
Neural Comput & Applic (1995)3:101-112
�9 1995 Springer-Verlag London Limited Neural

Computing
& Applications

Discrete Optimisation Based on the Combined Use of
Reinforcement and Constraint Satisfaction Schemes

A. L ikas , D . K o n t o r a v d i s a n d A . S ta fy lopa t i s

Department of Electrical and Computer Engineering, National Technical University of Athens, Computer Science Division,
Athens, Greece

A new approach is presented for finding near-optimal
solutions to discrete optimisation problems that is
based on the cooperation of two modules: an
optimisation module and a constraint satisfaction
module. The optimisation module must be able to
search the problem state space through an iterative
process of sampling and evaluating the generated
samples. To evaluate a generated point, first a
constraint satisfaction module is employed to map
that point to another one satisfying the problem
constraints, and then the cost of the new point is
used as the evaluation of the original one. The scheme
that we have adopted for testing the effectiveness of
the method uses a reinforcement learning algorithm
in the optimisation module and a general deterministic
constraint satisfaction algorithm in the constraint
satisfaction module. Experiments using this scheme
for the solution of two optimisation problems indicate
that the proposed approach is very effective in
providing feasible solutions of acceptable quality.

Keywords: Constraint satisfaction; Discrete optimis-
ation; Graph partitioning; Higher-order Hopfield;
Reinforcement learning; Set partitioning

1. Introduction and Motivation

Discrete optimisation problems in their general
formulation can be defined in terms of a tuple

Received for publication 9 August 1994.

Correspondence and offprint requests to: A. Likas, Department
of Electrical and Computer Engineering, National Technical
University of Athens, Computer Science Division, 157 73
Zographou, Athens, Greece.

(S,S', fc), where S denotes the state space of the
problem, S' _ S denotes the set of feasible states,
i.e. those satisfying the problem constraints, and
fc : S ~ 3t denotes the function that determines the
cost of each state. The problem is to find a feasible
state for which the cost function is optimal, i.e. to
find a state s' E S' such that fc(S') is optimal in S'
[1].

The conventional approach to tackle these prob-
lems is to regard the given optimisation problem as
a tuple (S,S,f'), where the function f has the form
f ' = fp + fc, with the function fp encoding the
constraints of the problem and taking its optimum
value in the case of feasible states. In this way, the
problem is reduced to an unconstrained optimisation
one consisting of finding a state s E S for which
the function f ' is optimal in S.

Most search techniques applied to the solution
of discrete optimisation problems are based on the
above formulation which expresses the constraints
through the penalty term fp. In that case, the
optimisation procedure can be described as an
iteration of a simple generate-test loop, as shown in
Fig. 1. This approach is unavoidable when no a
priori information about the function f is available.
Thus, points are generated which belong to the
domain of f and the evaluation of these points

Generate

T
F s ~t Test

Feedback

Fig. I. The generate-test loop.

102 A. Likas et al.

consists of computing the corresponding function
value. The aim is to adapt the generator so that
'better' points are generated as the iteration evolves.
This adaptation is based on information that is fed
back to the generator after the evaluation of each
point.

A factor affecting the performance of this kind
of approach in finding near-optimal feasible solutions
is the increased complexity of the cost function due
to the addition of the penalty term. Another
important factor concerns the existence of higher-
order correlations between the values of variables
that are used to determine the problem state. This
is a consequence of the existence of constraints
which specify values that cannot be assigned simul-
taneously to groups of variables. In general, such
higher order dependencies introduce difficulty in
the exploration of the state space, and constitute
the principal cause of convergence to local optima.
The ability to escape from such local optimum
traps requires that a set of correlated variables
simultaneously change their value, i.e. jumps
between states that are relatively far apart (according
to some distance measure) must be possible.

In this paper, we propose a novel approach to
the solution of discrete optimisation problems,
which is based on the incorporation of a mapping
operation within the generate-test loop described
above. Through the mapping operation, the output
s E S of the generator is mapped to a feasible state
s ' E S'. The cost of the point s' provides the
evaluation of the generated point s. Thus, instead
of performing the search directly in the space of
feasible states, the search scheme generates states
in S, which are evaluated based on the cost of the
transformed states. According to this approach, an
optimisation scheme is responsible for optimising
only the cost part of the function. Thus, the
complexity of the cost function is not increased,
and fewer higher-order dependencies have to be
discovered. However, a constraint satisfaction
scheme is required which should be capable of
mapping arbitrary states in S to feasible states in
S p"

A basic characteristic of the proposed approach
is that the constraint satisfaction scheme operates
in an iterative way, thus its input-output behaviour
cannot be described by a mathematical formula.
Consequently, it is not possible to perform optimis-
ation in a direct manner by using one of the
well known function optimisation techniques (e.g.
Lagrange or other). Instead, our optimisation
scheme must rather be based on an exploration
technique.

Depending on the problem, it is not always

possible to map an arbitrary state s E S to a feasible
one using a polynomial-time constraint satisfaction
scheme. To overcome this difficulty, we can consider
an alternative formulation which allows an effective
treatment of the constraint satisfaction part of the
problem. In this formulation, the original problem
(S,S',fc) is transformed into a new one specified as
(S,S",f"), where S" C S denotes a set of states that
satisfy part of the problem constraints. We shall
refer to those states as partially feasible states of S.
Moreover, the function f" has the form f ' = f~ + fc,
with f~ encoding the remaining constraints of the
problem. Our goal is to find a state s " E S" for
which the function f" is optimal in S". In general,
for a given problem, there may exist many alternative
ways to define the set S". Obviously, in favourable
cases we can have S" = S', and this method simply
corresponds to the original formulation of the
problem. The proposed approach involves a con-
straint satisfaction technique capable of mapping
arbitrary states to feasible or partially feasible ones.

