DIFFERENTIAL ASSOCIATION AND
OPERATIONAL EQUIVALENCE OF
DISCRETE HOPFIELD NETWORKS
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Abstract: An original transform is presented which, given a binary Hopfield neural
network and a state vector of this network, creates a new binary Hopfield network
of the same size and establishes a correspondence between the states of the two
networks during operation. The derived network operates in a differential manner
with respect to the initial one, in that its state vector represents the deviation
of the corresponding state of the original network from the base state used for
the transform. As a consequence, the energy of the second network accepts an
analogous interpretation. The transform exhibits several interesting properties
which are proved and discussed. Moreover, the notion of operational equivalence
is introduced and it is shown that equivalence classes of binary Hopfield networks
can be defined on the basis of the transform.
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1. Introduction

The Hopfield network [4] constitutes a well known model of neural computation.
It is a recurrent neural network with computational units which can have either
discrete states {4] (taking values in {0, 1} or {-1, 1}) or continuous states [5] {taking
values in [0,1]). Each computational unit performs the simple computation of the
weighted sum of its inputs and uses a transfer function to determine its new state.
Several applications of the Hopfield network have been reported mainly in the fields
of associative memory [7, 3] and combinatorial optimization {1, 6]. Also, this model
has been the basis for the development of other neural network models, such as the
Boltzmann Machine [2, 1].

This paper deals with the binary Hopfield neural network, with the state of
each unit in {0,1}. We use the notation (W,6) to denote a Hopfield network
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having connection weights w;; (i = 1,...,n, 7 = 1,...,n) with w;; = 0 and thresh-
old values 8; (i = 1,...,n). The energy of the network at a binary vector state
v = (y1,...,4n) is denoted by EM9(y) and is equal to:

E(Wg) Zzytijzg thyz (1)

z--l j=1

Moreover, we are interested in networks that operate asynchronously. At each
time instant, one unit ¢ is selected randomly and the quantity Z}":__l yjw;; + 0; is
calculated. If it is positive, we set y; = 1, otherwise we set y; = 0. This operation
is equivalent to computing the change in the network’s emergy that will result if
the selected node ¢ changes state:

SEM P (y) = (25 —~ 1) wyiys + 6:) 2
=1

If 6E§W’9) (y) < 0 then the change is accepted, otherwise it is rejected. In the case of
symmetrical weights (w;; = wj;), it is ensured that starting from an arbitrary initial
state the network will settle into a state corresponding to an energy minimum {4].
In that state, 6E(W8) (y) > 0 for alli=1,...,n, i.e., no further change is possible.

In general, there exist many states corre5pond1ng to local minima of the energy
function.

It will be shown here that, once a Hopfield network (W, #) and a state vector
z = (zy,...,Z,) are given, it is possible to construct another Hopfield network
(F,¢) that is related to (W,8) in the following manner. Consider that the two
networks operate in parallel starting from states ¢ and 2°, respectively, such that
Y% = 2° @ z, where @ denotes the exclusive or operator. At each step during
operation, an index 1 is selected and the respective node with index ¢ is considered
for update in each one of the networks. Then, at any time instant, if node ¢ of (F, ¢)
is in state 1, node 7 of the original network has a state value that is complementary
to the value of x;. Accordingly, if node i of (F, () is in state 0, node ¢ of the original
network has a state value equal to x;. In other words, the state vectors y and z
of the two networks satisfy the relation y = z @ x. Thus, the state vector of the
derived network represents the deviation of the corresponding state of the original
network from the state vector = through which the transform takes place. In this
sense, the derived network can be viewed as operating in a differential manner
with respect to the original network. This differential association between states of
the two networks implies a meaningful relationship regarding the respective energy
functions.

In Section 2 the mathematical formulation of the transform is presented and
the correspondence in the operation of the original and the resulting network is
established. In Section 3 some interesting properties are derived and a number of
issues concerning the operation of the binary Hopfield network are discussed. The
notion of operational equivalence relation on a set of binary Hopfield networks is
introduced and discussed in Section 4, while conclusions and directions for future
research are presented in Section 5.
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2. Differentially Associated Networks

Consider a Hopfield neural network (W,0) with n processing units and a state
vector & = (2,...,Tp), with &; € {0,1} fori=1,...,n

Theorem 1. For each binary Hopfield network (W,8) and state vector = of this
network, there exists a binary Hopfield network (F,() of equal size such that for
each binary state z of (F,() the following holds:

EWO) (g @ 2) = EWO (z) 4+ BEF(z) (3)

where the parameters fi; (i = 1,...,n,5 = 1,...,n) and §; (i = 1,...,n) of the
network (F, () are specified as follows:

fii = 2z —1)(2x; — Nwyy; (4)

