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ABSTRACT 

The paper develops reinforcement algorithms for networks of 

stochastic units which select their output based on a distribution whose 

dependence on the controllable parameters (weights) of the network is not 

deterministic. A special case of the proposed schemes concerns those 

applied to Normal/Bernoulli units, which are binary units with two 

stochastic levels. Both REINFORCE algorithms as well as algorithms not 

belonging to the REINFORCE class have been developed. All schemes are 

designed to exploit the two parameters of a normal distribution in order to 

explore discrete domains. The ability of the proposed algorithms to perform 

efficient exploration is tested in a number of optimization problems 

concerning the maximization of a set of functions defined on binary 

domains. Particular emphasis has been given on deriving schemes having 

the property of sustained exploration. Obtained results indicate the 

superiority of the reinforcement schemes applied to Normal/Bernoulli units 

over reinforcement schemes applied to single-parameter Bernoulli units. 

INTRODUCTION 

A necessary property for any form of reinforcement learning algorithm 

is its exploratory behavior. Exploration is required in all areas where 

reinforcement learning is applicable, ranging from function optimization to 

learning control in an unknown environment. The ultimate goal of 

exploration is to select actions that improve the performance of the 

learning agent over time. A common way to achieve the desired 

exploratory behavior is based on randomness, i.e., actions are generated 

randomly according to a probability distribution. Many reinforcement 

learning algorithms are based on the above operation principle 

/2,4,7,14,17/. While such algorithms are known to have some weaknesses 

/10/, they are simple to implement and surprisingly effective in many cases. 

Furthermore, other exploration strategies available are either limited to 

finite domains, because they require a variable associated with each state-
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action pair /4,9,11/, or they assume the existence of a learned model of the 

environment /8,12/ which might be difficult to obtain. 

Since costs are usually assigned to each experience faced by the 

learning agent, in order for the exploration to be effective, these costs must 

be taken into account through modification of the probability distribution 

with which actions are selected. A useful property of a searching algorithm 

is its ability to continue exploration even after the action selection 

probabilities have been biased towards selecting the best action. This is 

necessary in order for the learning system to avoid local maxima and be 

able to adapt to time-varying, dynamic environments. The above property, 

which has been termed sustained exploration / l/ , in fact determines two 

opposing principles that should be combined for efficient learning, namely: 

acting to gain new information and acting to avoid punishments /10/. 

Many reinforcement learning algorithms apply to networks of 

stochastic units which draw their output from some probability distribution, 

employing either a single or multiple parameters /2,3,17/. Moreover, the 

parameters of the distribution can generally be expressed as a deterministic 

function of the variables representing the actual adaptable quantities of the 

network (e.g. weights). A significant part of the research in reinforcement 

learning has been on problems with discrete action spaces, in which the 

learning system chooses one of a finite number of possible actions. The 

above problems have been commonly tackled by using stochastic units 

which draw their output from a single parameter distribution, such as the 

Bernoulli distribution /3,17/. 

It has been pointed out in /5,17/ that, for real-valued functions, the 

independent control of the mean and the variance might lead to interesting 

search properties. Clearly, there is no way of independently controlling the 

mean and the variance of the random output generated using a single 

parameter distribution. Motivated by the idea of applying the above 

principle to discrete-valued functions, we introduce in this paper a new 

type of processing unit which is characterized by the fact that the 
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probability distribution determining its output, depends stochastically on 

the adjustable network parameters. Assuming that the parameters that 

control exploration can be made available to the learner for adaptation, we 

present a general learning scheme that is consistent with the REINFORCE 

framework proposed in 111/. As is the case with any REINFORCE 

algorithm, the proposed scheme can be shown to statistically climb the 

gradient of the expected reinforcement in immediate reinforcement tasks, 

i.e., tasks where the payoff provided to the learner is determined by the 

most recent output (or input-out pair). 

As an instantiation of the above general scheme we consider a two 

layered Normal/Bernoulli unit, in which the first layer is characterized by a 

normal distribution, while the second one is characterized by a Bernoulli 

distribution whose parameter is computed deterministically from the output 

of the first layer. Based on the above type of doubly stochastic unit we have 

developed several reinforcement learning schemes, including a 

REINFORCE algorithm as well as algorithms not belonging to the 

REINFORCE class (the determination of the standard deviation σ not 

being based on the derivatives suggested by REINFORCE). These schemes 

allow the exploration of discrete output spaces via the modification of the 

mean and the standard deviation of the normal distribution. The superiority 

of the proposed schemes over the REINFORCE algorithm with single-

parameter Bernoulli units is illustrated by means of simulation experiments 

involving the optimization of complex functions defined on high-

dimensional binary domains. Without loss of generality, the formulation of 

the algorithms assumes teams of units, such that each unit does not receive 

any input (external or from other units). Therefore, units are not 

interconnected and operate as independent bit generators rather than in the 

conventional network context. 

In the developed reinforcement schemes, although a larger degree of 

randomness is introduced, the compromise between gaining information 

and gaining rewards was successful only to a limited extent. To this end, 

we further examine a number of variants with the purpose of achieving 
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active exploration and avoiding false maxima of the reinforcement/reward 

function. 