In the above context, we have developed an
original constraint satisfaction scheme, which is
established in terms of interesting theoretical results
and constitutes a second contribution of the paper.
The principle of the method is equivalent to using
higher-order Hopfield networks for the solution of
constraint satisfaction problems.

In the next section we provide a general descrip-
tion of the proposed method and prescribe the
characteristics of the individual schemes involved. In
Sect. 3 an original constraint satisfaction technique is
presented which is used as part of the general
approach. Section 4 concerns the optimisation part,
which is responsible for generating sample states.
An original scheme is considered here which falls in
the area of reinforcement learning. Implementation
and performance issues are discussed in Sect. 5
through the application of the proposed method to
well known optimisation problems which yielded
very good results. Finally, the main conclusions are
discussed in Sect. 5.

2. The Integrated Approach

Consider a discrete optimisation problem (S,S',fc),
where, as defined above, S denotes the state space
of the problem (which must be finite), S' denotes
the subset of S whose states satisfy a specific set of
constraints and fc is the cost function to be optimised
in the domain S'. Also consider the formulation
(S,S",f") introduced before, which is based on the
notion of partially feasible states. In the following
we shall use the term 'feasible' to refer to either

Discrete Optimisation Based on Reinforcement and Constraint Satisfaction 103

Generate

T
Feedback

Fig. 2. The sample-map-evaluate loop.

feasible or partially feasible states, as both are
treated in the same manner. Accordingly, the
notation s' (S') may actually be used in place of s"
(S") following the case.

The search is not performed directly in space S'.
Instead, the optimisation scheme at each step
suggests a state s E S, which in turn is evaluated
based on the cost of a transformed state s' E S'
provided by the constraint satisfaction scheme
(Fig. 2). The whole method, which integrates the
constraint satisfaction scheme within the optimis-
ation scheme, is based on the iterative application
of the three-step procedure sample-map-evaluate,
which generates sample points in the state space S,
maps these points to points in S', and finally,
evaluates them based on the cost of the correspond-
ing feasible points.

The particular way in which the evaluation of a
state s is performed, has as a direct consequence
that the state space S is partitioned into groups of
states. The number of groups is equal to the
cardinality IS'l of the feasible state space S'. All
states that belong to the same group are mapped
to the same feasible state, thus receiving the same
evaluation. In general, the constraint satisfaction
scheme is characterised by a kind of attraction
behaviour, similar to the one exhibited by Hopfield-
type neural networks [2]. Therefore, the landscape
to be searched consists of 'plateaus', i.e. large fiat
areas where the function has the same value. To
sample a near-optimal feasible state, it is not
necessary for the optimisation scheme to generate
the point itself. Instead, it suffices to generate an
arbitrary state belonging to the same group, thus
the exploration task is greatly facilitated. This
argument, in conjunction with the already mentioned
reduction of the number of higher-order dependenc-
ies, provides strong evidence for the success of
the proposed method. The constraint satisfaction
scheme adopted in our integrated approach is
described in the next section. Its operation is based
on theoretical results which are of interest by
themselves.

In what concerns the optimisation scheme, it
must be based on an exploration technique that

appropriately samples the state space and evaluates
the function at the sample points in an attempt
to find an optimal solution. Three optimisation
techniques that operate in this way are: simulated
annealing [1,3], genetic algorithms [4,5] and
reinforcement learning algorithms [6-9].

As far as the use of simulated annealing is
concerned, its effectiveness should be affected in
our case by the plateau-like shape of the function
to be searched. Its application requires the definition
of a neighbourhood around each state, from which
the next state to be evaluated is drawn. Such a
neighbourhood must be relatively small in general
[1], thus to escape from large plateaus several steps
may be required. This fact on the one hand decreases
the speed of the method, and on the other hand,
increases the probability of getting stuck on 'pla-
teaus' corresponding to local maxima.

Both reinforcement and genetic algorithms gener-
ally possess the required property of suggesting next
states that may be far in distance from the current
one. Genetic algorithms are based on the evolution
of a population, whose members represent sample
points of the function to be optimised (fitness
function) [5]. If the genetic approach were adopted
as our optimisation scheme, then at each generation
the constraint satisfaction module should have been
called many times for the fitness of each individual
population member to be computed. Since all
evaluations are independent, they could be
efficiently performed on a parallel machine. This
implementation constitutes one of the objectives of
our future research.

In the approach presented in this paper we
have selected to employ a reinforcement learning
algorithm as the optimisation scheme. The suitability
of reinforcement learning for function optimisation
stems from the trial and error nature of the
paradigm, which assumes that the only information
provided to the learning system arises through
sampling the function values at various points of
the search space. This characteristic distinguishes
reinforcement learning techniques from other neural
network approaches to optimisation, such as the
analogue Hopfield network or the Boltzmann
optimiser, in which prior problem knowledge is
incorporated in the network parameters. In Sect. 4
an original reinforcement learning scheme is pre-
sented, which has been used in implementing and
testing the integrated optimisation approach. For
comparison reasons, the pure simulated annealing
technique has also been implemented and evaluated
experimentally, as will be discussed in Sect. 5.

