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A general technique is proposed for embedding online clustering algo-
rithms based on competitive learning in a reinforcement learning frame-
work. The basicidea is that the clustering system can be viewed as a rein-
forcement learning system that learns through reinforcements to follow
the clustering strategy we wish to implement. In this sense, the reinforce-
ment guided competitive learning (RGCL) algorithm is proposed that
constitutes a reinforcement-based adaptation of learning vector quanti-
zation (LVQ) with enhanced clustering capabilities. In addition, we sug-
gest extensions of RGCL and LVQ that are characterized by the property
of sustained exploration and significantly improve the performance of
those algorithms, as indicated by experimental tests on well-known data
sets.

1 Introduction

Many pattern recognition and data analysis tasks assume no prior class
information about the data to be used. Pattern clustering belongs to this
category and aims at organizing the data into categories (clusters) so that
patterns within a cluster are more similar to each other (in terms of an ap-
propriate distance metric) than patterns belonging to different clusters. To
achieve this objective, many clustering strategies are parametric and op-
erate by defining a clustering criterion and then trying to determine the
optimal allocation of patterns to clusters with respect to the criterion. In
most cases such strategies are iterative and operate online; patterns are con-
sidered one at a time, and, based on the distance of the pattern from the
cluster centers, the parameters of the clusters are adjusted according to the
clustering strategy. In this article, we present an approach to online clus-
tering that treats competitive learning as a reinforcement learning problem.
More specifically, we consider partitional clustering (or hard clustering or
vector quantization), where the objective is to organize patterns into a small
number of clusters such that each pattern belongs exclusively to one cluster.

Reinforcement learning constitutes an intermediate learning paradigm
thatliesbetween supervised (with completeclass informationavailable) and
unsupervised learning (with no available class information). The training
information provided to the learning system by the environment (external
teacher) is in the form of a scalar reinforcement signal r that constitutes a
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measure of how well the system operates. The mainidea of this article is that
the clustering system does not directly implement a prespecified clustering
strategy (for example, competitive learning) but instead tries to learn to
follow the clustering strategy using the suitably computed reinforcements
provided by the environment. In other words, the external environment
rewards or penalizes the learning system depending on how well it learns
to apply the clustering strategy we have selected to follow. This approach
will be formally defined in the following sections and leads to the devel-
opment of clustering algorithms that exploit the stochasticity inherent in a
reinforcement learning system and therefore are more flexible (do not get
easily trapped in local minima) compared to the original clustering proce-
dures. The proposed technique can be applied with any online hard clus-
tering strategy and suggests a novel way to implement the strategy (update
equations for cluster centers).

In addition we present an extension of the approach that is based on the
sustained exploration property that can be easily obtained by a minor mod-
ification to the reinforcement update equations and gives the algorithms the
ability to escape from local minima.

In the next section we provide a formal definition of online hard cluster-
ing as a reinforcement learning problem and present reinforcement learn-
ing equations for the update of the cluster centers. The equations are based
on the family of REINFORCE algorithms that have been shown to exhibit
stochastic hillclimbing properties (Williams, 1992). Section 3 describes the
reinforcement guided competitive learning (RGCL) algorithm that consti-
tutes a stochastic version of the learning vector quantization (LVQ) algo-
rithm. Section 4 discusses issues concerning sustained exploration and the
adaptation of the reinforcement learning equations to achieve continuous
search of the parameter space, section 5 presents experimental results and
several comparisons using well-known data sets, and section 6 summarizes
the article and provides future research directions.

2 Clustering as a Reinforcement Learning Problem

2.1 Online Competitive Learning. Suppose we are given a sequence
X = (x1,...,xn) of unlabeled data x; = (x;1, ..., xip)-r € R? and want to
assign each of them to one of L clusters. Each cluster i is described by a pro-
totype vector w; = (wi, ..., wi,[,)-r G=1,...,L),and let W = (w1, ..., wr).
Also let d(x, w) denote the distance metric based on which the clustering
is performed. In the case of hard clustering, most methods attempt to find
good clusters by minimizing a suitably defined objective function J(W). We
restrict ourselves here to techniques based on competitive learning where
the objective function is (Kohonen, 1989; Hathaway & Bezdek, 1995)

N
J= Z mrin d(x;, w,). (21)
i=1
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The clustering strategy of the competitive learning techniques can be
summarized as follows:

1. Randomly take a sample x; from X.

2. Compute the distances d(x;, w]-) forj =1, ..., Land locate the winning
prototype j* that is, the one with minimum distance from x;.

