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Summary

Objective: This paper proposes a novel method for the extraction and classification of
individual motor unit action potentials (MUAPs) from intramuscular electromyo-
graphic signals.
Methodology: The proposed method automatically detects the number of template
MUAP clusters and classifies them into normal, neuropathic or myopathic. It consists
of three steps: (i) preprocessing of electromyogram (EMG) recordings, (ii) MUAP
detection and clustering and (iii) MUAP classification.
Results: The approach has been validated using a dataset of EMG recordings and an
annotated collection of MUAPs. The correct identification rate for MUAP clustering is
93, 95 and 92% for normal, myopathic and neuropathic, respectively. Ninety-one
percent of the superimposed MUAPs were correctly identified. The obtained accuracy
for MUAP classification is about 86%.
Conclusion: The proposed method, apart from efficient EMG decomposition
addresses automatic MUAP classification to neuropathic, myopathic or normal classes
directly from raw EMG signals.
# 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Clinical electromyography analyses the electromyo-
gram (EMG) recorded from a contracting muscle
using a needle electrode to diagnose neuromuscular
disorders. EMG is composed of discrete waveforms
rved.
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called motor unit action potentials (MUAPs), which
result from the repetitive discharges of groups of
muscle fibers called motor units (MUs). The term MU
refers collectively to one motoneuron and the group
of muscle fibers it innervates and is the smallest unit
of skeletal muscle that can be activated by voli-
tional effort. MUAPs from different MUs tend to have
distinct shapes, which remain almost the same for
each discharge. The MUAPs can therefore be iden-
tified and tracked using pattern recognition techni-
ques. The resulting information can be used to
determine the origin of the weakness, i.e. neuro-
genic or myopathic diseases [1—3].

The changes brought about by a particular dis-
ease alter the properties of the muscle and nerve
cells, causing characteristic changes in the MUAPs.
Distinct MUAPs can be seen only during weak con-
tractions when few motor units are active. When a
patient maintains low level of muscle contraction,
individual MUAPs can be easily recognised. As con-
traction intensity increases, more motor units are
recruited. Different MUAPs will overlap, causing an
interference pattern in which the neurophysiologist
cannot detect individual MUAP shapes reliably.
Usually, in clinical electromyography, neurophysiol-
ogists assess MUAPs from their shape using an oscil-
loscope and listening to their audio characteristics.
Thus, an experienced electrophysiologist can detect
abnormalities with reasonable accuracy. However,
subjective MUAP assessment, although satisfactory
for the detection of unequivocal abnormalities, may
not be sufficient to delineate less obvious deviations
or mixed patterns of abnormalities [4]. Therefore,
for an effective automated MUAP assessment, a
systematic handling of EMG signal must decompose
the signal into MUAPs and classify each MUAP into
different classes.

Although, a number of computer-based quanti-
tative EMG analysis algorithms have been devel-
oped [5—7] practically none of them has gained
wide acceptance for extensive clinical use. Most
importantly, there are no uniform international
criteria neither for pattern recognition of similar
MUAPs nor for MUAP feature extraction [8]. Out of
the two assessment tasks (i.e. MUAP detection and
classification) according to our knowledge only the
first one has attracted attention. Buchthal et al.
[9,10] developed one of the earliest methods for
quantitative EMG decomposition, where MUAPs
were recorded photographically and then were
selected for analysis. LeFever and DeLuca [11]
used a special three channel recording electrode
and a visual computer decomposition scheme
based on template matching and firing statistics
for MUAP identification. Stalberg et al. [8], in their
original system used waveform template matching
whereas more recently [12] they have used differ-
ent shape parameters as input to a template
matching technique. Adreassen [13] followed
the manual method developed by Buchthal using
template matching with four templates for the
recognition of MUAP’s recorded at threshold con-
traction. Stashuk and Qu [14] proposed a method
to identify MUAPs based on power spectrum
matching. Hassoun et al. [15] proposed a system
called neural network extraction of repetitive
vectors for electromyography (NNERVE) which uses
the time domain waveform as input to a three
layer artificial neural network with a ‘‘pseudo-
unsupervised’’ learning algorithm for classifica-
tion. McGill et al. [16] used a method based on
a combination of shape recognition of the MUAPs
and statistical probability of occurrence. Fang
et al. [17] developed a comprehensive technique
to identify single motor unit (SMU) potentials
based on one-channel EMG recordings measuring
waveform similarity of SMU potentials in the wave-
let domain. Wu et al. [18] decomposed MUAPs of
needle electrode EMG signal by means of self-
organization competing neural network. Chauvet
et al. [19] proposed a method that allows decom-
position of EMG signals based on fuzzy logic tech-
niques. Zennaro et al. [20] designed a
decomposition software for multichannel long
term EMG recordings using a wavelet based hier-
archical cluster analysis algorithm, which is suita-
ble for the study of MU discharge patterns in
healthy subjects.

