfaction problems. Since our proposed general 
constraint satisfaction scheme can be implemented 
using a higher-order Hopfield network, it is apparent 
that the result of Proposition 2 regarding the 
maximum number of cycles for convergence also 
carries over to the class of higher-order Hopfield 
networks having the characteristics described pre- 
viously. 

4. The Optimisation Scheme 

As already mentioned, reinforcement learning has 
been previously applied to the solution of discrete 
optimisation problems in cases where the conven- 
tional penalty method was used. Moreover, the 0- 
1 integer programming formulation was adopted, 
thus the network consisted of binary stochastic units 
[7,8]. However, as is the case with any hillclimbing 
method, reinforcement learning schemes in their 
pure form have been shown in many cases to 
converge at local maxima [9]. This is due to 

the fact that their operation is solely based on 
correlations between the values of individual units 
and that of the reinforcement signal. Consequently, 
higher order dependencies are difficult to discover. 
Although some schemes have been proposed which 
succeed in escaping from local maxima [8], learning 
time is still a critical factor limiting the applicability 
of those schemes for solving optimisation problems. 
This is of great importance especially when the size 
of the problem becomes large or complex function 
landscapes must be searched. The proposed inte- 
grated approach aims at overcoming the above 
drawbacks of reinforcement algorithms. 

In the problems considered here, the application 
of reinforcement learning actually involves the 
search of high-dimensional binary spaces. To achieve 
that, we have used a team of binary stochastic units 
with no interconnections among them. The size of 
the team was determined by the dimensionality M 
of the binary space to be searched. The value of 
M is assumed to be the only available information 
about the function before the computation begins. 
The operation of the units is stochastic, to attain 
the required exploratory behaviour. In particular, 
at each trial the team of units generates a binary 
sample point y = (Yx, ..., YM). Based on the evalu- 
ation of that output, the sampling distribution is 
biased towards the selection of points at which it is 
likely to obtain high function values. This is achieved 
by properly adjusting the parameters of the units. 

At each time step, the reinforcement module 
samples a point in the state space S. The evaluation 
of each sample s is performed in two steps. First s 
is mapped to a feasible point s' or a partially 
feasible point s" and then the corresponding value 
fc(s ')  or f"(s") is computed to provide the reinforce- 
ment signal r that is fed back to the reinforcement 
module to guide the update of its parameters. This 
process is repeated until a stopping criterion is met 
(e.g. if after a certain number of iterations no 
improvement has occurred). 

The reinforcement scheme that has been con- 
sidered in our optimisation module applies to 
processing elements of the type shown in Fig. 3 
[11,12]. Such a unit employs two levels of stochas- 
ticity. At the first level the output ni is drawn from 
a normal distribution with parameters ~i and o'~, 
while at the second level the output Yi is a Bernoulli 
random variable with parameter Pi. The latter is 
computed as a deterministic function f~ (the logistic) 
of the output n; of the first level, i.e. 

1 
Pi  -- 1 + e - h i "  ( 5 )  

The above Normal/Bernoulli unit when employed 
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y~ 

Fig. 3. The  Normal/Bernoull i  unit. 

in conjunction with a suitable reinforcement scheme, 
allows the exploration of discrete domains via the 
modification of the mean and the standard deviation 
of the normal distribution. As shown in [11,12], 
the exploitation of the two parameters of the 
normal distribution leads to an improved exploratory 
behaviour in discrete spaces in terms of the elapsed 
time to find the optimal output. Moreover, exper- 
iments indicated superiority of the reinforcement 
schemes involving two-level Normal/Bernoulli units, 
over those using single-level Bernoulli units. 