104 A. Likas et al.

3. The Constraint Satisfaction Scheme

The operation of the constraint satisfaction scheme
is based on a general 0-1 integer programming
formulation of the constraints (either the whole set
or part of it) that must be satisfied. This formulation
must be appropriately defined to express a given
problem in terms of a set of binary variables. We
say that such a variable is 'on' ('off') if it is equal
to 1 (0). Let v = (vl, ..., VN) denote the vector of
binary variables. The value of v at any given time
instant represents the state of the system.

A basic assumption concerning our scheme is that
only variables that are 'on' may be responsible for
the violation of some constraints. In this sense, the
set C of problem constraints, which have to be
satisfied by the scheme, contains tuples of binary
variables that are incompatible with each other
if they are 'on' simultaneously. This assumption
constitutes no restriction to the generality of the
approach. Indeed, if the actual problem variables
have finite discrete domains, then a binary variable
of the type defined above can be used to represent
the assignment of each domain value to each problem
variable. This formulation allows the encoding of
any type of constraint.

We denote by Ck the set of tuples in which
variable vk is involved. Assuming that we are in a
given state v, we associate with each variable Vg an
indicator Ik(v). This indicator determines whether
a constraint violation involving variable vk would
occur if we set vk = 1. Specifically, Ik(v) = 1 when
at least one constraint from the set Ct, would be
violated, otherwise it is zero. Obviously, if variable
vk is already 'on' , the indicator I~ characterises
constraint violation in the current state.

Using the above definitions the constraint satisfac-
tion problem can be defined as follows:

Find a binary vector v = (vl, ..., VN) such that
N N

Vklk(V) + ~ (1 -- Vk)(1 -- Ik(V))
k = l k = l

= 0 . (1)

It is apparent that the above condition is satisfied
iff both sums are zero. In what concerns the first
sum, this guarantees that no constraint is violated,
while making the second sum equal to zero ensures
the maximality of the proposed solution, i.e. every
variable that is zero would violate at least one
constraint if it were set equal to one.

The purpose of the constraint satisfaction scheme
is to map (in polynomial time) the state represented
by the output of the reinforcement scheme to
another one satisfying Eq. (1). This new state will

then be evaluated to judge the appropriateness of
the generated sample. The mapping is performed
using the following iterative algorithm. At each
time step, we select a variable v~ and examine
whether any constraint of the corresponding set C~
is violated, assuming vk is set to the value one. If
no constraint violation occurs we set v~ = 1, other-
wise we set vg = 0. By proceeding in this fashion,
a state is finally attained from which no other
transition is possible (equilibrium state). This is
established by the following proposition:

Proposition 1. I f the selection scheme guarantees
that every variable is examined infinitely often, then
the iterative selection process eventually terminates
and an equilibrium state is finally attained which is
characterised by the following two properties: (i) no
constraint is violate& and (ii) every variable that is
zero would violate at least one constraint in case it
were set equal to one (maximality property).

Proof. We define the following function, which
will be called the energy function, corresponding to
each state vector v

N

E(v) = ~ v~(I t , (v)- cr (2)
k = l

where o~ is an arbitrary positive parameter with
value less than 1.

The above energy function constitutes a Liapunov
function for our system, in the sense that at each
step either it decreases or remains the same. This
can be verified as follows.

Let the system be in state v, and let AE denote
the difference in energy that would result after
examination of a variable v~. The following cases
can be distinguished:

vk changes from 0 to 1. This implies that Ik(v) = 0
and, consequently, the I-value of no other variable
that is in the 'on' state is affected. Therefore,
AE = - a < 0.

v~ changes from i to 0. This implies that It,(v) = 1
and, in addition, the I-values of some (say
K _> 0) 'on' variables may become zero. Thus,
A E = - (1 - a) - K < 0 .

Vg does not change. Obviously AE = 0.

Since the energy function is bounded from below
and does not increase in any step of the algorithm,
it is obvious that an equilibrium state will finally
be attained with the characteristic that no change
in the value of any variable will be possible. []

The operation of the proposed optimisation
method requires that the evaluation of the output

Discrete Optimisation Based on Reinforcement and Constraint Satisfaction 105

generated by the exploration unit be consistent.
This means that identical states should receive the
same evaluation. Therefore, the mapping performed
by the constraint satisfaction scheme should be
deterministic, i.e. for the same input state the
scheme should always yield the same output. Thus,
in the iterative procedure described above, the
binary variables are not selected in a random way,
but they are sequentially examined following an
order, which is specified in advance. An operation
cycle of the constraint satisfaction scheme consists
of the sequential examination of all variables
following the predetermined order. To ensure deter-
ministic operation this order remains fixed during
all operation cycles.

An interesting result concerning the speed of
convergence of the above deterministic operation
scheme is given in terms of the following proposition:

Proposition 2. The number of operation cycles
required to converge to an equilibrium state is at
most two.

Proof. According to the operation principles of
the scheme, when a variable Vg is considered and
takes the value one, no constraint violation occurs
as far as the constraints in which this variable is
involved are concerned. In addition, all variables
that will be considered afterwards and are linked
by constraints with the specific variable vk will be
prevented from taking the value one. Therefore, it
is not possible that variable v~, will become zero in
a subsequent cycle. Consequently, during the second
cycle, only variables that are zero at the end of the
first cycle may change their state. After the end of
the second cycle the variables that have taken the
value one cannot change their state in a subsequent
cycle for the same reason described above. This
also holds for the variables that remained zero after
the end of the second cycle. The reason is that any
subsequent state change from zero to one would
assume that a variable that had value one at the
end of the first cycle became zero during the second
cycle, which is impossible as explained previously.
From the above it is obvious that after the second
cycle the following properties are valid: (i) there is
no constraint violation between variables that have
value one; and (ii)no variable that is zero can
assume the value one, because there will be violation
of at least one constraint. []

It should be pointed out that the above result
does not depend on the existence of a predefined
examination order for variables. This order is
exclusively due to the necessity of deterministic
operation of the constraint satisfaction scheme
within the context of the overall optimisation

approach, and does not affect the speed of conver-
gence. Considering the constraint satisfaction
scheme in isolation, the proposition could be
formulated in a more general manner as follows:
convergence is achieved in at most 2N steps, where
N is the number of variables, provided that each
variable is examined exactly once during the first
N steps, and exactly once during the next N steps.