All the aforementioned techniques deal only with
MUAP detection and EMG decomposition into its
constituent MUAPs. However, they do not classify
MUAPs according to their pathology. To contribute to
the quantification of the routine needle EMG exam-
ination, we have developed a methodology for auto-
mated MUAP detection, EMG decomposition and
template MUAP classification into normal (nor),
myopathic (myo) and neuropathic (neu). The pro-
posed methodology consists of three steps. In the
first step, the EMG signal is preprocessed using an
algorithm that automatically detects areas of low
activity and candidate MUAPs. In the second step,
MUAPs are clustered and the number and shape of
MUAP clusters are determined. Furthermore, super-
imposed MUAPs are automatically identified and
decomposed into their constituents. Finally, in the
third step, an unknownMUAP is classified as nor, myo
or neu. In the following sections, we first describe
the steps of the proposed methodology. Then, we
evaluate it using a dataset of EMG recordings and an
annotated collection of MUAPs. Finally, comments
on the application and the results of our approach
are given in Section 4.
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2. Materials and methods

The proposed methodology consists of three steps
(Fig. 1): in the first, preprocessing is applied to
remove noise and detect areas of low activity in
EMG recordings. MUAP detection, clustering and
decomposition of superimposed MUAPs to their con-
stituents is implemented in the second step. In the
third step, the MUAPs are classified according to
their pathology in three classes.

2.1. Dataset

Our dataset contains EMG signals from two sources:
the first one has been produced by the Cyprus
Institute of Neurology and Genetics, Nicosia, Cyprus
and consists of 26 EMG signals obtained from 26
subjects. The second, was obtained by the Univer-
sity Hospital of Ioannina, Division of Neurological
Clinic, Ioannina, Greece and consists of 24 EMG
recordings, from 24 patients. All EMG signals were
acquired from biceps brachii following the same
protocol. Ten of our subjects had no history or
physical evidence of neuromuscular disease, 20 sub-
jects suffer from myopathy and 20 subjects suffer
from motor neuron disease. The annotation in each
group was based on the patient history and muscle
biopsy. Only subjects with no history or signs of
neuromuscular disorders were considered as nor-
mal. EMG recordings were acquired from the biceps
brachii, at up to 30% of the maximum voluntary
contraction (MVC) level under constant isometric
conditions. Each subject was asked to produce
an elbow flexion at the aforementioned MVC level
and to sustain it for 2 s. An UWE HS-30K digital
Figure 1 The proposed three step methodology.
dynamometer was used to verify the contraction
level. When the desired level of contraction was
accomplished, data acquisition was initiated and
the subject attempted to maintain a constant level
of contraction until the end of data acquisition.

The muscle activity was recorded by a concentric
EMG needle electrode (25-mm length, 0.33-mm
diameter, TECA) inserted into the muscle. A ground
electrode (TECA 32-mm diameter stainless steel
disc) with commercial electrode paste was taped
onto the skin near the needle insertion site.