Considering a team of binary stochastic units such 
as the one shown in Fig. 3, at each time step t the 
parameter Ix~ of each unit i is adjusted according 
to the following rule 

AIx i = oL~(r - ~)(Yi - Yi) - 5~Li , (6) 

where ot~ is a constant learning rate, while -SIxi 
(5 < 1) is a decay term whose role will be explained 
below. The quantity P is computed as an exponen- 
tially weighted average of prior reinforcement values 

/~(t) = ~ff(t - 1) + (1 - ~)r( t )  , (7) 

with ~ being a decay rate (0 < ~/< 1). Moreover, 
Pi is an average of past values of y~ and is updated 
a s  

y~(t) = "~3~,-(t- 1) + (1 - ~/)yi(t). (8) 

The standard deviation o-, considered to be the 
same for all units in the team, should be small 
when the learning system is exploring the region of 
a promising local maximum, and it should be large 
in the opposite case [13]. One possible way to 
obtain the above behaviour is to update cr based 
on the notion of e n t r o p y .  

The entropy of the output y of the learning 
system is defined as follows [8]: 

H(y,ix,o') = - ~ Pr(y = ~llx,tr) 

In Pr(y = ~[ix,(r) , (9) 

where Ix is the vector of parameters Ixi and 
represents a binary M-tuple. For a given ~, an 
unbiased estimate of the entropy is given by the 
following quantity: 

h(~,Ix,(r)  : - I n  P r ( y  = ~lIx,tr). (10) 

On a particular trial at time step t, let ni(t)  be the 
output of the first level of unit i and ~ the generated 
output. Then, the estimate h(~,Ix,(r) of the entropy 
can be approximated by 

M 

h( t )  = - ~] In Pr(yi = ~i[p~(t)) (11) 
i= l  

where pg(t) is obtained from (5) using ni( t ) .  
When the search is confined in the neighbourhood 

of a local maximum, the probabilities p~ have 
approached one of the values 0 or 1, thus the 
entropy of  the system tends to become zero. On 
the contrary, in the case of broad search the value 
of the entropy is high. Therefore, the update of 
the standard deviation (r can be performed according 
to the rule 

(r(t) = aoh(t) (12) 

where the parameter a ,  takes positive values, and 

t i(t)  = ~ h ( t -  1) + (1 - ~)h(t) .  (13) 

The quantity h( t )  is a trace of past values of h(t) 
(~/ being a decay factor as before) and is used in 
place of h(t) to ensure smoother updates of the 
value of o-. 

The reinforcement strategy described above pos- 
sesses the ability of considering all the points in a 
large neighbourhood surrounding the current search 
point, instead of only considering immediately 
adjacent points. Such neighbourhood search pro- 
cedures have the effect of avoiding local maxima 
of the landscape. This type of exploratory behaviour 
is necessary in our optimisation scheme, since the 
form (plateaus) of the function to be searched by 
the reinforcement algorithm requires that the latter 
be able to suggest at successive time steps sampling 
points which are far from each other in Hamming 
distance. 

Another interesting feature of the above learning 
scheme is that of s u s t a i n e d  e x p l o r a t i o n  [4]. This 
property relates to the ability of the learning system 
to enter a divergence phase after it has converged 
to a specific state. This ensures the avoidance of 
local maxima since exploration continues even after 
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the global maximum has been generated. Sustained 
exploration is achieved through the incorporation 
of the decay term -~txi in Eq. (6). It should be 
noted that the alteration between a convergence 
and a divergence phase is triggered internally, and 
does not constitute an external event for the learning 
system. 

5. Experiments  

We have tested the effectiveness of our approach 
through experiments concerning two discrete 
optimisation problems, namely the set partitioning 
problem and the graph partitioning problem. In all 
the experiments, we used the scheme described in the 
previous section. Due to the sustained exploration 
property of the reinforcement algorithm, the system 
did not settle in a specific state. For this reason, 
we adopted the following conventions regarding the 
termination of the iterative procedure. In the set 
partitioning problems, for which the position of the 
global maximum is not known a priori, we keep 
track of the best solution found so far, and we 
terminate the search if for a sufficient number of 
consecutive iterations, the method does not manage 
to reach a state of greater cost than the best solution 
already found. In the graph partitioning problems, 
for which the global maximum is known, the 
procedure is terminated when this point is attained 
for the first time. 