The paper is organized as follows: Section 2 presents the general class 

of REINFORCE algorithms and introduces a novel type of unit, whose 

output is drawn from a distribution having a stochastic relationship with 

the adaptable parameters of the unit. Moreover, a general reinforcement 

learning scheme applying to networks of such units is presented and is 

shown to belong to the general class of REINFORCE algorithms. A 

characteristic example of the new type of units, the Normal/Bernoulli unit, 

is also described. Section 3 describes various reinforcement learning 

algorithms applying to the Normal/Bernoulli unit, and investigates their 

efficiency by considering various optimization problems. In addition, some 

variants of the designed algorithms are presented, and their effectiveness in 

achieving sustained exploration is examined. Finally, the main conclusions 

are summarized in Section 4. 

2. REINFORCE ALGORITHMS APPLIED TO DOUBLY 
STOCHASTIC UNITS 

REINFORCE learning algorithms have been analyzed by Williams 

/17/ for tasks that are characterized as associative reinforcement learning 

tasks (i.e., the learning system is required to form the correct input-output 

associations). 

Any REINFORCE algorithm prescribes weight increments of the form 

Aw{j = aij(r - i o ) ^ · (1) 

where at] is a learning rate factor, r is the reinforcement signal delivered by 

the environment and btJ is a reinforcement baseline. The quantity 
d ln/gj/cKVjj is the characteristic eligibility of the weight parameter wy, 

where g·,· ( | ; w ' , x ' ) is the probability mass fiinction (in case of a discrete 

distribution) or the probability density function (in case of a continuous 
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distribution) which determines the value ξ of the outputs, of the /th unit as 

a function of the parameter vector w' of the unit (consisting of all the 

parameters \νφ and its input pattern x1. An important result proved in 

/13,17/ is that for any REINFORCE algorithm the average update direction 

in weight space lies in a direction for which the performance measure 
E{r|w}is increasing, where W is the matrix of the current network 

weights (stochastic hillclimbing property). 

The type of unit commonly employed in REINFORCE algorithms is a 

stochastic semi-linear unit IUI. This type of unit is also encountered in 

reinforcement learning networks employing the associative reward-penalty 

(AR_p) algorithm 111. The operation of such type of unit consists of a 

deterministic computation, the result of which is then used as input to a 

stochastic computation. The deterministic computation involves a 

summation and a differentiable squashing function, while the output of the 

unit is drawn from some single parameter distribution. A characteristic 

example is the Bernoulli semilinear unit depicted in Figure 1, whose 

stochastic component consists of a Bernoulli random number generator 

with parameter p( which is produced by the deterministic component as a 

function of the unit's adjustable parameters. Bernoulli semilinear units 

have been used in both associative and non-associative reinforcement 

learning tasks, with the output/action space being discrete 73,15,16/. These 
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studies have demonstrated a strong tendency of the REINFORCE 

algorithms to converge at a local maximum of the reinforcement function. 

Moreover, even when the algorithms succeeded in finding the global 

maximum they were usually slow. 

REINFORCE algorithms have also been employed in the case of units 

that determine their output stochastically from multiparameter 

distributions, such as the normal distribution/111. In general, random units 

using multiparameter distributions have the potential to control the degree 

of exploratory behavior independently of where they choose to explore. For 

example, in the case of a Gaussian unit we can determine both the location 

being searched, via the mean μ / ; and the breadth of the search around that 

location, via the standard deviation σ(. Because of the above useful 

property, multiparameter distributions (e.g. Gaussian) have been used as 

the stochastic component of units producing real-valued outputs, in order to 

learn functions with continuous values 15,14/. 

In order to exploit the merits of a multiparameter distribution in the 

case of discrete domains, a new type of stochastic unit is introduced in the 

next section. In contrast with the stochastic units presented above (e.g. 

Bernoulli, Gaussian), such a type of unit is characterized by the fact that 

the parameters determining the output probability distribution, depend 

stochastically on the set of parameters that can be modified during 

exploration. The incorporation of larger stochasticity in the computation of 

the unit's output introduces a larger degree of variation. Thus, an improved 

exploratory behavior can be expected, in terms of elapsed time to find the 

optimal solution. 

2.1 The General Case 

Consider a stochastic unit whose output is determined by a 

distribution, such that there is no deterministic relationship between the 

probability of producing an output and the adaptable parameters of the unit 
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Fig. 2: Units with two stochastic levels: (a) General case, (b) 
Normal/Bernoulli case 

(Figure 2(a)). Let v, denote the output of such a unit, and also let λ' 

represent the vector of all adaptable parameters affecting the input-output 

behavior of that unit. For the sake of simplicity, we have assumed that 

there is no input to the unit. It is obvious that for such a unit, the 

probability g j ( | ; X ' ) = P r [ y j = § | X ' } of producing a certain output ξ is a 

random variable (the notation used is appropriate for the case where the set 

of possible output values yt is discrete, however, the results to be presented 

also apply to continuous-valued units). We assume that the stochastic 

dependence of g, on the parameters λ' is expressed in terms of a random 

experiment, depending on the vector λ', which produces an outcome ο, = ω 

from a set of possible outcomes Ω ; . Each possible outcome may be regarded 

as equivalent to assigning some specific values to the parameters 

controlling the distribution from which the output is drawn. 