G = —dE (@) = —(22: — )OO wizs + 0:) G

J=1

Proof. Let y = z ® z. Each component yz =x;®2z (i=1,...,n) of y can be
written as:
Yi = Ty — K2y (6)

where x; = 2z; — 1 (i = 1,...,n). The energy of the network (W, 6) in state y is

50 = 35S w3

zmlj 1
n
= 73 ZZ(‘”* — ri2:)(T5 — K325 )Wig — 29,-(3:5 ~riz;)  (7)
2-—1 _}'—1 =1

Taking into ax:éount that w;; = wy;, after performing some algebra we find:

E(Wo) = —-ZZ&:,:}:_?'LUU ZG.’Ez

=1 j=1 Fuml
_= Z z KikjWij 225 + Z K.t(z zwi; + 0;) (8)
zwl Fe=1

and from the energy definition it follows that
BWO(y) = BWO)(z) + BEO(2) Q

where

—t

EFQ(, = Z Z 223 fij — Z Gizi (10)

i=1 j=1 LE

N

with fi; (i=1,...,n,j=1,...,n)and §; (1 = 1,...,n) as given by equations (4)
and (5) respectively. O

Let us denote by D the transform that leads to the construction of the network
(F,¢). Thus, the relation (F,() = D,(W,0) means that the network (F,() results
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from the network (W, 6) and the state vector x, through application of equations
(4) and (5). We shall refer to x as the base state of the transform. It is obvious that
since w;; = wy; and wj; == 0, the resulting network is also a symmetric network
with fi; = fjiand fu =00 =1,...,n,7=1,...,n).

In addition to providing the mathematlcs for the construction of the network
(F,(), the above theorem states that the energies of the two networks in states
y and z (with y = z @ z) differ by a constant quantity E":®)(z) corresponding
to the energy of the first network in the base state x. This correspondence in
energy implies an analogy of the two networks during operation as indicated by
the following proposition.

Proposition 1. For the state vectors y, ¢ and z, with y = x @ z (and, therefore,
z =2z ®y), the following relationship holds fori=1,...,n

dEMO (y) = dBFO (2) (11)

where (F, () = D(W,0).
Proof. From equation (2) we have:

dE (y) = (2y; = 1)(3_ wiju; + 6:) | (12)
Jj=1
BT (z) = (22 - 1)(3 fiyz + G) (13)
Jj=1 '
Since y; = z; P 2 (i = 1,...,n), which is equivalent to Yi = Ty — K;2; with

K&; = 2x; — 1, we have that:
2y ~ 1= 2(z; ~ @y — 1)25) — 1= —(2z; — 1)(22 — 1) = ~ki(22; — 1)  (14)

Substitution in equation (12) yields:

dEM(y) = —ri2z = 1) wyy; + 6:)
=1
= —ri(22 — 1)(D_ wi;(z; — K;;) + 6:)
j=1

and, finally,

dE(WH)(y) —ki(22; — 1){ szj‘x.? +0;) + £i(22; — 1) Z Kj2jWij (15)
i=1 j=1

Now, using equations (4) and (5), equation (13) takes the form:
n k]
dE'i(F’O(z) = (22; — 1)(2 KiKjWijZj — ni(Z zjwi; + 0;)) (16)
-ml . '
which is the same as equation (15). a
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The above proposition provides insight into the operation of the network (F, (),
which operates in a differential manner with respect to the original network.

For a binary Hopfield network, let us define an update sequence as a sequence
of indices i (1 < ix < n), such that the corresponding nodes of the network are
successively considered for update during operation. For a given update sequence,
we define the execution profile of the network as a sequence of binary values &,
where the value 1 (0) means that the state of the corresponding node i; has been
changed (has not been changed). Finally, for a given update sequence, the energy
profile of the network is the sequence of energy changes dE;, computed when the
corresponding node is considered for update. It is obvious that, as far as changes of
state are performed depending on energy changes in a deterministic way, an energy
profile uniquely determines the execution profile.

Proposition 1 implies that if the same update sequence is applied to both net-
works (W,0) and (F,() starting from states y° and z°, respectively, such that
y® = 2" @ z, then the two networks exhibit the same energy profile, and, conse-
quently, the same execution profile.

A node transition (energy decrease) in the network (F, () that sets a node i to
the ‘on’ state has the meaning that there is a decrease in the energy of the network
(W, 8) if the state of node ¢ changes with respect to the value x;, i.e., node i is set
to 1 — x;. Equivalently, a state transition in the network (F,() that sets a node ¢
to the ‘off” state means that there is an energy decrease in (W, 8) if node 1 of this
network is set to the value z;.