For comparison purposes we have also performed 
experiments using the method of simulated 
annealing, for both problems considered. The exper- 
iments concerned the use of simulated annealing as 
an independent optimisation technique and not as 
part of the integrated approach proposed in this 
paper. 

5.1. Application to Set Partitioning 

The formulation of the Set Partitioning Problem 
(SPP) has as follows [14]: 

Given a finite set S containing L elements and a 
collection G of subsets Si(i = 1, ..., M)  of S, find 
the minimum subset F of G such that all the subsets 
belonging to F are disjoint and they constitute a 
partition of S, i.e. their union is equal to S. 

Consider a set of binary variables vk 
(k = 1, ..., M) whose values represent the state of 
the system, with vk = 1 denoting that subset Sk is 
included in the solution set F and Vk = 0 denoting 
the opposite. The problem can be stated as follows: 

and 

M 

minimise ~ v~ 

subject to 
M M 

E E V k V i a k i  
k = l  i = l  

i4=k 

= 0 (14) 

M 

k = l  

where [S~[ denotes the cardinality of subset Sk and 
a~i = 1 if subsets S~ and Si are not disjoint, otherwise 
it is zero. 

From the above it is clear that the set partitioning 
problem involves two kinds of constraints: the 
disjointness constraint (14), and the covering con- 
straint (15). It is not possible to construct a constraint 
satisfaction module that will always yield feasible 
solutions starting from an arbitrary state. In fact, 
the problem of finding just one feasible solution of 
a given SPP instance (not necessarily the optimal 
one) is NP-complete. 

Therefore, our constraint satisfaction module can 
only provide partially feasible solutions satisfying 
one of the above constraints. We have chosen the 
satisfaction of the disjointness constraint. At each 
step of the optimisation procedure, the reinforce- 
ment learning module provides a binary vector of 
size M, which represents a selection of sub-sets Si. 
The constraint satisfaction module accepts as input 
this arbitrary state and yields (in at most 2M 
iterations) a state corresponding to a solution set 
F, where all the selected subsets are disjoint. 
Moreover, the set F is maximal in the sense that 
no other subset can be added to this set without 
violation of the disjointness constraint. The oper- 
ation of the module is based on the following 
definition of the indicator Ik for every k = 1, ..., M: 

M 

I k ( v ) = O  if ~ v iak i=O.  (16) 
i= l , i~k 

The cost of the solution set corresponding to the 
output v of the constraint satisfaction module 
constitutes the reinforcement signal r that is fed 
back to the reinforcement module to update its 
parameters. This signal contains information regard- 
ing the covering constraint and the cost of the 
problem (cardinality of F). It is computed as follows: 

k ~ l  12 k . ( 1 7 )  

Since the state v satisfies the disjointness constraints, 
it always holds that EM=x ISilvi <- L ,  thus the first 
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term is maximised when the covering constraint is 
satisfied. The factor 1/M that multiplies the cost 
term was added to ensure that every feasible solution 
(satisfying the covering property) accepts higher 
reinforcement signal than any partially feasible 
solution. This fact enforces the maximisation process 
to search for feasible solutions first and then for 
solutions of optimal cost. 

As already mentioned, a stopping criterion has 
been adopted since the optimal solution is not 
known a priori. More specifically, the optimisation 
procedure stops if, after 30M consecutive iterations, 
the current best solution cannot be further improved. 

Experiments have been conducted on randomly 
generated graphs with M = 75 and L = 50. To 
generate the tested instances we first constructed a 
number of subsets of S by allocating each of the 
elements of S to one and only one.of these subsets 
so as to create a disjoint solution. The remaining 
subsets were randomly constructed by deciding with 
probability q whether an element of S should belong 
to a particular subset. By varying the value of q, 
the density of the resulting problem instance could 
be adjusted. The value of q was chosen in the range 
from 0.03 to 0.1. 