The operation of the constraint satisfaction scheme
can be summarised by means of the following
algorithmic steps:

1. (Cycle 1} Following the predetermined order
examine each variable vk as follows:
(a) Check Ik(v).
(b) If it is 1 then set v~, = 0, otherwise set

1;k ~---] .

2. (Cycle 2} Following the predetermined order
examine each variable Vk as follows:
(a) If v~ = 1 continue.
(b) If Vk = 0

(i) Check Ik(v).
(ii) If it is 1 then set vk = O, otherwise

set ve -- 1.

The constraints may be expressed either in the
form of general rules or they may be described
explicitly as tuples of the constraint set C. In any
case, during the computation of each Ik(v) the
checking can stop if a constraint violation is encoun-
tered, without needing to examine the whole set of
constraints Ck. This fact has significant impact on
the execution speed of our algorithm, since it greatly
reduces the required computations.

Our constraint satisfaction scheme, which has
been described previously in an abstract form, can
be implemented in a connectionist manner by means
of a discrete higher-order Hopfield network with N
binary units. In general, if v = (Vl, ..., vN) denotes
the state of a higher-order Hopfield network, its
energy function is given by

N N

E ~ - - E E]2ilVi2Wili2
i1=1i2=1

N N N

- - E E E V i a V i 2 V i 3 W i l i 2 i 3
i1--1i2=1i3=1

N N N

�9 .. E E . . . E V i l V i 2 . . . V i N W i l i 2 . . . i N
i 1 = 1 i 2 - - 1 iN=l

N

- E ViOl. (3)
i = l

A higher-order binary Hopfield network for
constraint satisfaction problems can be constructed
based on the set C of constraints which contains

106 A. Likas et al.

tuples of units that cannot be 'on' simultaneously.
Specifically, if (il,i2, ... &) E C the weights
Wil ik corresponding to any permutation of
(il,i2, ..., &) are equal to -1 /k[, otherwise they are
equal to zero. Moreover, the threshold value of
each unit is set equal to ot < 1. In this case the
energy is given by the following formula

N

E = E VilVi2 . . . V i k - - E V i O s (4)
(il ,i2 ik) E C i= 1

Following the operation of the discrete Hopfield
network, the update of each unit i is performed in
the following manner: v; = 0 if (-E(i j k)eci D
... v~ + ~) < 0, otherwise v; = 1. Since ot < 1, if
at least one constraint from the set C~ is violated,
the state of the corresponding unit i becomes zero,
otherwise it takes the value one.

It is obvious that the operation of the network is
similar to the one described for our constraint
satisfaction module. Based on this similarity, the
quantity g(~,j ~)eci vj ... v~ can be considered as
a quantitative description of the indicator /~(v):
/k(v) = 1 if ~'(i,j k) E C v/... vk > 0 and /k(v) = 0
if ~(i , j k) ~ C V] . . . V k = O.

It should be noted that, to our knowledge, the
application of the Hopfield approach to constraint
satisfaction problems has been restricted so far to
the case of binary constraints, thus the usual second-
order network has been employed. Moreover, a
result similar to that of Proposition 2 has been
proved [10] for the class of nonpositive binary
Hopfield networks which represent binary constraint
satisfaction problems. Since our proposed general
constraint satisfaction scheme can be implemented
using a higher-order Hopfield network, it is apparent
that the result of Proposition 2 regarding the
maximum number of cycles for convergence also
carries over to the class of higher-order Hopfield
networks having the characteristics described pre-
viously.

4. The Optimisation Scheme

As already mentioned, reinforcement learning has
been previously applied to the solution of discrete
optimisation problems in cases where the conven-
tional penalty method was used. Moreover, the 0-
1 integer programming formulation was adopted,
thus the network consisted of binary stochastic units
[7,8]. However, as is the case with any hillclimbing
method, reinforcement learning schemes in their
pure form have been shown in many cases to
converge at local maxima [9]. This is due to

the fact that their operation is solely based on
correlations between the values of individual units
and that of the reinforcement signal. Consequently,
higher order dependencies are difficult to discover.
Although some schemes have been proposed which
succeed in escaping from local maxima [8], learning
time is still a critical factor limiting the applicability
of those schemes for solving optimisation problems.
This is of great importance especially when the size
of the problem becomes large or complex function
landscapes must be searched. The proposed inte-
grated approach aims at overcoming the above
drawbacks of reinforcement algorithms.

In the problems considered here, the application
of reinforcement learning actually involves the
search of high-dimensional binary spaces. To achieve
that, we have used a team of binary stochastic units
with no interconnections among them. The size of
the team was determined by the dimensionality M
of the binary space to be searched. The value of
M is assumed to be the only available information
about the function before the computation begins.
The operation of the units is stochastic, to attain
the required exploratory behaviour. In particular,
at each trial the team of units generates a binary
sample point y = (Yx, ..., YM). Based on the evalu-
ation of that output, the sampling distribution is
biased towards the selection of points at which it is
likely to obtain high function values. This is achieved
by properly adjusting the parameters of the units.

