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Abstract—A novel method for the detection of ischaemic episodes in long duration
ECGs is proposed. It includes noise handling, feature extraction, rule-based beat
classification, sliding window classification and ischaernic episode identification, all
integrated in a four-stage procedure. it can be executed in real time and is able to
provide explanations for the diagnostic decisions obtained. The method was tested
on the ESC ST-T database and high scores were obtained for both sensitivity and
positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross
statistics, and 90.7% and 80.7% using aggregate average statistics).
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1 Introduction

ISCHAEMIA i& the most common cardiac disease and its eatly
diagnosis is very important. Techniques that automate the
detection and help in the diagnosis of ischaemic episodes in
long duration electrocardiograms (ECGs) have been proposed
during the last two decades. These techniques can be
grouped depending on the computationai paradigm on
which they are based (rule-based expert systems, artificial
neural networks, fuzzy expert systems, pattern recognition,
signal processing, etc.).

Rule-based methods exhibit certain advantages such as direct
transformation of medical knowledge to rules, low computa-
tional load and explanation of the diagnostic decisions.
However, their diagnostic vatue depends on the appropriate
selection and combination of the rules and the method for the
extraction of feature values used in the rules. Some rule-based
techniques (LACHTERMAN et al., 1990a, b; VELDKAMP et al.,
1994; ANSLEY et al., 1996; YANG, 1996) used the ST deviation
from the isoelectric line, while others (WATANABE et al., 1980,
WEISNER et al., 1982; HSIA et al., 1986) combined the ST
deviation with ST segment slope and other parameters like the
ST index, ST level and ST integral (or ST area). More
specifically, if the slope is Jower than a certain threshold and
the ST deviation is higher than 0.1 mV then an ischaemic beat is
detected. SILIPO et al. (1994) used such rules in ischaemic
episode detection. Similar tules were adopted by AKSELROD
et al. (1987), which could reach decisions for subclasses of
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ischaemic beats, and by SHOOK et al. (1989), but with feature
values averaged on a 30-s window. CAIRNS ef al. (1991} and
LaKS et al. (1989) introduced a relation which has as input
parameters age, sex, chest or left arm pain, Q wave amplitude,
ST elevation and depression and T inversion, and as output the
ischaemia probability. BADILINI et al. (1992), uged ST segment
frequency characteristics for ischaemic episodes detection.
Another class.of techniques for ischaemia detection is based
on artificial neural networks (ANN)., Baxr (1991) proposed
a four-layer ANN trained by back-propagation for ischaemic
patient identification considering features from patient his-
tory, physical examination and ECG characteristics.
STAMKOPOULOS ef al. (1992) used a three-layer ANN trained
by back-propagation using as input the raw signal corre-
sponding to the ST segment. In other work (STAMKOPOULOS
et al., 1998), they used non-linear principal component
analysis for ischaemic beat classification. SILIPC et al. (1994)
adopted a three-layer ANN trained by back-propagation using
as input the ST amplitude and slope. QUYANG ef al. (1997}
also developed a three-layer feed forward ANN trained by
back-propagation, but for ischaemic patient identification. As
input layer they used 40 nodes, five ECG characteristic values
(Q, R, S and T waves amplitudes and ST deviation) for each
one of the eight leads (I, Il and V). SILIPO and MARCHESI
(1998) compare various approaches for ischaemia detection
based on ANNs: static ANNs, static ANNs combined with
principal component analysis, recurrent ANNs and knowledge-

- learning networks.

There are also ischaernia detection techniques based upon
different heuristic algorithms. OATES et al. (1989) used decision
tree methods on three quasi-orthogonal leads. JAGER
et al. (1992) used the Karhunen-Loéve transform. TADDEI
et al. (1995) developed a geometric method, while VILA et al.
(1997) developed a monitoring system for coronary care units
based on fuzzy logic,
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A knowledge-based approach is prepared to detect ischaemic
episodes in long duration ECGs. The method is based on a four-
stage schema. The first is used for noise handling, artefact
characterisation and extraction of ECG features. The second
stage is beat classification {ischaemic or not) using medical
knowledge in the form of rules based om the features obtained in
the first stage. The third stage is window classification
(ischaemtic or not). The fourth stage identifies and merges the
sequences of ischaemic windows detecting the ischaemic
episodes.