As a result, there exists an exact correspondence in operation between the
networks (W, 6) and (F,(). In fact, observation of the operation of one of the
networks and knowledge of the correspondence between network states (y = z®z),
provides knowledge concerning the evolution of the other network. Therefore, one
can switch during operation from one network to the other. At each time instant, if
network (F, () reaches a state z, then (in the case of deterministic updates) we can
be certain that the operation of network (W, ) would lead to the state y = z @ z,
and vice versa. We can say that the two networks are operationally equivalent, a
notion that will be discussed in a later section.

From another perspective, at each time instant, the state vector z of (F,()
provides the difference between the corresponding state y that the network (W, 6)
would reach and the base state z. Moreover, Theorem 1 reinforces the view of
(F,¢) as a differential network, since it ensures that if state z of (¥, () corresponds
to the difference between the state vectors y and x of the original network, then
the energy of (F, () in state z provides the difference between the energy values of
(W, 8) that correspond to the states y and z.

3. Other Properties

1. Do(W, 6) = (W, 8) where we denote by 0 the zero vector. This means that the
zero vector can be considered as the identity element of the transform D.

Proof. Since 2z; —1 = -1 for ¢ = 1,...,n, equations (4) and (5) yield
fij = wy; and §; = 04, i.e., the resulting network is identical to the original.
o (W]
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2. If 2 = z @y and y is an equilibrium state (local minimum) of (W, 8), then

z is an equilibrium state of (F,() = D, (W, 8). Also, if z is an equilibrium
point of (F,() = D;(W,0), then y = & z is an equilibrium point of (W, 8).

Proof. As stated in the introduction, once a Hopfield network is in a local
minimum state v, then dF;(v) > 0 for i = 1,...,n. Considering the states y
and z = x @y of the networks (W, 8) and (F, (), Proposition 1 states that the

corresponding energy differences dEi(W’e) (y) and dE§F’C)(z) are equal for each
i. Consequently, if one of the states y and z corresponds to a local minimum
of one network then the other state will also correspond to a local minimum
of the other network. O

An interesting result that stems from this property is the following. Suppose
that we use the Hopﬁeld network as an associative memory and we are given
a set of m vectors {y!,..., y™} that should be stored in the network. This
essentially means that we have to apply a learning rule (e.g. Hebbian rule)
and construct a Hopﬁeld network (W, #) with the property that the m stored
vectors {y*,...,y™} correspond to equilibrium points (local minima) of the
resulting network If this network is transformed with respect to a vector
x, then the network (F,() = D,(W,8) W111 have the vectors {d,...,d™}
as equilibrium points, where d* = z ® y* (k = 1,...,m). In this way, we
have stored the sequence of vectors {d!,...,d™} in the network (F, (). This,

of course, could have been done using the learning algorithm to construct a

network (W', #') that explicitly stores the sequence d*. It would be interest-
ing to study the relationship between the two networks (F,() and (W', 6’)

and compare their reconstruction capabilites in conjunction with the learning

algorithm used.

. If(F, () = Dy (W,0) then Dy(F, () = (W,8). More generally, if (F,() =

D, (W, 0), then Dy(F, () = Dypgy (W, 0).

Proof. Let z = ¢ @y, (G1,6') = Dy(F,() and (G?,62) = Dygy(W,0). It is
sufficient to show that g; = g7, and 8] = &7 fori=1,...,nandj=1,...,n.
Since z; ® y; = z; — (2z; — 1)y;, we have:

2.2.; - 1= 2(50,; - (21’L‘i - 1)yi) -1 = “(23:5 - 1)(2% - 1) (17)

Thus, using the transform equation (4), we obtain for ¢ = 1,...,n and
j=1,...,n

g = v~y —~Dfij = 2y — 1)(2y; — 1)(2: — 1)(2x5 ~ Dwy;
= (2,3,; —_ 1)(2zj - l)w,-j = gij (18)

From equation (5) we have that for i = 1,...,n:

8 = —Qu-1D)0 fijyi+G) (19)
j=1

8 = —(2z- 1)(i wijz; + ;) (20)
=1
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Taking into account equations (4), (5) and (17), equation {19) can be written:

n

8) = —(2y; ~ 1) | D (2= — 1)(2z5 — Dwisy; — (25 — DO @jwij +6:)

i=1 i=1
| (21)
Also using equation (17), equation (20) takes the form:
82 = (2m; — 1)(2y: — 1) | D wijlw; — (2x5 — Dy;) + 6:) (22)

=1

It can be easily observed that the right-hand parts of equations (21) and (22)
are identical. O

4. If y is the global minimum state of (W,8), then z = z @y is the global
minimum state of (F, () = Dz (W, 6) and inversely, if z is the global minimum
state of (F,(), then y =« @ z is the global minimum state of (W, 6).