At each time step, the reinforcement module
samples a point in the state space S. The evaluation
of each sample s is performed in two steps. First s
is mapped to a feasible point s' or a partially
feasible point s" and then the corresponding value
fc(s ') or f"(s") is computed to provide the reinforce-
ment signal r that is fed back to the reinforcement
module to guide the update of its parameters. This
process is repeated until a stopping criterion is met
(e.g. if after a certain number of iterations no
improvement has occurred).

The reinforcement scheme that has been con-
sidered in our optimisation module applies to
processing elements of the type shown in Fig. 3
[11,12]. Such a unit employs two levels of stochas-
ticity. At the first level the output ni is drawn from
a normal distribution with parameters ~i and o'~,
while at the second level the output Yi is a Bernoulli
random variable with parameter Pi. The latter is
computed as a deterministic function f~ (the logistic)
of the output n; of the first level, i.e.

1
Pi -- 1 + e - h i " (5)

The above Normal/Bernoulli unit when employed

Discrete Optimisation Based on Reinforcement and Constraint Satisfaction 107

y~

Fig. 3. The Normal/Bernoull i unit.

in conjunction with a suitable reinforcement scheme,
allows the exploration of discrete domains via the
modification of the mean and the standard deviation
of the normal distribution. As shown in [11,12],
the exploitation of the two parameters of the
normal distribution leads to an improved exploratory
behaviour in discrete spaces in terms of the elapsed
time to find the optimal output. Moreover, exper-
iments indicated superiority of the reinforcement
schemes involving two-level Normal/Bernoulli units,
over those using single-level Bernoulli units.

Considering a team of binary stochastic units such
as the one shown in Fig. 3, at each time step t the
parameter Ix~ of each unit i is adjusted according
to the following rule

AIx i = oL~(r - ~)(Yi - Yi) - 5~Li , (6)

where ot~ is a constant learning rate, while -SIxi
(5 < 1) is a decay term whose role will be explained
below. The quantity P is computed as an exponen-
tially weighted average of prior reinforcement values

/~(t) = ~ff(t - 1) + (1 - ~)r(t) , (7)

with ~ being a decay rate (0 < ~/< 1). Moreover,
Pi is an average of past values of y~ and is updated
a s

y~(t) = "~3~,-(t- 1) + (1 - ~/)yi(t). (8)

The standard deviation o-, considered to be the
same for all units in the team, should be small
when the learning system is exploring the region of
a promising local maximum, and it should be large
in the opposite case [13]. One possible way to
obtain the above behaviour is to update cr based
on the notion of e n t r o p y .

The entropy of the output y of the learning
system is defined as follows [8]:

H(y,ix,o') = - ~ Pr(y = ~llx,tr)

In Pr(y = ~[ix,(r) , (9)

where Ix is the vector of parameters Ixi and
represents a binary M-tuple. For a given ~, an
unbiased estimate of the entropy is given by the
following quantity:

h(~,Ix,(r) : - I n P r (y = ~lIx,tr). (10)

On a particular trial at time step t, let ni(t) be the
output of the first level of unit i and ~ the generated
output. Then, the estimate h(~,Ix,(r) of the entropy
can be approximated by

M

h(t) = - ~] In Pr(yi = ~i[p~(t)) (11)
i= l

where pg(t) is obtained from (5) using ni(t) .
When the search is confined in the neighbourhood

of a local maximum, the probabilities p~ have
approached one of the values 0 or 1, thus the
entropy of the system tends to become zero. On
the contrary, in the case of broad search the value
of the entropy is high. Therefore, the update of
the standard deviation (r can be performed according
to the rule

(r(t) = aoh(t) (12)

where the parameter a , takes positive values, and

t i(t) = ~ h (t - 1) + (1 - ~)h(t) . (13)

The quantity h(t) is a trace of past values of h(t)
(~/ being a decay factor as before) and is used in
place of h(t) to ensure smoother updates of the
value of o-.

The reinforcement strategy described above pos-
sesses the ability of considering all the points in a
large neighbourhood surrounding the current search
point, instead of only considering immediately
adjacent points. Such neighbourhood search pro-
cedures have the effect of avoiding local maxima
of the landscape. This type of exploratory behaviour
is necessary in our optimisation scheme, since the
form (plateaus) of the function to be searched by
the reinforcement algorithm requires that the latter
be able to suggest at successive time steps sampling
points which are far from each other in Hamming
distance.

Another interesting feature of the above learning
scheme is that of s u s t a i n e d e x p l o r a t i o n [4]. This
property relates to the ability of the learning system
to enter a divergence phase after it has converged
to a specific state. This ensures the avoidance of
local maxima since exploration continues even after

108 A. Likas et al.

the global maximum has been generated. Sustained
exploration is achieved through the incorporation
of the decay term -~txi in Eq. (6). It should be
noted that the alteration between a convergence
and a divergence phase is triggered internally, and
does not constitute an external event for the learning
system.

5. Experiments

We have tested the effectiveness of our approach
through experiments concerning two discrete
optimisation problems, namely the set partitioning
problem and the graph partitioning problem. In all
the experiments, we used the scheme described in the
previous section. Due to the sustained exploration
property of the reinforcement algorithm, the system
did not settle in a specific state. For this reason,
we adopted the following conventions regarding the
termination of the iterative procedure. In the set
partitioning problems, for which the position of the
global maximum is not known a priori, we keep
track of the best solution found so far, and we
terminate the search if for a sufficient number of
consecutive iterations, the method does not manage
to reach a state of greater cost than the best solution
already found. In the graph partitioning problems,
for which the global maximum is known, the
procedure is terminated when this point is attained
for the first time.