The proposed method is novel in several aspects; the whole
detection process is structurally divided into four distinet stages.
This division is made to naturally emulate the diagnostic steps
followed by cardiologists and significantly facilitates the speci-
fication, adjustment and tuning of the overall method. Another
important aspect of the approach is that it explicitly deals with
noise problems. A noise handling procedure is proposed
(applied in the pre-processing stage) that enables efficient

treatment of most types of noise appearing in ECG recordings. - - - ; .
. means that in cases of tachycardia (with a heart rate higher

Moreover, for ischaemic beat classification, medical knowledge
is used in the form of three rules, one of which (T wave inversion
or flattening) (ROWLANDS, 1982; GOLDMAN, 1982} is used for
the first time for automated diagnosis. Also introduced is the
notion of ischaemic window, which is a time window containing
mostly (to allow tolerance in the decision) ischaemic beats. Also
the method exhibits flexibility in the definition of an ischaemic
episcde as a sequence of ischaemic windows by allowing small
intermediate intervals containing normal beats. These tolerance
characteristics of the method allow on the one hand for the
efficient treatment of artefacts, and on the other hand for dealing
with problems related to the fact that strict rules (with certain
threshold values) are used for beat classification, Finally, it is
worth menticning that the technique is real-time and exhibits the
highly desirable characteristic that it is capable of providing
explanations for each decision made at every stage of the
method. Experimental results using the ESC ST-T database
indicate that the proposed diagnostic procedure Is effective
and performs well both in terms of sensitivity and positive
predictive accuracy.

2 Method

A four-stage procedure was developed for ischaemic episodes
detection as shown in Fig. 1. The four stages correspond to noise
handling and ECG feature extraction, beat classification,
window classification and identification of ischaemic episodes
duration. In the first stage, pre-processing of the ECG recording
is performed to achieve noise removal and extraction of the
signal features to be used for beat characterisation. In the second
stage each beat is classified as normal, abnormal (ischaemic) or
artefact. This information is used in the third stage (the window
characterisation stage) where each 30-s ECG window is classi-
fied as ischaemic or not. In the fourth stage the identification of
start and end points of each ischaemic episode is performed

! ECG feature extraction and noise handling |

! ‘ beat classification |

;

i window classification I

]

! ischaemic episode identification l

Fig. I The four-stage technique
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based on the concatenation of consecutive ischaemic windows. -
It is noted that the whole procedure described above is applied in
each lead separately. At the last stage, 2 merging procedure is
followed to identify the overall ischaemic episodes from the
episodes detected in each available lead.

2.1 ECG feature extraction and noise handling

2.1.1 ECG feature extraction: At this stage the beginning of
the 8T segment {J point) and the peak of the T wave are detected.
We start with the detection of a point in the QRS complex (QRS
point) for each beat using the HAMILTON and TOMPKINS (1986)
algorithm. To make this-algorithm faster some modifications
have been made: specifically, after the detection of a QRS
complex we ignore the next 300ms. This means that the
modified QRS detector will become 30% faster but it also

than 200 beats min ') the QRS detection will fail. Nevertheless,
these cases are rare and deserve special -treatment by the
cardiologist. The QRS detection continues as follows: first, the
main wave of the QRS complex {not the R wave) is identified in
the window [QRS - 280ms, QRS + 120 ms] by locating the
point with maximuom absolute signal value. The next step is an
1nitial estimation of the isoelectric line, which is defined as the
mean value of the signal in the window [QRS — 130ms,
QRS - 80ms], and is used for the location of the point in the
QRS complex with maximum absolute deviation from that
estimated isoelectric line. This point is the peak of the main
wave in the QRS complex. It is used of as a reference point
(RP) to continue the search for the final identification of the
isoelectric line and the location of the start point (J point) of the
ST segment. o

The algorithm developed by DASKALOV ef al. (1998) is
appiied to the window [RP — 100 ms, RP — 40 ms] and searches
for an interval of 20 ms with signal slope (C,) less than or equal
to 2.5V ms™ !, This interval is used for the definition of the
isoelectric line. The original algorithm (DASKALOV et al., 1998)
uses a slope criterion of C, < 5 'V ms ™~ !, but better results were
obtained by using a stricter threshold of 2.5 uV ms ~!. The same
algorithm is applied to the window [RP - 20 ms, RP + 120 ms]
to locate the J point.