We assume that the sample space Ω, is discrete. Moreover, 

ρ ( θ | = ω | λ ' ) indicates the probability of the event {ω}, provided that the 

vector of the adjustable parameters of unit i is λ1. Then, the expected value 

of the probability £,(ξ;λ') of providing an output yt = ξ given that the 

parameter vector is λ1 can be written: 

λ')] = Σ = = ω|λ·) (2) 
«eßi 
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where the probability p(yi = ξ\ω) depends on ω in a deterministic way. 

The expected value appearing above actually represents 

the overall probability that y, = ξ given the adaptable parameter vector λ1. 

This quantity can be used to determine the characteristic eligibility required 

by the REINFORCE theorem /17/ in order to develop a rule for updating 

each parameter Xjk (the kth component of λ1). We show in Appendix 1 that 

the use of the expected value is compatible with the general 

REINFORCE framework and yields an update rule exhibiting the 

stochastic hillclimbing property. 

Consider now a team of stochastic units such as the one described 

above. As already mentioned, we consider no input to the units. However, 

this is not actually a restriction since in the case of a network of 

interconnected units there exists a deterministic functional dependence of 

the parameters λ1 on the actual parameters (weights) and inputs of the 

network. Consequently, the increments of the weights can be directly 

derived through application of the chain rule from the increments of λ' 

which are prescribed by the following proposition. 

Proposition 1 . If each parameter A,4 is adjusted, according to equation 

then the following holds 

£{Δλ,·*|Λ} = 

where Λ denotes the set of parameters {λ;*} for all i, k. 

Λ} 

In Appendix 1 we provide a brief derivation of the above result proceeding 

in a similar manner to the original proof of Williams /17/. 

In essence, the REINFORCE rule given above, prescribes the 

adjustment of the adaptable parameters of a doubly stochastic unit, i.e., a 
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stochastic unit that computes its output using a two-stage random 

generation process. 

2.2 The Normal/Bernoulli Case 

In 161, a characteristic example of the general type of doubly stochastic 

processing elements introduced above has been considered. Such a unit is 

depicted in Figure 2(b). At the first stochastic level the output n, is drawn 

from a normal distribution with parameters μ, and σ(, while at the second 

level the output yt is a Bernoulli random variable with parameter pn the 

latter being a deterministic function / , of the o u t p u t o f the first level. We 

shall consider that / , is the logistic function, i.e., pt = 1/(1 + εχρ(-κη,)), 

where the parameter κ determines its slope (we have used κ = 0.5 in all our 

experiments involving Normal/Bernoulli units). 

It is obvious that the probability £,(ξ;μ,,σ() = Pr{yj =ξ|μ^,aj}is a 

random variable since it is a deterministic function of the random variable 

nt. Considering a team of binary stochastic units such as the one shown in 

Figure 2(b), the REINFORCE algorithm prescribing the update of the 

parameters μ, and σ, of each unit /', can be easily derived following the 

discussion of the previous section. 

Δμ, = « U r - b J ^ f ^ (5) 

Δ , =' M r - ( 6 ) 

In practice, application of the above learning rules requires the 

computation of estimates of the partial derivatives appearing in equations 

(5) and (6). However, when the output of the random number generator at 

the first stochastic level can be written as a differentiable function of its 

parameters, it is possible to obtain such estimates, since the chain rule can 

be applied through the random generator, as if we were backpropagating 

through deterministic components /I4,17/. The normal random number 

generator which constitutes the first level of the unit shown in Figure 2(b), 
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satisfies the aforementioned property and the technique for 

backpropagating through random components can be applied. 

3. REINFORCEMENT SCHEMES EMPLOYING NORMAL/ 
BERNOULLI UNITS 

We have developed several reinforcement learning algorithms for the 

new type of Normal/Bernoulli unit, and we have tested their efficiency in a 

number of optimization problems. The problems actually involved the 

search of high-dimensional binaiy spaces in order to find the point where a 

given function takes its maximum value. 

3.1 A REINFORCE Scheme 

A REINFORCE scheme is obtained if the parameters μ, and σ, are 

adjusted according to equations (5) and (6). Taking into account the way in 

which we can backpropagate through a normal random number generator 

/14,17/, we considered the quantity 51ng;/ön; as an estimate of 

dlnE"[g j^ j ,Oj} /θμί and the quantity 3 1 n g - / d n j ( n ^ a s an 

estimate of d l n E { g j ^ j , O j } / θσ, («, being the output of the first level). 

Since gt is a deterministic function of /?, (through its dependence on pt), 

using the chain rule we compute: 

where from the Bernoulli distribution and the logistic function we have, 

respectively, 

dingj _ ging,· dp,· 
dn, dp, dn, 

(7) 

din9i _ {Vi - Pi) 
dpi Pi( 1 - Pi) 

(8) 

(9) 
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Moreover, we used as reinforcement baseline the adaptive quantity r , 

which is computed as an exponentially weighted average of prior 

reinforcement values 

r(i) = 7r(t - 1) + (1 - 7)r(i) (10) 

where γ is a decay rate positive and less than 1, which in all our 

experiments was set equal to 0.9. (This technique is referred to in the 

literature as reinforcement comparison.) 