For comparison purposes we have also performed
experiments using the method of simulated
annealing, for both problems considered. The exper-
iments concerned the use of simulated annealing as
an independent optimisation technique and not as
part of the integrated approach proposed in this
paper.

5.1. Application to Set Partitioning

The formulation of the Set Partitioning Problem
(SPP) has as follows [14]:

Given a finite set S containing L elements and a
collection G of subsets Si(i = 1, ..., M) of S, find
the minimum subset F of G such that all the subsets
belonging to F are disjoint and they constitute a
partition of S, i.e. their union is equal to S.

Consider a set of binary variables vk
(k = 1, ..., M) whose values represent the state of
the system, with vk = 1 denoting that subset Sk is
included in the solution set F and Vk = 0 denoting
the opposite. The problem can be stated as follows:

and

M

minimise ~ v~

subject to
M M

E E V k V i a k i
k = l i = l

i4=k

= 0 (14)

M

k = l

where [S~[denotes the cardinality of subset Sk and
a~i = 1 if subsets S~ and Si are not disjoint, otherwise
it is zero.

From the above it is clear that the set partitioning
problem involves two kinds of constraints: the
disjointness constraint (14), and the covering con-
straint (15). It is not possible to construct a constraint
satisfaction module that will always yield feasible
solutions starting from an arbitrary state. In fact,
the problem of finding just one feasible solution of
a given SPP instance (not necessarily the optimal
one) is NP-complete.

Therefore, our constraint satisfaction module can
only provide partially feasible solutions satisfying
one of the above constraints. We have chosen the
satisfaction of the disjointness constraint. At each
step of the optimisation procedure, the reinforce-
ment learning module provides a binary vector of
size M, which represents a selection of sub-sets Si.
The constraint satisfaction module accepts as input
this arbitrary state and yields (in at most 2M
iterations) a state corresponding to a solution set
F, where all the selected subsets are disjoint.
Moreover, the set F is maximal in the sense that
no other subset can be added to this set without
violation of the disjointness constraint. The oper-
ation of the module is based on the following
definition of the indicator Ik for every k = 1, ..., M:

M

I k (v) = O if ~ v iak i=O. (16)
i= l , i~k

The cost of the solution set corresponding to the
output v of the constraint satisfaction module
constitutes the reinforcement signal r that is fed
back to the reinforcement module to update its
parameters. This signal contains information regard-
ing the covering constraint and the cost of the
problem (cardinality of F). It is computed as follows:

k ~ l 12 k . (1 7)

Since the state v satisfies the disjointness constraints,
it always holds that EM=x ISilvi <- L , thus the first

D&crete Optimisation Based on Reinforcement and Constraint Satisfaction 109

term is maximised when the covering constraint is
satisfied. The factor 1/M that multiplies the cost
term was added to ensure that every feasible solution
(satisfying the covering property) accepts higher
reinforcement signal than any partially feasible
solution. This fact enforces the maximisation process
to search for feasible solutions first and then for
solutions of optimal cost.

As already mentioned, a stopping criterion has
been adopted since the optimal solution is not
known a priori. More specifically, the optimisation
procedure stops if, after 30M consecutive iterations,
the current best solution cannot be further improved.

Experiments have been conducted on randomly
generated graphs with M = 75 and L = 50. To
generate the tested instances we first constructed a
number of subsets of S by allocating each of the
elements of S to one and only one.of these subsets
so as to create a disjoint solution. The remaining
subsets were randomly constructed by deciding with
probability q whether an element of S should belong
to a particular subset. By varying the value of q,
the density of the resulting problem instance could
be adjusted. The value of q was chosen in the range
from 0.03 to 0.1.

To further examine the effectiveness of the
proposed method, we have performed comparisons
with the simulated annealing approach using the
penalty-based formulation [1]. The cost function to
be maximised evaluates each state v as follows

f (v) = - i = l j = l

V i ,

(18)

than S m a x = where k is set greater
max{l&l, ..., [SM[}. The above choice of the para-
meters ensures on the one hand that every equilib-
rium corresponds to a solution set with disjoint
subsets, and on the other hand, that every feasible
solution is of higher cost than any partially feasible
solution.

The temperature T is reduced according to the
following logarithmic annealing schedule:

Y.,
Tn - 1 + logf(n) ' (19)

where Tn denotes the temperature at the nth step
of the schedule, and f (n) = f (n - 1)(1 + q~) with
f(0) -- 1. The initial temperature To was set equal
to 2.0 and a very slow reduction rate ~p = 1 0 - 6

was adopted. At each temperature, 2M trials are

Table 1. Comparative results.

Algorithm Feasible
solution

Uncovered elements

1 2 >2

CA 67.7% 31.1% 1.2% 0%
SA 55.5% 2 6 . 6 % 12.2% 5.7%

performed, and the algorithm terminates if for 10
consecutive temperature values the system remains
in the same state. In that case, the output of the
procedure is the best found solution.

Comparative results for the proposed combined
approach (denoted by C A) and the simulated
annealing (denoted by S A) are displayed in Table
1. The results concern the percentage of cases (over
100 experiments) in which each method found a
feasible solution (first column), or a partially feasible
solution that leaves 1, 2 or more than two elements
of S uncovered (second, third and fourth columns,
respectively). The superiority of the proposed
approach is apparent, in spite of the fact that a
very slow annealing procedure was used.