if all the above stages have been completed successfully, the
algorithm continues to locate the peak of the T wave. Where no
isoelectric line or J point has been detected, the current beat is
classified as an artefact and the procedure starts again with the
next beat. We locate the point Touee at JB0+0.0375* R-R,
where J80 = I - 80 ms and R-R is the time interval between the
current RP and the previous one. We search for the peak ofthe T
wave in the window [Topser, Tonser + 200 ms], which is defined
as the point with maximum difference in amplitude with respect
to the J80 point.

2.1.2 Noise handling: The procedure described above pro-
duces very good results only when the ECG recording has a
high signal-to-noise ratio (SNR). If we attempt to define the
isoelectric line and detect the J point in a noisy signal using the
method described several problems will occur (middle row in
Fig. 2). The presence of noise (top row in Fig. 2}, such as power
Hine interference (A/C), the electromyographic contamination
(EMG) and the baseline wandering (BW), may lead the algo-
rithm to ambiguous results. To overcome this problem we
developed a technique that manages to remove BW and to
accurately detect the isoelectric line and the J point in cases
where the ECG is contaminated with A/C and/or EMG noise
{bottom row in Fig. 2).
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Fig.2 Detection of ECG characteristics in three types of noisy signals (top row), when the noise handling method is applied (bottom row) ar not

(middle row)

The noise handling procedure starts by treating first the
problem of baseline wandering. It is well kaown {BROCKWELL
et al., 1991) that slow noise can be modelled successfully by
low-order polynomials. This is the approach followed.
Considering a small time interval in the ECG signal, for
example one cardiac cycle, then the baseline shift can be
modelled by a first-order polynomial (straight lme). As a
consequence, subtraction of the polynomial from the recorded
signal reproduces the original ECG.

For each cardiac cycle, we consider the window [RP -
[R-R/2.5] —60ms, RP-+[R-R*0.6]—60ms], where []
denotes the round-off operator. This window defines a time
interval that starts approximately 60 ms before the P wave and
ends approximately 60ms after the T wave. Let
x(t), t=1,2,..., N be the recorded ECG signal. Using a
Jeast squares procedure we can estimate the polynomial %(r)
that best fits x(r): '

.S\C(t)mj‘clf'“}“io, fort:i,Z,...,N (1)
The corrected ECG signal, y(t) (without the baseline drift) is
given by

y(t) = X(I) - 5{[1

We have observed that the existence of the QRS complex
slightly shifts the polynomial towards its main QRS polarity:
if the QRS has a large R wave then the polynomial shifts
upwards and the opposite happens when Q or S waves are
large. Thus, a modified two-stage procedure has been adopted.
Tn the first stage, we estimate the polynomial corresponding to

x(t):

%(t) = Xt + X | (3)

forr=1,2,...,N (2)
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As mentioned above, x(r) may have a slightly diverted slope due
to, for example, a large R wave. Let us assume that the QRS
complex consists of the samples x(r) for ¢ =1,,... 1. Inorder
to decrease the influence of the QRS complex on the estimated
polynomiial, in the second stage, we replace the QRS complex
with the corresponding values of the polynomial ¥{t}.

Thus we get a new signal, denoted u(t), as follows:

(O}, = (XD x{ = 1.%(0), - ()
x(t+ 1), x(N} (@)

Then, we compute the fitting polynomial

&([) = ftlt 4 ffo (5)
and we obtain the final ECG signal, f{t), as
FAey = x(1) — a(r) - (6)

which is without BW noise and also transiated around the zero
voltage level.

It must be noted that in cases where no baseline wandering
exists the influence of the above procedure on the original signal
is very small; this becomes apparent from the high scores
achieved by the proposed procedure.

Afier the baseline correction, we proceed with the isoelectric
line and the J point identification. The isoelectric line is defined
as the mean value-of the signal f(¢) in the window [RP ~ 80 ms,
RP — 60 ms]. We use a moving averaging window of 20ms in
the interval [RP + 20 ms, RP -+ 120 ms] to obtain the signal g{1).
The J point is detected using the DASKALOV et al. (1998)
algorithm on the signal g(¢). This averaging technique does
not remove the AC or the EMG noise from the ECG signal but is
used as a rule of thumb for the definition of the isoelectric line
and the J point.