2.2. EMG preprocessing

Initially, signal preprocessing and candidate MUAP
detection takes place (Fig. 2). Since EMG is con-
taminated by noise (due to non-targeted muscles
recorded activity and electrode movement), a
bandpass filter (3 Hz—8 kHz) is applied. A National
Instrument’s DAC is used to digitize EMG using sam-
pling rate 20 kHz and 12-bit resolution. In order to
detect the MUAPs comprising the EMG, the signal is
segmented to generate possible MUAP waveforms.
Areas of low activity are eliminated using a thresh-
old T which depends on the max{xi} and the mean
absolute value ð1=LÞ

PL
i¼1 jxij of the EMG signal,

where xi are the discrete values of the EMG signal
and L the number of samples. The threshold T is
calculated as:

IFmaxfxig>
30

L

XL
i¼1
jxij; THEN T ¼ 5

L

XL
i¼1
jxij

ELSE T ¼ max
fxig
5

:

(1)

This threshold is used to identify peaks in the
signal [21]. Peaks over the calculated threshold Tare
considered as candidate MUAPs. The computed
threshold T for the segmentation of EMG signal is
introduced to accommodate the wide range in
amplitude variations in the recorded signal. A win-
dow with a constant length of 121 sampling points
(i.e.�6 ms at 20 kHz, in order to fit the main part of
each MUAP) is centred at the first identified peak. If
a larger peak is found in the window, the window is
moved and centred at this peak; otherwise the
initial 121 signal points are considered as a candi-
date MUAP waveform and are stored. The process
continues until the end of the EMG signal is reached.

2.3. MUAP clustering and detection of
superimposed MUAPs

The second step consists of two stages (Fig. 3):
(a) M
UAP clustering;
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Figure 2 EMG preprocessing.
(b) d
etection and decomposition of superimposed
MUAPs.
2.3.1. MUAP clustering
In this stage, MUAP clusters are automatically
detected and for each cluster the average or tem-
plate shape is determined. The procedure for the
detection of the number of clusters in EMG data is
based on the minimization of a regularized cost
function J [22] with respect to the distance of the
candidate MUAPs from the cluster centres (first term
in Eq. (2)) and with respect to the distance of the
cluster centres from each other (second term in
Eq. (2)):

J ¼
Xp
m¼1

Xk
n¼1

IðyðnÞjxðmÞÞjjxðmÞ � yðnÞjj2

þ
Xp
m¼1

Xk
n¼1

l̃v ĨðyðnÞjxðmÞÞjjyðnÞ � yðwÞjj2; (2)

where I(y(n)jx(m)) is an indicator function which
equals to 1, if n = argminljjx(m) � y(l)jj2 and to 0
Figure 3 MUAP clustering, detection and
otherwise; ĨðyðnÞjxðmÞÞ is an indicator function equal
to 1 if yðnÞ 2NyðwÞ and 0 otherwise; w = argminl
jjx(m) � y(l)jj2; NyðwÞ is the neighbourhood of the
cluster centre yðwÞ; x(m) is the mth feature vector,
x(m) 2 n; p is the number of patterns, {x(m): m = 1, 2,
. . ., p} and k is the number of cluster centres. As
already mentioned, the cost function J consists of
two parts. The first part is related to the distribution
of the cluster centres in order to minimize the sum
of squared distance from each input pattern to the
nearest cluster centre. The regularization (second)
term of the cost function further requires that
the sum of squared distances from a cluster to its
nearby clusters is minimum. Minimization of the
cost function results in the minimization of the
sum of squared distances of the data points from
the respective nearest cluster centre as well as
the sum of the squared distances of the individual
cluster centres from the neighbourhood cluster cen-
tres. Small values of the neighbourhood encourage
the formation of more distinct cluster centres,
while large values of the neighbourhood encourage
the formation of fewer distinct cluster centres. The
decomposition of superimposed MUAPs.
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neighbourhood is identified as a scale parameter and
the number of clusters is obtained at varying values
of the scale parameter. The number of cluster cen-
tres is then obtained based on persistence over the
largest range of the scale parameter.