5.2. Application to Graph Partitioning

The second experimental study of the effectiveness
of the proposed method deals with the following
problem:

Given a graph G = (V,E) with IVI = M and
adjacency matrix A, find if there exists a partitioning
of this graph into two disjoint subgraphs of equal
size (M even). We shall say that two subgraphs are
disjoint if their corresponding sets of vertices are
disjoint and there are no edges of the original graph
G that connect vertices belonging to the two
subgraphs.

Consider an arbitrary partitioning of the original
graph G into two subgraphs GA = (VA,EA) and
GB = (VB,Es). The partitioning can be represented
by a binary vector as follows. With each node
k E V we associate two binary variables Vko and
Vkl , where Vko = 1(0) means that k E VA(k ~ VA)

and Vkl = 1(0) means that k E VB(k ~ VB). Let
v = (vlo,vn, ..., VMo,VM1) denote the state vector
of the system. The number of vertices of GA is
hA(V) = Y~ff=l VkO and the number of vertices of GB
is n~(v) = Y~=I V~l.

Using the above representation, the problem can
be stated as a constraint satisfaction one:

Find a vector v such that

110 A. Likas et al.

1

~] v / a = l , k = l , . . . , M (20)
1=0

nm(V) = riB(l;) (2 1)

M M

Vko E aikVil + Vkx E aikVio
i=1 i=1
i~k i~k

= 0, k = 1 , . . . , M . (22)

The reinforcement module employed in our
scheme contains M binary units and provides a
binary output vector y = (Yl , YM). The output
y; of each unit i indicates whether node i should be
included in subgraph GA (in case y; = 0) or in
subgraph GB (in case Yi = 1).

The operation of the constraint satisfaction mod-
ule is based on the N = 2M binary variables. The
vector y provided by the reinforcement module
specifies the initial value of vector v in the following
manner. For each k = 1, ..., M, if Yk = 0 we set
V~o -- 1 and Vkl = 0, otherwise we set Vk0 = 0 and
Vkx = 1. In our implementation, the constraint
satisfaction module is responsible for satisfaction of
the disjointness constraint (Eq. (22)), as well as of
the constraint El=o vkt-< 1, which constitutes a
relaxation of Eq. (20). Thus, the operation of the
constraint satisfaction scheme is based on the
following definitions of the indicators //,o and Ikl
for each k = 1, ..., M:

I~(v) = 0, i f Vkl

= 0 and
M

E aikVil = 0 (2 3)
i = 1
i~k

Ikl(V) = 0, if Vl, o
M

= 0 and ~ aikViO = 0 . (24)
i - -1
i~k

The constraint satisfaction module converges in
at most 4M steps to an equilibrium state v that
corresponds to a partially feasible problem solution,

in the sense that it provides a maximal subgraph
G' of G that can be divided into two disjoint
subgraphs G~ and G~. This means that the third
constraint (Eq. (22)) is satisfied. We say that G' is
maximal in the sense that no other node can be
added to either G,~ or G~ because the two subgraphs
will not remain disjoint. The second constraint
(Eq. (21)) may not be satisfied, and the same holds
for the first constraint (Eq. (20)), since for some k
we may have that Vko -- Vkl = 0 (i.e. node k C G') .

Let K(v) M = Ek=l (Vko + vt~l). The evaluation of
the output y of the reinforcement learning module
is performed by sending a reinforcement signal r
given by

(g(10 - M) - K(nA(V) -- r iB(l))) 2 , (2 5)

where the parameter K determines the relative
importance of the two terms to be maximised (in
all experiments the value of K was taken equal to
0.005). It is obvious that the cost corresponding to
a feasible problem solution is equal to zero and
constitutes the maximum value of the reinforcement
signal.

We have considered multilevel graphs [4] having
a particular hierarchical structure. A multilevel
graph is characterised by the fact that it contains
clumps of nodes. A clump is a set of nodes fully
connected among themselves but having only few
connections to the remaining nodes of the graph.
Experiments have been conducted with specific
multilevel graphs containing 8, 16 and 32 clumps.
Each clump may contain 4 or 6 nodes, thus the
graphs considered were given the names 8 • 4,
1 6 • 1 6 • 6, 32 • 4 and 3 2 x 6. The graphs
8 • 4 and 16 x 4 are referred to in [4] as MLC-32
and MLC-64, respectively. The graph MLC-32 is
depicted in Fig. 4. In all cases, it is possible to
produce a partition of the graph into two disjoint
subgraphs of equal size. The main difficulty with
multilevel graphs arises from the existence of
clumps, since it is difficult to move a clump across
the partition one node at a time.

. , / ".. -%/-

>/-

-q/-

- , . , / / -

-%/-

Fig. 4. The MLC-32 graph.

Discrete Optimisation Based on Reinforcement and Constraint Satisfaction 111

Table 2. Mean time (sec) for finding the optimal solution. 6. Conc lus ions

Algorithm Graph type

8 x 4 1 6 x 4 1 6 x 6 3 2 x 4 3 2 x 6

CA 4 23 64 162 800
SA 13 140 238 480 998

As with the SPP case, we have compared the
performance of our combined approach with that
of simulated annealing applied to the same graph
instances. In the simulated annealing approach, we
consider the binary state vector v = (vl, ..., VM),
where vi = 0(1) indicates that node i should belong
to subgraph GA(GB). The number of nodes of

= ~ i = 1 subgraph G z is nA(V) M (1 - vi), while the
number of nodes of G~ is nB(v) = EM1 vi.