To further examine the effectiveness of the 
proposed method, we have performed comparisons 
with the simulated annealing approach using the 
penalty-based formulation [1]. The cost function to 
be maximised evaluates each state v as follows 

f ( v )  = - i = l j = l  

V i  , 

(18) 

than S m a  x = where k is set greater 
max{l&l, ..., [SM[}. The above choice of the para- 
meters ensures on the one hand that every equilib- 
rium corresponds to a solution set with disjoint 
subsets, and on the other hand, that every feasible 
solution is of higher cost than any partially feasible 
solution. 

The temperature T is reduced according to the 
following logarithmic annealing schedule: 

Y.,  
Tn - 1 + logf(n) ' (19) 

where Tn denotes the temperature at the nth step 
of the schedule, and f (n)  = f (n  - 1)(1 + q~) with 
f(0) -- 1. The initial temperature To was set equal 
to 2.0 and a very slow reduction rate ~p = 1 0  - 6  

was adopted. At each temperature, 2M trials are 

Table 1. Comparative results. 

Algorithm Feasible 
solution 

Uncovered elements 

1 2 >2 

CA 67.7% 31.1% 1.2% 0% 
SA 55.5% 2 6 . 6 %  12.2% 5.7% 

performed, and the algorithm terminates if for 10 
consecutive temperature values the system remains 
in the same state. In that case, the output of the 
procedure is the best found solution. 

Comparative results for the proposed combined 
approach (denoted by C A )  and the simulated 
annealing (denoted by S A) are displayed in Table 
1. The results concern the percentage of cases (over 
100 experiments) in which each method found a 
feasible solution (first column), or a partially feasible 
solution that leaves 1, 2 or more than two elements 
of S uncovered (second, third and fourth columns, 
respectively). The superiority of the proposed 
approach is apparent, in spite of the fact that a 
very slow annealing procedure was used. 

5.2. Application to Graph Partitioning 

The second experimental study of the effectiveness 
of the proposed method deals with the following 
problem: 

Given a graph G =  (V,E)  with IVI = M and 
adjacency matrix A,  find if there exists a partitioning 
of this graph into two disjoint subgraphs of equal 
size (M even). We shall say that two subgraphs are 
disjoint if their corresponding sets of vertices are 
disjoint and there are no edges of the original graph 
G that connect vertices belonging to the two 
subgraphs. 

Consider an arbitrary partitioning of the original 
graph G into two subgraphs GA = (VA,EA) and 
GB = (VB,Es).  The partitioning can be represented 
by a binary vector as follows. With each node 
k E V we associate two binary variables Vko and 
Vkl , where Vko = 1(0) means that k E VA(k ~ VA) 

and Vkl = 1(0) means that k E VB(k ~ VB). Let 
v = (vlo,vn, ..., VMo,VM1) denote the state vector 
of the system. The number of vertices of GA is 
hA(V) = Y~ff=l VkO and the number of vertices of GB 
is n~(v) = Y~=I V~l. 

Using the above representation, the problem can 
be stated as a constraint satisfaction one: 

Find a vector v such that 
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1 

~ ] v / a = l ,  k = l , . . . , M  (20) 
1=0 

nm(V ) = riB(l; ) ( 2 1 )  

M M 

Vko E aikVil + Vkx E aikVio 
i=1 i=1 
i~k i~k 

= 0, k =  1 , . . . , M .  (22) 

The reinforcement module employed in our 
scheme contains M binary units and provides a 
binary output vector y = (Yl . . . .  , YM). The output 
y; of each unit i indicates whether node i should be 
included in subgraph GA (in case y; = 0) or in 
subgraph GB (in case Yi = 1). 