In order to compute the number of MUAP clusters,
we assume initially a large number of clusters (e.g.
16 clusters). This is considered to be satisfactory
since the maximum number of template MUAP clus-
ters that can be identified with needle EMG at low to
moderate force levels is at most 12—14 [23—25]. At
the end of each clustering epoch, cluster centres in
the same neighbourhood are combined, while clus-
ters with small number of MUAPs (<3) are removed.
The number of clusters is obtained at a given
‘‘neighbourhood scale’’ and the corresponding plot
is generated as it is shown in Fig. 4.

Once the number of clusters is detected and in
order to obtain the template MUAP’s shape, the
fuzzy k-means algorithm is used. The algorithm
starts with a selection of an initial set of prototypes,
which implies the partition of the feature vectors
into k clusters. Each cluster is represented by a
prototype (the template MUAP), which is computed
as the centre of the feature vectors belonging to
that cluster. Each of the feature vectors is assigned
to the cluster whose prototype is its closest neigh-
bour. The new prototypes are computed from the
results of a new partition and this process is
repeated until the prototypes’ displacements from
one iteration to the next become negligible
(<5 � 10�4). More specifically, the fuzzy k-means
Figure 4 Starting with a large number of classes, at the
end of each clustering epoch, cluster centers in the same
neighbourhood are combined, while clusters with small
number of MUAPs are removed. The number of clusters is
obtained at a given ‘‘neighbourhood scale’’ and the cor-
responding plot is generated. The number of clusters k, is
selected as the number of clusters, which persists over the
largest range of neighbourhood (here k = 6).
algorithm is based on the minimization of the
following objective function (with respect to a fuzzy
k-partition (U) and a set of k prototypes (yðnÞ)):

Jq ¼ ðU; yðnÞÞ ¼
Xr
m¼1

Xk
n¼1
ðunmÞqjjxðmÞ � yðnÞjj2;

k � r;

(3)

where, x(m) is the mth feature vector, y(n) the centre
of the nth cluster (x(m), y(n) 2 121), unm the degree of
membership of x(m) in the nth cluster, jjx(m) � y(n)jj2
the distance between x(m) and y(n), r the number of
data points and k is the number of clusters. The
parameter q is the weighting exponent for unm which
controls the ‘‘fuzziness’’ of the resulting clusters1

(in our method q = 1.5).

2.3.2. Detection and decomposition of
superimposed MUAPs
The EMG signal recorded even at low to moderate
contractions contains superimposed potentials pro-
duced from different MUAPs overlap. Candidate
MUAPs with degree of membership unm < 0.8 are
considered as superimposed. This threshold value
was chosen heuristically after extensive testing in
collaboration with a medical expert. The following
decomposition approach is used for the superim-
posed MUAPs: first, the crosscorrelation between
the superimposedwaveform and the template MUAP
that has the largest degree of membership is com-
puted. This MUAP is time shifted as many sampling
points are impaired by the crosscorrelation and
subtracted from the superimposed waveform. In
the same way, a crosscorrelation is carried out again
between the residual waveform, and the template
MUAP that has the second degree of membership. If
the maximum waveform value of the residual signal
is larger than the detected threshold T (computed in
the EMG preprocessing step), it is assumed that the
superimposed waveform contains another template
MUAP and a new crosscorrelation is computed
between the residual waveform and the next tem-
plate MUAP in terms of degree of membership.
Otherwise the process ends. The decomposition
procedure is depicted in Fig. 5.