~
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Fig. 2 clearly illustrates the improvernent of the proposed
method in the detection of the isoelectric line and the J point. The
top row shows the three types of noise distortion, the middle row
displays the detected characteristics without use of our method
and the bottom row the detected characteristics when our method
is applied.

2.2 Beat classification

In the everyday medical practice when a cardiclogist uses a
long-term ECG to diagnose ischaemia, two features are exam-
ined in every available lead, the ST segment and the T wave. Our
beat classification method is based on rules that take into account
the above features, More specifically we consider three rules
(ROWLANDS, 1982; GOLDMAN, 1982): the first one (top row in
Fig. 3) classifies the beat as ischaemic when the ST deviation is
more than 0.8 mm (0.08 mV) below the isoelectric line and has a
slope (angle} larger than 65° measured from the vertical line. The
ST deviation is measured at the point J80 (J + 80 ms) when the

cardiac rhythm is less than 120 beats min ™’ or at the point J60

(J+60ms) when the heart rate is higher than the previous
threshold. The ST slope is measured considering the line
segment from J to J80 (or J60). The second rule (middie row
in Fig. 3) refers to positive ST segment deviations: when the
point J80 {or J60) is more than 0.8 mm above the isoelectric line
then this beat is characterised as ischaemic. The third rule
(bottom row in Fig. 3) refers to the T wave inversion or
flattening: if, at the initial beats of the ECG recording, the T
wave has positive (negative) voltage (we use the first 305 to
extract the polarity) then all beats with negative (positive) T
wave voltage are classified as ischaemic—also, beats with T
waves of very low voltage, compared to the T waves voltage of
initial beats, are classified as ischaemic.

It must be noted that this method of beat classification is
unreliable when the SNR is very low. Int such cases it is risky to
perform beat classification due to the lack of reliable definition of

S
abnormal

)
-
.
&—
—

s - abnormal -]

Fig. 3 Negative (top row) and positive (middle row) ST deviations
and T wave inversion and flattening (bottom row)}
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the isoelectric line and the  point. In noisy cases, even an expert
doctor cannot decide safely if a beat is ischaemic or not, When
our algorithm encounters artefacts (as an output of the first stage)
it ignores them and behaves as if these artefacts had never
been met.

The beat classification method is summarised below:

Detection of ischaemic beats
IF {380 (or J60) < 0.08 AND slope > 65°) OR {rule 1}

(J&0 (or J60) > 0.08) OR {rule 2}
(T is inverted OR T — 0) {rule 3}
THEN The beat is ischaemic

ELSE The beat is normal

2.3 Window classification

Once every beat in each lead has been classified as ischaemic
or normal, the next stage is to decide whether a sequence of beats
belongs to an ischaemic window. According to ESC recommen-
dations (TADDE! ef af., 1988), an ischaemic episode is defined as
a time period of no less than 30 s containing ischaemic beats. For
this reason we have implerented a sliding adaptive window that
examines whether there exists a sequence of ischaemic beats

. lasting more than 30s. The window is classified as ischaemic if

the same rule is valid for all ischaemic beats in the window. If for
example, there exist 15s with positive ST deviation which are
followed by 15 s with T inversion, the window is not ischaemic.
The first window of the recording includes the initial 30 s of the
ECG signal and the shiding technique proceeds, moving the
window one beat at the time, while always keeping its duration
equal to 30s. This means that we will not have the same number
of beats in all the windows but this number is adapted to the heart

‘rate. To make window classification less strict we use a threshold

in the percentage of the ischaemic beats appearing in a window.
If a window has more than 75% of ischaemic beats, we consider
that it belongs to an ischaemic episode. This percentage
threshold is applied to avoid situations in probable ischaemic
intervals where noise worsens the reliability of feature extraction
or to handle cases where some beats in the window are close to
being characterised as ischaemic but are not triggering any of the
rales we use.