The operation of the constraint satisfaction mod- 
ule is based on the N = 2M binary variables. The 
vector y provided by the reinforcement module 
specifies the initial value of vector v in the following 
manner. For each k = 1, ..., M, if Yk = 0 we set 
V~o -- 1 and Vkl = 0, otherwise we set Vk0 = 0 and 
Vkx = 1. In our implementation, the constraint 
satisfaction module is responsible for satisfaction of 
the disjointness constraint (Eq. (22)), as well as of 
the constraint El=o vkt-< 1, which constitutes a 
relaxation of Eq. (20). Thus, the operation of the 
constraint satisfaction scheme is based on the 
following definitions of the indicators //,o and Ikl 
for each k = 1, ..., M: 

I~(v) = 0, i f  Vkl 

= 0 and 
M 

E aikVil = 0 ( 2 3 )  
i = 1  
i~k 

Ikl(V) = 0, if Vl, o 
M 

= 0 and ~ aikViO = 0 .  (24) 
i - -1  
i~k 

The constraint satisfaction module converges in 
at most 4M steps to an equilibrium state v that 
corresponds to a partially feasible problem solution, 

in the sense that it provides a maximal subgraph 
G' of G that can be divided into two disjoint 
subgraphs G~ and G~. This means that the third 
constraint (Eq. (22)) is satisfied. We say that G'  is 
maximal in the sense that no other node can be 
added to either G,~ or G~ because the two subgraphs 
will not remain disjoint. The second constraint 
(Eq. (21)) may not be satisfied, and the same holds 
for the first constraint (Eq. (20)), since for some k 
we may have that Vko -- Vkl = 0 (i.e. node k C G') .  

Let  K(v) M = Ek=l (Vko + vt~l). The evaluation of 
the output y of the reinforcement learning module 
is performed by sending a reinforcement signal r 
given by 

(g(10 - M )  - K(nA(V ) -- r iB( l ) ) )  2 , ( 2 5 )  

where the parameter  K determines the relative 
importance of the two terms to be maximised (in 
all experiments the value of K was taken equal to 
0.005). It is obvious that the cost corresponding to 
a feasible problem solution is equal to zero and 
constitutes the maximum value of the reinforcement 
signal. 

We have considered multilevel graphs [4] having 
a particular hierarchical structure. A multilevel 
graph is characterised by the fact that it contains 
clumps of nodes. A clump is a set of nodes fully 
connected among themselves but having only few 
connections to the remaining nodes of the graph. 
Experiments have been conducted with specific 
multilevel graphs containing 8, 16 and 32 clumps. 
Each clump may contain 4 or 6 nodes, thus the 
graphs considered were given the names 8 • 4, 
1 6 •  1 6 •  6, 32 • 4 and 3 2 x  6. The graphs 
8 • 4 and 16 x 4 are referred to in [4] as MLC-32 
and MLC-64, respectively. The graph MLC-32 is 
depicted in Fig. 4. In all cases, it is possible to 
produce a partition of the graph into two disjoint 
subgraphs of equal size. The main difficulty with 
multilevel graphs arises from the existence of 
clumps, since it is difficult to move a clump across 
the partition one node at a time. 

. , /  ".. -%/- 

>/-  

-q/- 

- , . , / / -  

-%/- 

Fig. 4. The MLC-32 graph. 
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Table 2. Mean time (sec) for finding the optimal solution. 6. Conc lus ions  

Algorithm Graph type 

8 x 4  1 6 x 4  1 6 x 6  3 2 x 4  3 2 x 6  

CA 4 23 64 162 800 
SA 13 140 238 480 998 

As with the SPP case, we have compared the 
performance of our combined approach with that 
of simulated annealing applied to the same graph 
instances. In the simulated annealing approach, we 
consider the binary state vector v = (vl, ..., VM), 
where vi = 0(1) indicates that node i should belong 
to subgraph GA(GB).  The number of nodes of 

= ~ i = 1  subgraph G z is nA(V ) M ( 1 -  vi), while the 
number of nodes of G~ is nB(v) = EM1 vi. 