2.4. MUAP classification

For all MUAP waveforms, the 6 ms long MUAP seg-
ments are expanded to 25 ms on the original EMG
1 The parameter q determines the degree of fuzziness of the
final solution, which is the degree of overlap between classes; q
ranges from 1 to +1. When q = 1 the solution is a hard partition.
As q approaches infinity the solution approaches the highest
degree of fuzziness.
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signal where the position of the identified MUAP
peak was marked during segmentation. This is due
to the fact that MUAP duration is in most cases
longer than 6 ms (in most of the cases the MUAP
duration does not exceed 18 ms) [26]. Due to
superpositions in the expanded window, in order
to eliminate discrepancies from the class average,
the standard deviation (S.D.) for each sampling
point of all MUAPs in a cluster is calculated. Values
of points beyond �1.5 S.D. from the average are
excluded from the computation of the cluster
average [21].

In order to classify the template MUAPs into
normal, myopathic and neuropathic, a support vec-
tor machine (SVM) classifier is employed [27—29]. A
classification task based on SVM usually involves
training and testing data, which consist of a number
of data instances. Each instance in the training set
contains one ‘‘target value’’ (class labels) and sev-
eral ‘‘attributes’’. Although initially developed for
binary classification problems, SVMs can be adapted
to deal with multi-class problems using the one-
against-one method [30]. This method constructs
k(k � 1)/2 classifiers (where k is the number of
classes) where each one is trained using data from
two classes. Although other methods for multi-class
SVMs exist, the above-mentioned approach has been
chosen due to the low training time required and its
comparable performance [31]. The goal of the SVM
is to produce a model, which predicts a target value
of data instances in the testing set in which only the
attributes are given. Let a training set of instance-
label pairs be (xi, yi), i = 1, . . ., p where xi 2 n is the
training vector of original data, belonging to one of
three classes (nor, myo or neu), p is the number of
Figure 5 Schematic representation of the superimposed
the template MUAPs in the training set and yi 2 {�1,
1} indicates the (one of the two) class of xi. The
support vector machine requires the solution of the
following optimization problem:

minw;b;j
1

2
wTwþ C

Xp
i¼1

ji

 !
; (4)

T
subject to yiðw fðxiÞ þ bÞ� 1� ji; ji� 0;

where b is the bias term,w is a vector perpendicular
to the hyperplane hw, bi, j the factor of classifica-
tion error and C > 0 is the penalty on parameter of
the error term. The training vectors xi are mapped
into a higher dimensional space F by the function f:
Rn! F, where F is a feature space where the data
are separable. SVM finds a separating hyperplane
with the maximal geometric margin and minimal
empirical risk Remp in this higher dimensional space.
Remp is defined as:

RempðaÞ ¼
1

2 p

Xp
i¼1
jyi � fðxi; aÞj; (5)

where f is the decision function defined as:

fðxÞ ¼
Xp
i¼1

yiaiKðxi; xÞ þ b; (6)

with K(xi, xj) � f(xi)
Tf(xj) being the kernel func-

tion, ai the weighting factors and b is the bias term.
In our case the kernel is a radial basis function (RBF),
which is defined as:

Kðxi; x jÞ ¼ expð�gjjxi � x jjj2Þ; g> 0; (7)

where g ¼ 1
2s2

(and s is the standard deviation) is a
parameter of the kernel. The RBF kernel non-line-
MUAP decomposition procedure to their constituents.
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Figure 6 (a) Raw signal (the horizontal line corresponds to the computed detection threshold T, in this case T = 86.4)
and (b) the signal after preprocessing.
arly maps samples into a higher dimensional space,
so it can handle cases when the relation between
class labels and attributes is non-linear. The para-
meters g and C were defined heuristically (more
specifically g was set to 2�2.25 and C to 26.25).

In our application, we have used the SVM training
algorithm provided by the LIBSVM library [32,33],
which has been proven computationally effective
[34].
3. Results

The preprocessing of the 50 EMG signals resulted in
2969 candidate MUAPs. The computed threshold T
ranges from 30 to 100 mV, which values are within
the limits reported in other works [12,30]. The
implementation of the preprocessing step for a
specific EMG signal is shown in Fig. 6.