The sliding window classification algorithm is summarised
below:

Detection of ischaemic windows

IF [(number of ischaemic beats from rule &)/
(all beats)] > 0.75 '

THEN Windowyy, is ischaemic

ELSE Windowy, is normal

(where k== 1,2, 3)

2.4 Identification of ischaemic episodes

If a series of consecutive ischaemic windows is identified then
the left boundary of the ischaemic episode corresponds to the
beginning of the first window in the series and the right boundary
to the end ofthe last window. However, to increase the flexibility
of the algorithm, the existence of time intervals of less than 30s
with beats that do not constitute an ischaemic window is
permitted in the above counting. Once all the episodes for
each lead are detected, then a merging technigue is realised to
define the overall e;:{isodes in the ECG recording.
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The algorithm for identification of ischaemic episodes is
summarised below:

Definition of ischaemic episodes in each lead

itg Window/(y is ischaemic _
THEN  Start of Ischaemic Episode’ = Start of Window/
WHILE Window/[ is ischaemic OR

(End of Window”[5; — End of Ischaemic
episode’ ) <305

DO
IF Window/y; belongs to an ischaemic area
THEN End of Ischaemic Episode’ = End of
Wil’iéOWJ[k]

ENDDO :
(where k=1,2, 3;i= 1, 2,..., number of ischaemic
episodes in each lead and j=1, 2,.. ., number of
windows)

The complete flowchart of our method is shown in Fig. 4.

raw ECG recording

|

ECG fealure extraction and noise handting
o QRS datection
¢ removal of haseline wandering
s Isoelectric line identification
L
L]

ST detection
T peak detection
J, Jgo I artefact
isoelestric line
T peak

beat classification
» check i beat is ischaemic using ruie 1
s check if beat is ischaemic using rute 2
- = cneck i beat is ischaemic using rule 3

ischaemic beats
normal beats

window classification
o find all 30 5 windows with more than 75%
ischagmic beats

ischagemic windows
normal windows

ischaemic episode identification
e find all sequences of ischaemic windows
e merge those sequences

1

ischaemic episodes

Fig. 4 Flowchart of the overall technique

3 Results

The proposed method was tested using the European ST-T
database. This database contains ECG recordings with anno-
tated ischaemic episodes. To evaluate the performance of the
method two common measures were used for ischaemia
detectors (JAGER, 1998). The first is the sensitivity (Se),
which measures the ability to detect ischaemic episodes, and
the second is the positive predictive accuracy (PPA), which
gives an estimation of the likelihood that a detected episode is a

. trug ischaemic episode.

Following the description of the method the main
parameters are:

o ischaemic ST deviation (> 0.08 mm);

s ischaemic ST slope (= 65°);

o percentage of ischaemic beats in a window in order to
characterise it as ischaemic (= 75%);

o window duration (= 30s); :

@ minimum time interval to differentiate two consecutive
ischaemic episodes (==30s). '

There are also secondary parameters involved in our method
such as:

o the time at the beginning of each ECG used to extract T
wave polarity (=30s);

o the maximum allowed time interval between two consecu-
tive ischaemic episodes in order to merge them fo one
(=30s); _

e the minimum mumber of non-artefact beats in a window to
proceed with the window characterisation (= [window
duration/33 =10 beats);

o the slope criterion in detecting the J-point (X 2.5 uV ms —h.

The performance of the technique was tested using different
parameter values. The performance of the method is primarnily
affected by the main parameters: best results were obtained
for the values indicated in parentheses above. Table I shows
how the sensitivity and the positive predictive accuracy vary
when the main parameter values are modified. The first 10
records of the ESC ST-T database were used for the evaluation
{records: e0103-e0113).