Thus, the update of the parameters μ, and σ( of the /th unit is 
performed using the following learning rules (identical learning rates α μ 

and α σ were used for all units) 

Δμ, = ov(r - r)(y, - p,) (11) 

Δσ,· = a a ( r - r ) ( y i - P i ) ( n L Z f i l (12) 
"i 

We will refer to the above reinforcement scheme as N/B. 

In the following we will discuss some issues concerning the adaptation 

of the mean and the standard deviation when reinforcement comparison 

and the above mentioned estimators are used. For the ease of presentation 

we will omit the subscripts indexing each unit. It is clear that the sign of 

the quantity dlng/dn (which is the sign of y - ρ in the case of 

Normal/Bernoulli units) determines the sign of the derivative of g at the 

sampled point n. Considering the adaptation of the mean, if the sampled 

pointy gives rise to a higher function value than expected, then μ moves in 

the direction indicated by the gradient of the probability function g at the 

point n. Thus, if the unit outputs 1 then μ will increase, while μ will 

decrease in case the unit outputs 0. There is a similar behavior, i.e., μ 

simply moves in the opposite direction, if the sampled point y leads to a 

lower function value. In fact, the change made to μ corresponds to that 

required to make the re-occurrence of y more likely if a better point is 

found, and make it less likely if a worse point is discovered. 
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As far as σ is concerned, the update is performed analogously, i.e., the 

probability of sampling a better point is increased and the probability of 

sampling an inferior one is decreased. To understand the behavior of the 

algorithm in terms of search, assume that the sampled point y is better than 

expected. In this case the search is narrowed around μ if, based on the sign 

of the derivative of the probability g at n, it is implied that the probability 

of producing y (evaluated at n) is lower than the corresponding probability 

evaluated at μ. Moreover, the search around μ is broadened if the opposite 

holds. As a consequence, for a certain output y, if μ is at the top of a hill 

(local maximum of the probability function g), then σ will be decreased. 

The decrease will be made to the point where it is not likely to sample 

worse points (worse in the sense that they have a lower probability of 

producing the specific output y). Accordingly, for a certain output y, if μ is 

at the bottom of a valley (local minimum of the probability function g), 

then σ will be increased to obtain points with higher probability of 

producing the specific output y. 

3.2 Alternative Ways for Adapting σ 

In the REINFORCE scheme presented above, σ is updated locally at 

every unit based on its impact on the probability of producing a certain 

output y. In order to further understand the utility of σ in the exploration of 

the output space we also tested two other reinforcement schemes, in which 

μ is adapted according to equation /11/, but the rules for updating σ (which 

is considered the same for all units) do not follow equation /12/. Therefore, 

the algorithms presented below do not comply with the REINFORCE 

framework. 

Ideally, a unit that explores an output/action space should have the 

following properties /5/: 

• It should be able to improve its performance in cases where it is doing 

poorly be exhibiting a greater amount of exploratory behavior. 
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• It must not degrade its performance in cases it is doing well by 

exhibiting in those cases a very random behavior. 

Following the above guidelines, a reinforcement algorithm can be 

derived by requiring that, at each time step, σ be proportional to the 

expected heuristic reinforcement h(t): 

«τ(0 = a„h{t) (13) 

where α σ is a positive constant and h(t) is a trace of the past absolute 

values | r - r | 

h(t) = -,h{t - 1) + (1 - 7) | r( i) - r(t - 1)| (14) 

The parameter γ is the same decay factor used in the computation of r . In 

fact, h represents information regarding the state of the learning system. If 

the system is performing well and explores around a local maximum, then 

h (and hence σ) tends to become zero. On the contrary, when the system is 

far from the neighborhood of a local maximum, then h takes on larger 

values, indicating that a larger amount of exploratory behavior is needed. It 

should be noted that | r - r | could have been used instead of h as an 

indicator of how well the reinforcement learning system is performing. 

However, the latter quantity changes more 'smoothly' over time than the 

former, hence large modifications to the values of σ are avoided. In the 

following discussion, the reinforcement scheme just described will be 

distinguished by the name N/Bj. 

The two properties stated above indicate that standard deviation 

should be small when the current expected output is close to the optimal. 

Since the quality of the expected output is quantified by the value of the 

expected reinforcement, we can deduce that if the expected reinforcement 

is high, then the learning system is performing well and thus σ should be 

small. Conversely, if the expected reinforcement is low, σ should be large 

so that a wider area is explored. The above rationale has been used in 151 as 
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part of a stochastic reinforcement learning algorithm for learning functions 

with continuous outputs. However, in that case the maximum attainable 

reinforcement was known a priori. Since this is not the case in our 

optimization problems, the following alternative is adopted. We keep track 

of the maximum value of reinforcement attained so far, and use this as a 

standard of performance against which the performance of the system is 

compared. Thus, a reinforcement scheme is obtained in which σ is updated 

based on the following equation 

σ(ί) = 0 , ( ^ ( 0 - r(i)) (15) 

where α σ is a positive constant, fm a x(t) is the maximum attained 

reinforcement until time t and r (t) is the expected reinforcement at that 

time instant. In what follows, we will refer to the above scheme as N/B2. 