The aim is to maximise a cost function which 
evaluates each state v as follows: 

M M 

f (v )=  - ~ ~vi(1  - v,)aij 
i = l j = l  

- K(nA(V) -- riB(V)) 2 �9 (26) 

The first term denotes the fact that subgraphs GA, 
GB must be disjoint, while the second term denotes 
that they should be of equal size. The value of the 
parameter K was set equal to 0.005. 

At each step of the algorithm, a variable vi is 
selected at random and the cost of the current state 
is compared to the cost of the state that would 
result if that variable changed its value (which 
essentially means that node i moves from one 
subgraph to the other). Based on the above cost 
difference, a decision is made as to whether variable 
vi should change its state. The annealing schedule 
used in the experiments was the same as in the 
case of the previous problem. The initial temperature 
was set equal to 2.0 while the rate q~ was taken 
equal to 5 x 10 -7. At each temperature, 2M trials 
are performed and the algorithm terminates when 
the solution with maximum cost is attained. 

Table 2 displays the mean time (over 50 
experiments) required to find the optimal partition- 
ing for the graph problems considered. As before, 
the displayed results concern the proposed combined 
approach (denoted by C A )  and the simulated 
annealing (denoted by SA) .  It should be noted that 
in the case of simulated annealing, in spite of the 
slow temperature reduction rate, convergence was 
attained in some experiments without having found 
the optimal solution. The above results clearly 
illustrate the increased efficiency of the proposed 
method as compared to simulated annealing. 

We have proposed a method for the solution of 
discrete optimisation problems. The method is based 
on the synergy of an exploration technique and 
a constraint satisfaction scheme. The exploration 
module searches the state space of the problem by 
means of an iterative procedure that generates and 
evaluates points. For the evaluation of each point, 
first the constraint satisfaction module is used to 
map the given point onto some other point that 
satisfies the problem constraints (or part of them). 
The cost of the new point constitutes the evaluation 
of the original point generated by the exploration 
module. 

The application of the method to two optimisation 
problems shows that the proposed technique is very 
efficient in providing near-optimal feasible solutions. 
Due to the particular shape of the function that 
must be explored, reinforcement learning algorithms 
are naturally appropriate for implementing an explo- 
ration strategy. The use of a reinforcement learning 
module as a point generator leads to a better 
exploration of the discrete space, especially when 
advantage is taken of the parameters of the normal 
distribution. 

As a general remark, it can be stated that the 
effectiveness of the method is more apparent in 
the case of optimisation problems that contain a 
constraint part involving a number of different 
constraint sets that are difficult to satisfy. In such 
a case, the constraint part can be more important 
than the cost part of the problem formulation, and 
it is very difficult to find feasible solutions. 

It should be noted that the method can be applied 
as well to pure constraint satisfaction problems that 
involve no cost part to be optimised. In such cases, 
the constraint satisfaction scheme is responsible for 
the satisfaction of a part of the problem constraints, 
whereas the remaining part can be formulated as a 
cost function that must be optimised. 

Another point that deserves attention concerns 
the selection of the set S". In general, for a given 
problem there may exist several alternatives for the 
definition of S". A general rule is to define S" so 
that the contained states satisfy as many constraints 
as possible. This argument implies that the most 
favourable situation is when we can set S " =  S'. 
The success of the above rule, however, depends 
upon the shape of the cost function that must be 
optimised. It is possible, in some cases, that there 
exist paths leading to the optimal solution which 
make their way through regions of the state space 
containing partially feasible solutions, and that 
these paths are shorter than other paths running 
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exclusively through feasible solutions. Thus, it can 
be advantageous to perform the exploration in the 
space S" of partially feasible solutions rather than 
in the space S' of feasible solutions. 
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