From the episodes in the ESC ST-T database, those episodes
annotated as ischaemic showing more than 0.2 mV increase in
the amplitude of already positive T waves were excluded as
medical experts thought that such episodes refer to myocardial
infarction rather than to ischaemia (ROWLANDS, 1982;
GOLDMAN, 1982). Moreover, the ischaemic episodes in the
database were annotated separately for each lead and were pre-
processed in order to obtain an overall annotation (lead inde-
pendent) of ischaemic episodes. It was also found that in some
cases the method produced ischaemic episodes, mainly short in
duration, that were not annotated as ischaemic in the database.
Three cardiologists were consulted to evaluate those episodes
and their evaluation was taken into account in the assessment of

Tuble 1 Sensitivity and positive predictive accuracy variation when modifying the main parameters’ values of the proposed method {records

201030113 are used)

Se PPA
Gross Average Gross Average
Main parameter values % episodes %% Y% episodes . Yo
0.08 mm, 65°, 75 %, 30s, 30s 91.76 /78/85 86.67 91.76 78/85 91.29
0.10mm, 65°, 75 %, 30s; 30s 92.55 87/94 91.32 89.69 87/97 89.25
0.08 mm, 45°, 75 %, 30s, 30s 92.94 . 79/85 87.67 87.78 79/90 88.43
0.08 mm, 65°, 60 %, 30s, 30s 90.16 55/61 83.09 74.32 55/74 71.99
0.08 mim, 65°, 75%, 60s, 603 87.69 57/65 84.67 95.00 57/60 94.64
Y
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the method. This is not unusual, as similar practice has been
reported previously for the proposed method (TADDEI ef al,
1995; VILA ef al., 1997). ‘

Using the 90 ECG recordings (592 ischaemic episodes) and
aggregate gross statistics the sensitivity obtained is 93.75% and
the positive predictive accuracy 78.50%. Using aggregate
average statistics the sensitivity and positive predictive accuracy
become 90.68% and 80.66% respectively. The 30 ECG record-
ings can be separated into two groups (A and B) based on the
amount of noise. Group A (64 recordings) contains those ECGs
with at most 10% of noisy beats (noisy beats ranging from 0.67%
to 9.56%), while group B contains the remaining recordings,
where the amount of noisy beats ranges from 10.69% to 99.82%
(see Table 2). The noise information is provided by the ESC ST-
T database.

The performance of the method on clean (Group A) and noisy
{Group B) recordings is shown in Table.3, while the results per
recording are given in the Appendix.

4 Discussion

As Table 3 indicates, the method provides good detection
results in terms of both sensitivity and positive predictive
accuracy. It is worth mentioning that the sensitivity is not
influenced essentially by the presence of noise. This indicates
the efficiency of the noise handling method employed. Qur
findings, when compared with those of other researchers,
show the superiority of the proposed approach. More speci-
fically, the reported sensitivity for the ESC ST-T database set
ranges from 71% to 85.2% and the reported PPA ranges from
66% to 90%. Tt must be noted that most previous work refers
to a subset of ECG recordings of the database
(STAMKOPOULOS et al., 1992; SILIPO et al, 1994; TADDE!
et al., 1995; VILA et al., 1997; STAMKOPOULOS ef al., 1998),

Table 2 ECG recordings groups

€0103, <0104, <0105, 0106, <0108, 0110,
e0I11, e0112, e0113, e0l14, e0116, <0122,
20123, <0124, 0125, <0126, e0127, 0129,
e0136, e0147, 0151, 0154, <0161, 0162,
e0163, e0166, 0202, 0203, <0204, 0206,
20207, <0208, 0210, 0211, e0212, 0302,
¢0303, <0304, <0305, <0306, ¢0403, e0404,
€0405, e0408, 0409, 0410, e0411, 0413,
e0417, <0418, e0301, <0509, €0602, e0603,
e0604, 0605, 0606, <0609, <0610, 0615,
e0704, el301, 1302, e1304

e0107, e0115, <0118, e011i9, e0121, 0133,
e0139, ¢0148, <0155, 0159, 0170, 0205,
¢0213, 0406, 0415, 0515, 0601, e607,
e0611, e0612, e0613, <0614, <0801, e0R08,
c0817, (818

Group A

Group B

Table 3 Overall performance of the proposed technigue for ‘clean’
and noisy ECGs

Se PPA
Gross Average Gross Average
ECGtype %  Episodes % %  Episodes %
Clean 94.26 394/418 9255 80.74 394/488 82.70
Noisy 92,53 161/174 86.08 73.52 161219 7543
Total 03.75 555/592 90.68 78.50 555/707 B80.66
110
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and these do not use the whole database for evaluation, as do -
JAGER et al. (1992) and SILIPO and MARCHEST (1998). It is
also worth mentioning that the techniques used in the above
references are based mainly on neural and statistical
approaches. Such methods exhibit a serious drawback
compated with our knowledge-based approach, due to their
inability to provide explanations for their classification deci-
sions. This is a serious disadvantage from the point of view
of the user (doctor), who expects the decision system to
supply explanations for each classification decision it makes.
It is well known that neural and statistical approaches do not
provide this highly desirable feature {unless tedious further
post-processing is performed in the form of rule extraction).