The reinforcement schemes N/B, and N/B2 actually decrease σ when 

search has reached the area of a local (or global) maximum, thus allowing 

convergence to such a maximum. Since it is true that the reward function is 

generally convex in the area of a local maximum, it is implied that σ is 

decreased when the reinforcement function is convex. On the contrary, 

when search is far from the neighborhood of a local maximum (e.g. in an 

area where the reward function is concave) then σ is increased. 

3.3. Comparative Results 

We have tested the efficiency of the reinforcement schemes presented 

in the last sections, by considering a number of optimization problems 

originally studied by Ackley III and also examined in /15,16/. The 

problems we have tested were the One-Max, the Two-max, the Porcupine, 

the Plateaus and a specific combinatorial optimization problem, the 

minimum-cut graph partitioning problem. A brief description of the 

problems can be found in Appendix 2. 

In all our experiments we have used a team of Normal/Bernoulli units 
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(Figure 2(b)) with no interconnections among them. The size of the team is 

determined by the dimensionality Ν of the binary space to be searched. The 

value of Ν is the only information about the function that is assumed to be 

available before the computation begins. At each trial the network 

generates a sample point y which is a bit vector of length N. The function 

value at that point is used as the reinforcement signal r which is delivered 

to every unit of the network. The latter should adapt its behavior so that 

during the next trial a point of higher function value is generated. 

Williams and Peng /15,16/, performed experiments on the same 

optimization problems using a team of Bernoulli logistic units, i.e., units of 

the type shown in Figure 1 having the logistic as the squashing function. 

As was the case with their experiments, we found that our algorithms 

generally converge faster if we replaced pt, with yj in the eligibility factor 

of equation (11). Similarly to r , the quantity ŷ  is an average of past 

values of_y, and is updated by 

U t ) = 7M* - 1) + (1 - 7 ( 1 6 ) 

where the decay rate γ has the same value as that used for updating r . All 

the reported results have been obtained using this form of eligibility, i.e., 

the parameter μ( of each unit / was updated according to 

Δ/j, = αμ(τ - r)(y, - yl) (17) 

It should be noted that the above rule for updating the mean is not a 

member of the class of REINFORCE algorithms in the strict sense. 

However, the proposed schemes are compared with a single-parameter 

REINFORCE variant adopting the same form of eligibility /15,16/. 

Moreover, as experiments indicate, the conclusions drawn carry over to the 

case where pure members are considered. 

Another issue concerning the REINFORCE scheme N/B is that, in 

order to guarantee that the a ( ' s will not become negative, we actually 

consider θ; = Ιησ? as the adaptable parameter in place of σ(. 
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Table 1 (first row) presents the average number of steps (over 50 runs) 
required by the scheme N/B to find the global maximum of each function. 
At the start of each run, all the parameters μ, were set equal to zero, while 
the standard deviations σ ; were all initialized to the same value o in i t. 
Generally, small values of om U in the range (2.0,3.0) were most 
appropriate. A larger value of a j n U was needed as the value of α μ was 

decreased, in order to retain the same learning speed. Table 1 also shows 
the values of the learning rates α μ and α σ used for all the runs. It should be 
pointed out that the choice of the value of <χμ was critical for the 

convergence of the algorithm. On the other hand, the method was relatively 
robust with respect to a^, although a gradual degradation in learning time 
and quality of the result was observed, as α σ increased. 

The performance of the reinforcement schemes N/Bj and N/B2 is also 

shown in Table 1 (second and third row, respectively). Finally, for 

comparison purposes, Table 1 (fourth row) also gives the results reported 

by Williams and Peng /15,16/ on the same optimization problems. The 

results concern the average time to find the maximum using a 

REINFORCE variant (denoted by B) obtained from equation (1) for the 

case of a team of Bernoulli logistic units by replacing p t with y j in the 

eligibility factor: 

Aw, = a(r - f){y, - yl) (18) 

As indicated by our experiments, all the examined reinforcement 

schemes have a strong tendency to converge. It should be pointed out that 

the results reported concern the number of steps until the first generation of 

the global maximum, and not the number of steps until convergence (which 

generally occurs a few steps after the first generation of the optimum). 

Furthermore, all algorithms failed to find the global maximum in more 

than half of the runs for the task of graph partitioning. The graph instances 

considered were the two hierarchically structured graphs, MLC-32 and 

MLC-64 presented in III. More specifically, the success or failure of the 

algorithms in these instances depends strongly on the initial direction of 
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the search, in the sense that either the global maximum is rapidly attained 

or the system is trapped for ever in some other local maximum. Therefore, 

the mean time to find the maximum for the cases of success is relatively 

short, but these results cannot be considered significant. 