3. Update the weights w;; so that the winning prototype w;- moves to-
ward pattern x;.

4. Go tostep 1.

Depending on what happens in step 3 with the nonwinning prototypes,
several competitive learning schemes have been proposed such as LVQ (or
adaptive k-means) (Kohonen, 1989), the RPCL (rival penalized competitive
learning) (Xu, Krzyzak, & Oja, 1993), the SOM network (Kohonen, 1989), the
“neural-gas” network (Martinez, Berkovich, & Schulten, 1993), and others.
Moreover in step 2, some approaches, such as frequency sensitive com-
petitive learning (FSCL), assume that the winning prototype minimizes a
function of the distance d(x, w) and not the distance itself.

2.2 Immediate Reinforcement Learning. Inthe frameworkof reinforce-
ment learning, a system accepts inputs from the environment, responds by
selecting appropriate actions (decisions), and the environment evaluates
the decisions by sending a rewarding or penalizing scalar reinforcement
signal. According to the value of the received reinforcement, the learning
system updates its parameters so that good decisions become more likely
to be made in the future and bad decisions become less likely to occur
(Kaelbling, Littman, & Moore, 1996). A simple special case is immediate
reinforcement learning, where the reinforcement signal is received at every
step immediately after the decision has been made.

In order for the learning system to be able to search for the best decision
corresponding to each input, a stochastic exploration mechanism is fre-
quently necessary. For this reason many reinforcement learning algorithms
apply to neural networks of stochastic units. These units draw their outputs
from some probability distribution, employing either one or many parame-
ters. These parameters depend on the inputs and the network weights and
are updated at each step to achieve the learning task. A special case, which
is of interest to our approach, is when the output of each unit is discrete
and more specifically is either one or zero, depending on a single parameter
p € [0, 1]. This type of stochastic unit is called the Bernoulli unit (Barto &
Anandan, 1985; Williams, 1988, 1992).

Several training algorithms have been developed for immediate rein-
forcement problems. We have used the family of REINFORCE algorithms
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in which the parameters w;; of the stochastic unit i with input x are updated
as

alngi

Awii = a(r — by) (2.2)

awz-]- ’

where a2 > 0 is the learning rate, r the received reinforcement, and bj a
quantity called the reinforcement baseline. The quantity o In g;/dwj; is called
the characteristic eligibility of w;;, where g;(y;; w;, x) is the probability mass
function (in the case of a discrete distribution) or the probability density
function (in the case of a continuous distribution), which determines the
output y; of the unit as a function of the parameter vector w; and the input
pattern x to the unit.

An important result is that REINFORCE algorithms are characterized
by the stochastic hillclimbing property. At each step, the average update
direction E{AW | W, x} in the weight space lies in the direction for which
the performance measure E{r | W, x} is increasing, where W is the matrix of
all network parameters,

OE{r | W, x}

E{Awij | W,x}=a awjj

(2.3)

where a > 0.

This means that for any REINFORCE algorithm, the expectation of the
weight change follows the gradient of the performance measure E{r | W, x}.
Therefore, REINFORCE algorithms can be used to perform stochastic max-
imization of the performance measure.

In the case of the Bernoulli unit with p inputs, the probability p; is com-
puted as p; = f(z]’.il wi]-x]-), where f(x) = 1/(1 + exp(—x)), and it holds
that

opi il —p)’

0 In gi(yi; pi) Vi — pi (2.4)

where y; is the binary output (0 or 1) (Williams, 1992).

2.3 The Reinforcement Clustering Approach. In our approach to clus-
tering based on reinforcement learning (called the RC approach), we con-
sider that each clusteri (i = 1, ..., L) corresponds to a Bernoulli unit, whose
weight vector w; = (wj, ..., wi,[,)-r corresponds to the prototype vector for
cluster i. At each step, each Bernoulli unit i is fed with a randomly selected
pattern x and performs the following operations.