The aim is to maximise a cost function which
evaluates each state v as follows:

M M

f (v)= - ~ ~vi(1 - v,)aij
i = l j = l

- K(nA(V) -- riB(V)) 2 �9 (26)

The first term denotes the fact that subgraphs GA,
GB must be disjoint, while the second term denotes
that they should be of equal size. The value of the
parameter K was set equal to 0.005.

At each step of the algorithm, a variable vi is
selected at random and the cost of the current state
is compared to the cost of the state that would
result if that variable changed its value (which
essentially means that node i moves from one
subgraph to the other). Based on the above cost
difference, a decision is made as to whether variable
vi should change its state. The annealing schedule
used in the experiments was the same as in the
case of the previous problem. The initial temperature
was set equal to 2.0 while the rate q~ was taken
equal to 5 x 10 -7. At each temperature, 2M trials
are performed and the algorithm terminates when
the solution with maximum cost is attained.

Table 2 displays the mean time (over 50
experiments) required to find the optimal partition-
ing for the graph problems considered. As before,
the displayed results concern the proposed combined
approach (denoted by C A) and the simulated
annealing (denoted by SA) . It should be noted that
in the case of simulated annealing, in spite of the
slow temperature reduction rate, convergence was
attained in some experiments without having found
the optimal solution. The above results clearly
illustrate the increased efficiency of the proposed
method as compared to simulated annealing.

We have proposed a method for the solution of
discrete optimisation problems. The method is based
on the synergy of an exploration technique and
a constraint satisfaction scheme. The exploration
module searches the state space of the problem by
means of an iterative procedure that generates and
evaluates points. For the evaluation of each point,
first the constraint satisfaction module is used to
map the given point onto some other point that
satisfies the problem constraints (or part of them).
The cost of the new point constitutes the evaluation
of the original point generated by the exploration
module.

The application of the method to two optimisation
problems shows that the proposed technique is very
efficient in providing near-optimal feasible solutions.
Due to the particular shape of the function that
must be explored, reinforcement learning algorithms
are naturally appropriate for implementing an explo-
ration strategy. The use of a reinforcement learning
module as a point generator leads to a better
exploration of the discrete space, especially when
advantage is taken of the parameters of the normal
distribution.

As a general remark, it can be stated that the
effectiveness of the method is more apparent in
the case of optimisation problems that contain a
constraint part involving a number of different
constraint sets that are difficult to satisfy. In such
a case, the constraint part can be more important
than the cost part of the problem formulation, and
it is very difficult to find feasible solutions.

It should be noted that the method can be applied
as well to pure constraint satisfaction problems that
involve no cost part to be optimised. In such cases,
the constraint satisfaction scheme is responsible for
the satisfaction of a part of the problem constraints,
whereas the remaining part can be formulated as a
cost function that must be optimised.

Another point that deserves attention concerns
the selection of the set S". In general, for a given
problem there may exist several alternatives for the
definition of S". A general rule is to define S" so
that the contained states satisfy as many constraints
as possible. This argument implies that the most
favourable situation is when we can set S " = S'.
The success of the above rule, however, depends
upon the shape of the cost function that must be
optimised. It is possible, in some cases, that there
exist paths leading to the optimal solution which
make their way through regions of the state space
containing partially feasible solutions, and that
these paths are shorter than other paths running

112 A. Likas et al.

exclusively through feasible solutions. Thus, it can
be advantageous to perform the exploration in the
space S" of partially feasible solutions rather than
in the space S' of feasible solutions.

References

1. Aarts E, Korst J. Simulated Annealing and Boltzmann
Machines, A Stochastic Approach to Combinatorial
Optimisation and Neural Computing. John Wiley,
Chichester, 1989

2. Hopfield J. Neural networks and physical systems
with emergent collective computational abilities. In:
Proc. National Academy of Sciences USA 1982; 79:
2554-2558

3. Kirkpatrick S, Gellat Jr. CD, Vecchi MP. Optimiz-
ation by simulated annealing. Science 1983; 220:
671-689

4. Ackley DH. A Connectionist Machine for Genetic
Hillclimbing. Kluwer, Norwell, MA, 1987

5. Goldberg DE. Genetic Algorithms in Search, Optim-
ization, and Machine Learning. Addison-Wesley,
Reading, MA, 1989

6. Williams RJ. Toward a theory of reinforcement
learning connectionist systems. Technical Report NU-
CCS-88-3, Boston, MA, 1988

7. Williams RJ, Peng J. Reinforcement learning algor-
ithms as function optimizers. In: Proc. Int Joint Conf
Neural Networks, vol II. Washington, DC, 1989,
pp 89-95

8. Williams RJ, Peng J. Function optimization using
connectionist reinforcement learning networks. Con-
nection Science 1991; 3:241-268

9. Williams RJ. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine Learning 1992; 8:229-256

10. Shrivastava Y, Dasgupta S, Reddy SM, Guaranteed
convergence in a class of Hopfield Networks. IEEE
Trans Neural Networks 1992; 3(6): 951-961

11. Kontoravdis D, Likas A, Stafylopatis A. A reinforce-
ment learning algorithm for networks of units with
two stochastic levels. In: Proc tCANN-92, vol I.
Brighton, UK, 1992, pp 143-146

12. Kontoravdis D, Likas A, Stafylopatis A. Enhancing
stochasticity in reinforcement learning schemes:
Application to the exploration of binary domains.
Journal of Intelligent Systems (to appear)

13. Gullapalli V. A stochastic reinforcement learning
algorithm for learning real-valued functions. Neural
Networks 1990; 3:671--692

14. Garey M, Johnson D. Computers and Intractability:
a Guide to the Theory of NP-completeness. W.H.
Freeman and Company, San Francisco, 1979