Observation of Table 1 indicates superiority of the proposed two-

stochastic level (Normal/Bernoulli) reinforcement schemes over the single 

level (Bernoulli) scheme. This is a consequence of the advantages offered 

by the use of two individually controllable parameters during the 

exploration process (mean and standard deviation), rather than a single 

one. This results in a more effective search of the output space, thus 

increasing the speed of reaching a solution. In fact, the performance of the 

algorithms was similar when searching for the maximum of One-Max or 

Porcupine. The reason is that when the reward function is linear (One-

Max) then changing σ does not necessarily improve the expected reward on 

the next step. Moreover, Porcupine is essentially the same as One-Max, 

since reinforcement learning algorithms are able to handle noisy 

reinforcement signals and treat the porcupine 'quills' as if they were 

merely noise added to some underlying function. The superiority of the 

TABLE 1 
Comparative results 

One Max Two Max 
Algorithm α μ αν Steps α» Steps 
N/B 0.05 0.02 7 0.03 0.02 10 
Ν/B, 0.05 0.06 6 0.03 0.06 8 
N/B2 0.05 0.06 7 0.05 0.06 9 
Β 9 102 

Porcupine Plateaus 
Algorithm α μ a . Steps αμ Steps 
N/B 0.05 0.02 7 0.010 0.02 290 
Ν/Β\ 0.05 0.06 7 0.010 0.06 279 
N/B2 0.05 0.06 6 0.010 0.06 295 
Β 9 435 

66 

Brought to you by | University of Ioannina (University of Ioannina)
Authenticated | 172.16.1.226

Download Date | 4/18/12 1:01 PM



U. Kontoravdis, Α. Likas and A. Stafylopatis Journal of Intelligent Systems 

Normal/Bernoulli schemes was apparent in the Two-Max and the Plateaus 

functions which actually represent more difficult tasks. 

As already noted, in the graph partitioning problem, which is the most 

difficult among those examined, all reinforcement schemes sometimes 

failed since they converged to a local maximum. In /15/ a REINFORCE 

variant that incorporated a decay term - 6 w ( δ < 1) in the weight update 

rule (18), was proposed in order to achieve sustained exploration. The use 

of the decay term led to a tendency for random restarts coupled with the 

tendency for stochastic gradient following. In what follows, we consider 

some techniques that enhance the sustained exploration capabilities of our 

reinforcement schemes, based on alternative forms for the update rules. 

3.4 Achieving Sustained Exploration 

The reinforcement schemes presented in the previous sections 

represent efficient search strategies that are based on the ability to focus the 

search into promising regions of the output space. The latter is achieved by 

using the function values received in the past, as a guidance for the future 

directions of the search. As experiments indicate, the quick discovery of 

promising regions is more successfully achieved when using two distinct 

parameters during the search, instead of a single one. However, in order to 

deal more effectively with the problem of local maxima existing in various 

function landscapes, as well as the problem of time-varying functions, an 

exploration algorithm must also have the ability to broaden search at 

certain times /1/. This property of sustained exploration actually 

emphasizes divergence, i.e., return to global searching, but without 

completely forgetting what has been learned. In the following, our purpose 

is to devise some techniques in which the divergence mechanism is not 

external to the learning system (e.g., a temperature Τ that increases after 

the detection of convergence), but rather an internal event triggered when 

the system tends to settle on a certain state. 
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In order to control the convergence of the Normal/Bernoulli 

reinforcement schemes presented previously one has to consider ways of 

intervening in the update rules of the mean and the standard deviation. 

Considering the way in which the mean is updated in all schemes (equation 

(17)), we have developed a variant involving the incorporation of a decay 

term in the increment. In fact, this variant constitutes an adaptation of the 

idea presented in /15/. In our scheme, a decay term was included in the rule 

determining the adjustment of μ(, which was then performed according to 

the following equation: 

Δμ , = αμ(τ - f)(y, - - δμ{ (19) 

where δ is a decay rate. In fact, divergence relies on an adaptation 

mechanism that allows the output probabilities p: to move away from the 

values to which they have converged, i.e., move towards the value 0.5. 

Therefore, in order for the decay term to be effective, it must suggest a 

displacement of μ, towards the value ζ for which the sigmoid yields the 

output 0.5. In our case ζ = 0, but in general the decay term should have the 

f o r m - δ (μ, - ζ ). 

As far as the standard deviation σ is concerned, which is the other 

parameter controlling the output of each unit, a number of observations can 

be made. Although standard deviation actually determines the amount of 

exploratory behavior exhibited by one unit, it is difficult to devise a 

technique for sustained exploration based on σ. One of our attempts, for 

example, consisted in trying to keep σ constant over time and equal to a 

relatively large value. However, that approach sometimes failed to 

converge. Moreover, its effectiveness reduced over time due to the fact that 

the mean was eventually becoming very large in magnitude. Another 

alternative that we have examined involved the incorporation of an 

' increase' term +δσ, in equation (12). The purpose of that term was to 

trigger an increase of σ whenever the value r - r tended to become zero, 

i.e., the learning system tended to converge to a certain output. However, 

the method failed because in many cases it led the system to undesired 
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situations (e.g., huge values of σ). The justification for the last observation 

lies in the fact that it is always equiprobable to select a value either on the 

right or on the left of the mean of a normal distribution. Thus, the increase 

of σ cannot guarantee a suitable 're-organization' of the learning system, 

and may lead to unexpected states. 

The Normal/Bernoulli reinforcement schemes N/B, N/B[ and N/B2 

were modified giving rise to three other schemes exhibiting the property of 

sustained exploration. The resulting algorithms update the parameter μ 

according to equation (19), while the update of σ is performed in the same 

way as in the original schemes. In what follows the three variants will be 

referred to as SN/B, SN/B, and SN/B2, respectively. 