First, the distance s; = d(x, w;) is computed, and then the probability p;
is obtained as follows:

pi = h(s;) = 2(1 — f(s5)), (2.5)
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where f(x) = 1/(1 + exp(—x)). Function ) provides values in (0, 1) (since
s; > 0) and is monotonically decreasing. Therefore, the smaller the distance
s; between x and w;, the higher the probability p; that the output y; of the
unit will be 1. Thus, when a pattern is presented to the clustering units, they
provide output 1 with probability inversely proportional to the distance of
the pattern from the cluster prototype. Consequently, the closer (according
to some proximity measure) a unit is to input pattern, the higher the proba-
bility that the unit will be active (i.e., y; = 1). The probabilities p; provide a
measure of the proximity between patterns and cluster centers. Therefore, if
aunitiisactive, it is very probable that this unit is close to the input pattern.

According to the immediate reinforcement learning framework, after
each cluster unit i has computed the output y;, the environment (external
teacher) must evaluate the decisions by sending a separate reinforcement
signal r; to each unit i. This evaluation is made in such a way that the
units update their weights so that the desirable clustering strategy is im-
plemented. In the next section we consider as examples the cases of some
well-known clustering strategies.

Following equation 2.2, the use of the REINFORCE algorithm for updat-
ing the weights of clustering units suggests that

)a lngz(yz, Pz) opi asz

Aw: = aly; — b)) — It P 7P 2.6
wij a(rz 1] apz 3s; awz] ( )
Using equations 2.4 and 2.5, equation 2.6 takes the form
0s;
Awjj = a(ri — by)(yi — )a— 27)
Wij

which is the weight update equation corresponding to the reinforcement
clustering (RC) scheme.

An important characteristic of the above weight update scheme is that it
operates toward maximizing the following objective function:

N N L
R(W) = Y RW,x) =) > Efr | W, xi}, (2.8)

i=1 j=1

where E{r; | W, x;} denotes the expected value of the reinforcement received
by cluster unit j when the input pattern is x;.

Consequently the reinforcement clustering scheme can be employed in
the case of problems whose objective is the online maximization of a function
that can be specified in the form of R(W). The maximization is achieved by
performing updates that at each step (assuming input x;) maximize the term
R( W, x;). The latter is valid since from equation 2.3 we have that

oE {rk | W, xi}

E{Awy | W, xj} = ag————— . (2.9)
awkl
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Since the weight wy; affects only the term E{ry | W, x;} in the definition of
R(W, x;), we conclude that

dR(W, x;
Elhwy | W, x5} = a2 R0V %) (2.10)
owy

Therefore, the RC update algorithm performs online stochastic maxi-
mization of the objective function R in the same sense that the LVQ mini-
mizes the objective function | (see equation 2.1) or the online backpropaga-
tion algorithm minimizes the well-known mean square error function.

3 The RGCL Algorithm

In the classical LVQ algorithm, only the winning unit i* updates its weights,
which are moved toward input pattern x, while the weights of the remaining
units remain unchanged:

{ai(x]- —wj) ifiis the winning unit 3.1)

Awj = otherwise.
For simplicity, in equation 3.1, the dependence of the parameters 4; on time
is not stated explicitly. Usually the g; start from a reasonable initial value and
gradually reduce to zero in some way. But in many LVQ implementations
(as, for example, in Xu et al., 1993) the parameter g4; remains fixed assuming
a small value.

The strategy we would like the system to learn is that when one pattern
is presented to the system, only the winning unit (the closest one) becomes
active (with high probability) and updates its weights, while the other units
remain inactive (again with high probability). To implement this strategy
the environment identifies the unit i* with maximum p; and returns a reward
signal r;» = 1 to that unit if it has decided correctly (y; = 1) and a penalty
signal r;- = —1if its guess is wrong (y;+ = 0). The reinforcements sent to the
other (nonwinning) units are r; = 0 (i # i*), so that their weights are not
affected. Therefore