in contrast, due to the knowledge-based nature of every
decision module in our system, the proposed method satisfies
this important requirement, and it is able to provide for each
ischaemic episode, the reason (rule) that led to that decision.
The method also exhibits the additional desirable features of
simphcity and easy and rapid implementation. This final
feature is of particular importance, because the proposed
method can operate in real-time mode providing on-line
decision support to medical personnel {using a 450 MHz
processor, approximately émin are needed (depending on the
number of cardiac beats} to detect ischaemic episodes in
each database record—roughly speaking, 25ms are needed
for each recorded second in each lead).

The set of rules used for beat characterisation is based on the
modem understanding of ECGs (ROWLANDS, 1982; GOLDMAN,
1982). The set includes rules based on T inversion or flattening
and ST slope from the vertical. The T wave is used in a novel
way, compared to previous usages (AKSELROD et al.,, 1987;
LAKS ef al., 1989; CAIRNS ef gf., 1991; BAXT, 199]; BADILINI
et al., 1992; OUYANG et al., 1997}, to distinguish between the
gradual change in the wave’s polarity (T inversion) and the
gradual weakening of the wave’s amplitude (T flattening);
however, we cannot assess the previous algorithms since they
use their own datasets. The proposed set of rules works better
than previous approaches, even in the case of two-phase T
waves, which are difficult to classify. When the dominant
phase of a two-phase T wave has the opposite polarity to the
one defined using the first 30s of the recording, then the T
inversion rule is triggered and this beat is classified as ischaemic.
The proposed rules are less effective in cases where the dominant
phase of a two-phase T wave has the same polarity as the
predefined one.

The performance of the method can be further improved in
terms of positive predictive accuracy by refinernent of the noise
handling procedure. Difficuities were encountered in recordings
with very low SNR in the J point, the isoelectric line and T peak
detection. In the last case severe problems arise when incorrect T
peak detection occurs at the beginning of the ECG recordings
(e0122, ¢0139, e0163, 0170, e0204, 0203, 0411, 0601,
20604 and e0605) since the sign of the T wave is determined
incorrectly. Exclusion of these ten recordings leads to a signifi-
cant improvement in the PPA (gross Se 95.32% and PPA
87.31%; average Se 93.55% and PPA 87.94%). It must be
noted that modern ECG recorders and Holter devices include
filtering modules so the output ECG signal has better SNR than
signals contained in the database. It is obvious that our method
will perform better with such equipment.

5 Conclusions and future work

We have proposed a novel technique for the detection of
ischaemic episodes in long ‘duration ECGs, which has shown
good diagnostic performance in the ESC ST-T database.
The good performgnce is a result of effective noise handling,
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" Appendix

Performance of the proposed technique for all ECG recordings of the ESC ST-T databuse