Experiments were conducted using the three schemes SN/B, SN/Bj 

and SN/B2 described above. We have also performed experiments using the 

REINFORCE variant (denoted by SB) examined in /15,16/, which employs 

Bernoulli logistic units and incorporates a decay term in the update rule of 

equation (18). As in the previous series of experiments, we adopt the 

strategy of running each algorithm until the optimum is obtained for the 

first time. The number of function evaluations until the first generation of 

the global optimum, is used as a performance measure assessing the 

various schemes. The problem considered was that of graph partitioning in 

which the respective algorithms N/B, N/Bj, N/B2 and Β typically failed. In 

particular, we restricted attention to the MLC-32 and MLC-64 graphs / l / . 

For those specific instances of the graph partitioning problem there are two 

global maxima as well as a number of local maxima. 

In Table 2 the average number of steps (over 50 runs) that the 

algorithms took to find the global maximum are shown, as well as the 

values of the learning rates <χμ and a ( T a n d the decay δ used in all runs. The 

results suggest that all reinforcement schemes exploiting the two 

parameters of the normal distribution were remarkably faster than the 

REINFORCE variant controlling search via the single parameter of the 

Bernoulli distribution. Moreover, experiments using different learning rates 

69 

Brought to you by | University of Ioannina (University of Ioannina)
Authenticated | 172.16.1.226

Download Date | 4/18/12 1:01 PM



Vol. 5, No. 1, 1995 Enhancing Stochasticity in Reinforcement Learning Schemes: 
Application to the Exploration of Binary Domains 

TABLE 2 
Comparative results on graph partitioning: average steps 

MLC-32 MLC-64 
Algorithm. ασ δ Steps aß Ca <5 Steps 
SN/B 0.44 0.02 0.022 2140 0.24 0.003 0.01 7140 
SN/Bl 0.6 0.2 0.03 2525 0.3 0.02 0.01 7930 
SN/B-2 1.0 0.15 0.03 2190 0.3 0.03 0.01 7810 
SB α = 0.04 0.01 4925 a = 0.2 0.01 11650 

have shown that the SN/Bj scheme is more robust than the other schemes 

with respect to changes in the parameter values. 

Table 3 shows for each learning algorithm, the standard deviation of 

the time to find a global maximum over the 50 runs, as well as the longest 

time for any run until a global maximum was discovered. As can be 

observed, all the examined schemes are characterized by relatively large 

standard deviation. This is a consequence of the probabilistic nature of 

reinforcement algorithms. From the results displayed in the table it is clear 

that, in addition to improving the average number of required steps, the 

employment of two parameters leads also to better behavior concerning the 

worst case and the standard deviation. 

Figure 3 shows a plot of the value of the reinforcement received as a 

function of trial number. The plot concerns a typical run of the algorithm 

SN/B on the MLC-32 problem (similar plots can be obtained for algorithms 

SN/B, and SN/B2). It should be noted that the reinforcement received at a 

TABLE 3 
Comparative results on graph partitioning: deviation and worst case 

MLC-32 MLC-64 
Algorithm Deviation Worst Deviation Worst 
SN/B 1870 8520 4590 22160 
SN/B, 1847 7880 5130 21490 
SN/B-i 1690 5714 5970 23500 
SB 3780 14690 9078 30550 
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Fig. 3: A typical run for SN/B 

global maximum is 0 for the problem considered. For illustrative purposes 

the run was not terminated after a global maximum was discovered. The 

plot shows that the global maximum was first found at trial 1490 and since 

then it was generated again several times (sustained exploration). In order 

to better illustrate the ability of the algorithm to generate points with 

higher payoff (on the average) as the number of trials increases, the 

reinforcement received per trial was averaged over bins of 100 trials. The 

obtained smoothed curve is plotted in Figure 4. 

4. CONCLUSIONS 

We have developed reinforcement algorithms applying to networks of 

stochastic units having the characteristic that the output distribution of 

each unit depends stochastically on the adjustable network parameters. A 

REINFORCE algorithm is presented for the general type of the above 

doubly stochastic units, which updates the adaptable parameters of the 
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Fig. 4: Averaged reinforcement over bins of 100 trials 

network in a way that the stochastic hillclimbing property is satisfied (with 

respect to the expected value of the upcoming reinforcement signal). 

As a special case, we have derived a REINFORCE algorithm for 

Normal/Bernoulli units, i.e., doubly stochastic units employing a normal 

and a Bernoulli distribution. Moreover, by considering alternative ways for 

adapting the standard deviation, several other reinforcement schemes 

applied to Normal/Bernoulli units have been developed. All these 

algorithms possess the ability of exploring discrete domains by exploiting 

the two parameters of the normal distribution employed at the first level. 

Experimental results concerning a number of discrete optimization 

problems, indicate that the proposed reinforcement schemes exhibit better 

exploration capabilities and are more powerful than a single-parameter 

scheme in terms of elapsed time to locate the global maximum. 

Finally, emphasis has been given in developing techniques that 
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achieve a good compromise between the two complementary goals of 

efficient searching, i.e., acting to acquire new information and acting to 

obtain rewards based on past information. To this end, the algorithms have 

been adapted so that the above goals can be dealt with in a unified way. 