Proof. This is a direct consequence of the fact that when the networks
(W, ) and (F, () are in the states y and 2 respectively (with z = z@y), their
respective energy values differ by a constant amount. Thus, minimum energy
values will also differ by the same constant and will correspond to states ¥
and z with z © y = «, where z is the base state of the transform. a

Based on the last property, it is _appé,rent that a state x is the global minimum
state of a binary Hopfield network (W,8), if and only if the network (F,() =
D,(W, 8) has the zero state as the global minimum state. From equation (1) giving
the energy function of a Hopfield network, it is easy to observe that a sufficient
condition for the zero state to be a global minimum state is that the weights and
thresholds of the network should have nonpositive values. This is translated in our
case as fi; <Oand §; <Ofori=1,...,nand j = 1,...,n. Using equations (4)
and (5), which describe the transform, we derive the following sufficient condition.
Proposition 2. If a state x = (z1,..: ,Tn) of a binary Hopfield network (W,8)
satisfies the conditions:

(1 - 22;)(1 —2z;)wi; £0, = 1,...,n,7=1...,n (23)

(dE)i(z) 20, i=1,...,n (24)

then z corresponds to the global minimum state of (W, ).

It must be noted that the above inequalities constitute a rather strict condition
for the global minimum state, but can prove helpful when using the binary Hopfield
network (or the closely related Boltzmann Machine) to solve optimization problems.
In such problems, one is interested in finding the state that corresponds to the
global energy minimum, since this state gives the optimal solution to the problem.
The above proposition constitutes an attempt to relate the global minimum state
with the network parameters in an explicit way. It can also be used to construct a
binary Hopfield network with a given state as the global minimum state.
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4. Operational Equivalence

Definition 1. We say that two binary Hopfield networks (W3, 6,) and (W5, 65) of
the same size are operationally equivalent, if there exists an one-to-one correspon-
dence between the states of the two networks, such that, for each state y of one
network and the corresponding state z of the other the difference in energy caused
by a change in the state of each node i (i = 1,. n) is the same for both networks:

dE{) () = dEé""z"’”(z) (25)

In essence, the notion of operational equivalence implies that, once two networks
are operationally equivalent, the knowledge of one of them and of the correspon-
dence between states is sufficient for simulating the operation and evolution of the
other network.

Taking into account the above definition it is obvious that the two networks
(W,8) and (F,() = D.(W,0) are operationally equivalent, since Proposition 1
ensures that for each state z of the second network there exists a state y =z @ 2
of the first network, such that the above equation is satisfied for every node index
i. Moreover, based on Property 3 we can extend this argument.

- Proposition 3. All the binary Hopfield networks that can be constructed from a
network (W, 8) using the transform D, (W, 8) for different values of the base vector
z, are operationally equivalent to each other.

Proof. Consider two binary vectors 2! and z? and two binary Hopfield networks
(F1,¢Y), (F2,(%), such that (F*,¢Y) = D, (W, 8) and (F2,(?) = D2 (W, ). Let
also z = z! ®2? (and consequently z? = z* ®z). Then using Property 3 we obtain:

(F2,¢?) = Dy (W, 0) = D, (F*, () (26)

Thus the two networks (F?,(*) and (F?,(?) are operationally equivalent since the
second network can be derived from the first network through application of the
transform D with respect to the vector z = 2! @ z2. -

The space of binary Hopfield networks can, thus, be partitioned into equivalence
classes; the members of each class can be derived from an arbitrary member of that
class through application of the transform using appropriate base states.

5. Conclusions

We have developed an original transform which can be used for the construction
of a binary Hopfield network starting from a given binary Hopfield network and
a state of that network. The operation of the new network can be characterized
from two different viewpoints. On the one hand, the second network provides
differential information with respect to the original one and, on the other hand,
the two networks satisfy the property of operational equivalence that has been
introduced in this paper. Several properties of this transform have been presented
along with theoretical results that provide a different insight into the operation of
the binary Hopfield network.

In addition to further investigation of theoretical issues, we aim at finding ap-
plications where these results could prove useful. We believe that applications of
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the Hopfield network to cryptography and data security could be developed, since
the network resulting from the transform operates equivalently with respect to the
original one, but the information about the state of the original network is hidden
to one that does not have knowledge of the base state used for the transform.
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