SNR ECG Se (%) PPA (%) SNR ECG Se (%) PPA (%)
9933 0103 100 77 100 /7 95.4 0211 100 1/1 50 1/2
97.14  e0104 100 14/14 100 14/14 94.64  e0212 100 1/1 100 1/1
99.06  e0105 100 6/6 100 6/6 8235  e0213 50 2/4 100 2/2
99.42 0106 90 9/10 100 9/9 9632 e0302 100 10/10 100 10/10
80.44 0107 60 3/5 42.86 3/7 97.6 20303 100 2/2 100 2/2
93.54  ¢0108 100 15/15 100 15/15 98.72 <0304 100 747 100 7/7
9372 0110 33.33 1/3 100 1/1 94.18 0305 160 1/1 100 1/1
96.4 eO111 100 6/6 100 6/6 9283 0306 25 1/4 16.67 1/6
9542 0112 100 7/7 70 7/10 99.44 0403 100 17/17 9444  17/18
90.44 0113 83.33 10/12 100 10/10 98.75  c0404 100 3/3 100 33
98.04 <0114 100 15/15 160 15/15 96.76 0405 100 6/6 100 6/6
83,5 £0il5 92.31 12/13 100 12/12 85.64 0406 100 2/2 50 2/4
9235 0116 66.67 2/3 50 2/4 97.43  €0408 100 1/1 50 1/2
80.82  e0118 100 747 63.64 7/11 99.53 0409 100 2/2 100 2/2
7873 0119 100 9/9 75 9/12 9653 0410 50 1/2 100 1/1
89.19 0121 100 3/3 60 3/5. 95.68  eb4ll 71.43 5/7 41.67 5/12
98.97  e0122 100 1/1 7.69 1/13 9978 0413 - 100 .~ 4/4 40 4/10
98.92 0123 100 3/3 100 3/3 7408 e0415 100 9/9 160 9/9
92.64 <0124 88.89 8/9 100 8/8 100 0417 100 - 4/4 100 474
97.14  e0I25 100 4/4 66.67 4/6 9935  eD418 85 17/20 9444  17/18
97.04  ¢0i26 - 80 4/s 44.44 4/9 9222 e0501 100 3/3 100 3/3
94.65  e0127 100 8/3 $8.89 8/9 9822 0509 100 2/2 100 2/2
9507 0129 100 12/12 100 12/12 8335 0515 85.71 6/7 85.71 6/7
7806  €0133 100 1/1 100 1/1 89.31  e0601 . S50 - 2/4 16.67 2/12
9418  €0136 100 8/8 100 8/8 974 0602 100 /11 68.75 11/16
8689  ¢0139 100 2/2 11.76 2/17 9996 <0603 160 3/3 100 3/3
9622 eb147 100 5/5 100 5/5 94.9 0604 55.56 5/9 41,67 5/12
0.18  e0148 100 18/18 90 18/20 99.36  e0605 100 i/1 33.33 1/3
9346  e0151 9412 16/17 100 16/16 9744 D606 100 5/5 83.33 5/6
9426 0154 100 11/11 100 /11 88.5 0607 100 9/9 106 9/9
5249 0155 100 5/5 100 5/5 97.1 0609 100 3/3 100 3/3
5153 ¢0159 100 2/2 100 2/2 9785  e0610 100 5/5 100 5/5
9092 06l 100 4/4 26.67 4/15 88.74  e0611 100 5/5 100 5/5
91.68 0162 100 2/2 66.67 2/3 75.68 0612 £00 4/4 50 4/8
94.68 0163 100 5/5 38.46 5/13 §0.26  e0613 100 5/5 100 5/5
98 0166 100 12/12 80 12/15 8581 0614 100 /7 100 7/7
TL71 <0170 0 0/1 0 0/5 93.38  e0615 100 8/8 100 8/3
9358  e0202 100 9/9 64.29 9/14 94.86  €0704 100 747 100 777
98.94 0203 100 9/9 100 9/9 75.96 <0801 0 0/4

9539  e0204 0 0/2 0 0/3 369 c0808 100 14/14 100 14/14
85.63 20205 100 4/4 40 4/10 4378 e0817 100 16/16 100 16/16
97.89 <0206 100 9/9 100 9/9 77.94 0818 100 14/14 100 14/14
98.06 <0207 100 4/4 100 4/4 98.89  el301 100 4/4 100 4/4
92.89  e0208 100 9/9 100 9/9 9428  el302 100 15/15 100 15/15
9525  e0210 100 3/3 75 3/4 97.07 1304 100 1/1 100 1/1

beat classification using up-to-date medical knowledge, and
flexibility in the definition of ischaemic windows and ischaemic
episodes. The method is simple, easily implemented and can be
executed in real time, and is capable of providing explanations
for the diagnostic decisions made. The performance of the
method compares well with previously reported results using
the ESC ST-T database.

Future work will focus on further improvement of the
noise handling procedure and in the development of a
database with annotated ECG recordings based on updated
medical knowledge. The possibility of transferring the
method to clinical practice and evaluating its performance
in real conditions is of great interest. A hybrid intelligent
system that appropriately combines the proposed method
with artificial neural networks to enhance diagnostic relia-
bility is under development.
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