This makes possible the exploration of complex and dynamic 

environments. Experiments on instances of the graph partitioning problem 

have revealed that the proposed algorithms, which incorporate an internal 

mechanism for switching between local and global searching, constitute a 

very powerful scheme for exploring unknown domains. 

APPENDIX 1 

In this Appendix we present the proof of Proposition 1. 

Let Y, denote the set of possible output values ξ of unit /', which is 

considered to be discrete, although this is not a critical assumption. 

If every parameter Xjk is adjusted according to equation (3), we have 

that 

£[Δλ,*|Λ] = Σ £ [ Δ λ * μ , Λ ] ρ ( 0 ; = « | λ ' ) 
«en, 

M r - W £ [ g , ( e ; A · ) ] = Σ Σ £ 
wen, {en 

= α, , Σ Ε 

iev, 

!».- = £, Λ 

. A')] • 
[ r ~ b ' k ) d \ k

 |2Α = ί · Λ 

p{yi = £|ω)ρ(ο,· = ω|Α·) 

(20) 

This leads to the following equation 

£[ΔΑ*|Λ1 = = 
ien 

- aik 2_ Ε[bik\yi = ξ,Λ] χτ 
ίΐγ. dXik 

(21) 

Assuming that the reinforcement baseline bik is conditionally independent 

on _y, when Λ is given, the second term in the right-hand side of the above 

73 

Brought to you by | University of Ioannina (University of Ioannina)
Authenticated | 172.16.1.226

Download Date | 4/18/12 1:01 PM



Vol. 5, No. 1. 1995 Enhancing Stochasticity in Reinforcement Learning Schemes: 
Application to the Exploration of Binary Domains 

equation can be written: 

a, A I M Σ ^ ψ ^ ( 2 2 ) 

i&Y, ik 

= a,kE[bik\A}^- Σ Σ p(y< = ilω)ρ(°.· = ω Ι λ ' ) 
Ü A 'k u-en, c€Vi 

= 0 , 

Moreover, the expected value of r can be written as follows: 

E[r\A]= Σ £[Γμ,Λ]ρ(0,=ω|λ·'). 
Ω, 

= Σ Σ ^ Μ » = A]p(y, = f |w)p(0 i = ω|Α') 
iev, 

= Σ £ Μ ν . · = ί ,Λ]£[*(ί ;λ· ' )] ( 2 3 ) 

When the value of y, is specified, the expected value of r is independent of 

Xjk. Therefore 

= £ E[r\m = ζΛ)^-Ε[9,(ξ·, λ ' ) ] (24) 

From equations (22)-(24) we finally find that when the elements of 

vector λ' are adjusted according to equation (3), it holds that 

Ε[ΔΑ„|Λ] = (25) 

i.e., the stochastic hillclimbing property is satisfied. 

APPENDIX 2 

This Appendix presents the suite of functions used to test the 

performance of the proposed reinforcement algorithms. Let Ν denote the 

dimensionality of the binary space to be searched. For the first four 

problems Ν = 20, while in the fifth problem we have considered Ν = 32 and 
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Ν = 64. For any output vector y produced by the network, let ΑΊ represent 

the number of 1 bits in the vector, and let M) represent the number of 0 

bits. The following problems have been considered in our simulations. A 

more detailed description of the functions to be optimized can be found in 

1. One-Max. This is a linear function defined as f(y) = 10M. The 

global maximum is located at the point designated by all l's in the 

vector y. 

2. Two-Max. The function is defined as fiy) = |18ΛΊ - 8N\, and has one 

global maximum and one local maximum. The global maximum 

(with value ION) is the bit vector containing all l's, while the local 

maximum (with value 8Λ1) is the bit vector having all O's. 

3. Porcupine. The function to be maximized is f{y) = 1(W1 - 15(M 

mod 2). It is just like the One-Max function except that we subtract 

15 when Μ is odd. The global maximum is again at the point y 

containing all l's, but every point whose Hamming distance from the 

global maximum is even, constitutes a local maximum. 

4. Plateaus. The function is defined as follows: Divide the bits into four 

equal-sized groups. For each group, if all bits are 1 compute a score 

which is 2.5N, otherwise the score is 0. Return as a value of the 

function the sum of the scores for the four groups. This function has 

only five possible values and its main characteristic is the existence of 

large regions (plateaus) in which all points have the same value. Like 

the first three functions, the global maximum of the Plateaus is at the 

point .y having all l's. 

5. The last optimization problem considered is the minimum cut graph 

partitioning problem. This is a member of the class of NP-complete 

problems and concerns the separation of the nodes of a graph (with 

even number of nodes N) into two groups having the same number of 

nodes, such that the number of edges connecting nodes of different 
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groups is as small as possible. A partition of a graph can be 

represented by a vector of Ν bits by assigning 0 to all the nodes in one 

group and 1 to all the nodes in the other group. Thus, following 

Ackley / l / , graph partitioning can be regarded as the maximization of 

the function f(y) = -c(y) - 0.1 ( Μ - NO)2, where c(y) is the number of 

edges crossing the partition for the particular vector 
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