Following the preprocessing step, the MUAPs are
decomposed (if superimposed) and clustered. To
measure the performance of the proposed metho-
dology the following measures were used2:

correct identification rate ðCIRÞ

¼ 1�
P
jmismatchesjP

clusters detected by neurophysiologist

� �

� 100%

(8)

success rate ðSRÞ

Table 1 MUAP detection success rate (in parenthesis:
the number of identified classes to the total number of
classes)

MUAP classes Success rate (%)

nor 94.74 (90/95)
¼
P

clusters detected bymethodP
clusters detected by neurophysiologist

� �
� 100% (9)
2 Although, we consider CIR to provide more accurate informa-
tion on method’s performance we also calculate the SR, for
comparison reasons.
The clustering step results in high CIRs: 93, 95 and
92% for nor, myo and neu classes, respectively.
Table 1 presents the SRs for each of the three MUAP
classes, while Table 2 provides a comparison of our
approach with other methods reported. Our meth-
odology identified correctly 91% of the superim-
posed MUAPs. In Fig. 7, a superimposed MUAP is
decomposed into its constituents (template MUAPs).

For the evaluation of the last step of our meth-
odology, an annotated database was created. An
expert neurophysiologist was asked to characterize
every template MUAP produced from the second
step of the proposed methodology. The resulting
MUAP dataset consists of 231 template MUAPs.
Ninety-five MUAPs were characterized as normal,
55 as myopathic and 81 as neuropathic. The data-
base was randomly divided in two datasets, a train-
ing and a testing one. More specifically out of the
231 MUAPs, 115 used for training and 116 for testing.
In order to obtain an accurate estimation of the
classifying performance, the experiment was
repeated ten times, with different (random) data
splits. The average classifying accuracy (number of
correctly classified divided by the total number of
classified MUAPs) was 86.14%. The classifying perfor-
mance is measured in terms of sensitivity and speci-
ficity. Table 3 presents the obtained (average) results
for the MUAP diagnosis (classification step) while
Table 4 presents the respective confusion matrix.
myo 96.36 (53/55)
neu 95.06 (77/81)

Total 95.24 (220/231)
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Table 2 Comparison of the results of our work with other existing works

References MVC level (%) Muscle No. of
subjects

Success rate (%)
(EMG decomposition)

Christodoulou and Pattichis [21] Up to 30 Biceps brachii 40 95—97
Mc Gill et al. [16] 20 Biceps brachii — 30—70
Stashuk [23] — — — 88.7
Stashuk and Paoli [24] — — — 80.8
Loudon et al. [6] Up to 20 — — 95

This work Up to 30 Biceps brachii 50 95.24

Table 4 Confusion matrix

MUAPs Classified
as nor

Classified
as myo

Classified
as neu

nora 73 18 4
myoa 2 51 2
neua 4 2 75
a According to the medical expert.

Table 3 Classification performance

Pathology Sensitivity (%) Specificity (%)

nor 76.84 95.58
myo 92.73 88.64
neu 92.59 96.00

Classification accuracy: 86.14%.
4. Discussion

A novel methodology for automated EMG decompo-
sition and MUAP classification based on raw EMG
signals has been developed. It performs decomposi-
tion and automated diagnosis of EMG signals
recorded from biceps brachii muscle during up to
30% of MVC level under constant isometric condi-
tions. The methodology was designed for conven-
tional needle EMG examination by analysing signals
acquired using a standard concentric needle elec-
trode and a conventional electromyograph. The
automated detection of the number of clusters in
EMG data is based on the minimization of the reg-
ularized cost function, while the shape and detec-
tion of superimposed MUAPs are produced using the
fuzzy k-means method. Finally, SVM was used for
MUAP classification.

As far as the EMG decomposition stage is con-
cerned (step 2 of stage 2) the results of the EMG
clustering are comparable and in some cases higher
than similar works reported in the literature as it is
shown in Table 2. However, attention should be paid
when comparing the results of the various EMG
decomposition methods since they may involve dif-
ferent MVC levels [6,16].
Figure 7 A superimposed MUAP decomposed into its constitu
correctly classified during step 3; template MUAP 1 being ne
shifted by �1.5 ms before subtraction. The decomposition pro
since the residual signal was below the detection threshold (
The proposed methodology applies novel techni-
ques for the MUAP clustering and the identification
and decomposition of superimposed MUAPs. More-
over, according to our knowledge, the proposed
methodology is the only one in the literature per-
forming fully automated MUAP classification from
raw EMG signals. In our approach, the number of
template MUAP clusters is automatically calculated
using no a priori knowledge. The main advantage of
ents. Two template MUAPs are identified (both of them are
u and template MUAP 2 nor). Template MUAP 2 was time
cess stopped after the identification of the second MUAP
82.3 mV).
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our approach is the minimum use of tuned para-
meters. Data driven calculation of thresholds is
another advantage since it enhances method’s
adaptability to different EMG signals. The proposed
approach effectively deals with signals of MVC level
up to 30%.

The use of SVM is advantageous since it improves
the efficiency of the methodology. This can be con-
firmed comparing with the nearest neighbourhood
classifier (N—N). SVM demonstrated a 9% increase in
performance (the classification accuracy for the N—
Nwas around 77%). Looking at amore technical level
inside the SVM, it should be noted that the selection
of the kernel K is of major importance for the
performance of the classifier. In our case, an RBF
kernel has been applied. Alternative approaches,
such as linear or polynomial were not used due to
the nature of our problem: the linear kernel cannot
handle non-linear separable problems; the polyno-
mial kernel has more hyperparameters than the RBF
kernel, fact that influences the complexity of model
selection.

EMG recordings of 2 s were used for validation.
Longer EMG recordings cause a geometrical increase
of computational time. It was also observed that
often, due to waveform variability (especially in
cases of motor neuron diseases) MUAP classes com-
ing from the same motor unit, although looking
familiar, were not grouped together. Another issue
is the selection of the length of the segmentation
window. In our work, a 6 ms window was chosen as
covering the main MUAP spike duration in most of
the disease cases. A shorter window will fail to
contain the main MUAP spike in the case of motor
neuron diseases where MUAPs usually have larger
duration. This could break a long MUAP into two
artificial potentials. A shorter segmentation window
will result in the identification of more potential
occurrences during the classification process in the
case of normal or myopathic signals, since only the
main spike will be included.

The proposed approach can provide a valuable
tool to neurophysiologists for both MUAP detection
and classification. Applying our approach when an
EMG signal is processed, its constituent MUAPs are
identified and classified according to their pathol-
ogy. In this way, valuable information is provided to
the medical expert in order to facilitate EMG diag-
nosis. The proposed method can easily be inte-
grated in existing software packages, while its
fully automated nature ensures that it can be easily
used by a non-ITexpert. Future work will integrate
EMG analysis to a hybrid diagnostic system for
neuromuscular diseases, which will also exploit
recorded clinical data, apart from the acquired
EMG signals, to provide diagnosis. Moreover, future
work must address MUAP classification based on
extracted MUAP features.
5. Conclusions

A novel methodology for automated EMG decompo-
sition and MUAP diagnosis is presented. The pro-
posed approach addresses the automatic MUAP
classification to neuropathic, myopathic or normal
classes directly from a raw EMG signal. This infor-
mation is provided to the doctor who will make the
final diagnosis to the acquired EMG signal. The
superimposed MUAPs are automatically detected,
decomposed into their constituents and classified to
nor, myo or neu groups. The methodology has been
validated using a dataset of EMG recordings and an
annotated collection of MUAPs. The obtained accu-
racy of MUAP classification and the success rate of
MUAP clustering for normal, myopathic and neuro-
pathic are high. The proposed methodology can be
integrated in a decision support system and become
a valuable tool in everyday clinical practice for
MUAP detection and classification.
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