1 ifi=andy; =1
ri=1-1 ifi=i*andy; =0 (32)
0 ifi=i*

Following this specification of r; and setting b;; = 0 for every i and j, equa-
tion 2.7 takes the form

asi

Awjj = ari(y; — Pi)@- (3:3)
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In the case where the Euclidean distance is used (s; = d2(x, w;) = Z]’-[]:l (x]- —

wi]-)z)), equation 3.3 becomes
Aw;j = ari(y; — pi) (% — wy), (54)

which is the update equation of RGCL.
Moreover, following the specification of r; (see equation 3.2), it is easy to
verify that

Aw

{(ﬂ)h/i —pilly —wy) ifi=i* (35)

i= otherwise.
Therefore, each iteration of the RGCL clustering algorithm consists of the
following steps:

1. Randomly select a sample x from the data set.

2. Fori =1,..., L compute the probability p; and decide the output y;
of cluster unit i.

3. Specify the winning unit i* with p;» = max; p;.
4. Compute the reinforcementsr; (i = 1,...,L) using equation 3.2.

5. Update the weight vectors w; (i = 1, ..., L) using equation 3.4.

As in the case with the LVQ algorithm, we consider that the parameter a
does not depend on time and remains fixed at a specific small value.

The main point in our approach is that we have a learning system that
operates in order to maximize the expected reward at the upcoming trial.
According to the specification of the rewarding strategy, high values of r are
received when the system follows the clustering strategy, while low values
are obtained when the system fails in this task. Therefore, the maximization
of the expected value of r means that the system is able to follow (on the aver-
age) the clustering strategy. Since the clustering strategy aims at minimizing
the objective function J, in essence we have obtained an indirect stochastic
way to minimize ] through the learning of the clustering strategy—that is,
through the maximization of the immediate reinforcement r. This intuition
is made more clear in the following.

In the case of the RGCL algorithm, the reinforcements are provided by
equation 3.2. Using this equation and taking into account that y; = 1 with
probability p; and y; = 0 with probability 1 — p;, it is easily to derive from
equation 2.8 that the objective function Ry maximized by RGCL is

z

Ri(X. W) =Y [pin(x) — (1 — pin ()], (36)

j=1
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where p;-(x;) is the maximum probability for input x;. Equation 3.6 gives

N
Ri(X, W) =2 pi(x;) = N. (3.7)
j=1

Since N is a constant and the probability p; is inversely proportional to the
distance d(x, w;), we conclude that the RGCL algorithm performs updates
that minimize the objective function ], since it operates toward the maxi-
mization of the objective function R;.

Also another interesting case results if we set r;» = 0 when y;» = 0, which
yields the following objective function,

N
Ra(X, W) = Y pir(x)), (338)
j=1

having the same properties as Rj.
In fact the LVQ algorithm can be considered a special case of the RGCL
algorithm. This stems from the fact that by setting

— ifi=i*andy; =1
ri= _+ ifi=iandy =0, (3.9)
0 ifi =7

the update equation, 3.4, becomes exactly the LVQ update equation. Con-
sequently, using equation 2.8, it can be verified that except for minimizing
the hard clustering objective function |, the LVQ algorithm operates toward
maximizing the objective function:

N e .
[ prly)  1-p (xf)] (3.10)

R3(X, W) = ; 1 —pi(x)) pir(x))

Moreover, if we compare the RGCL update equation, 3.5, with the LVQ
update equation, we can see that the actual difference lies in the presence of
the term |y; — p;| in the RGCL update equation. Since y; may be either one or
zero (depending on the p; value), the absolute value |y; —p;| is different (high
or low) depending on the outcome y;. Therefore, under the same conditions
(W and x;), the strength of the weight updates w;; may be different depend-
ing on the y; value. This fact introduces a kind of noise in the weight update
equations that assists the learning system to escape from shallow local min-
ima and be more effective than the LVQ algorithm. It must also be stressed
that the RGCL scheme is not by any means a global optimization clustering
approach. It is a local optimization clustering procedure that exploits ran-
domness to escape from shallow local minima, but it can be trapped in steep
local minimum points. In section 4 we present a modification to the RGCL
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weight update equation that gives the algorithm the property of sustained
exploration.

3.1 Other Clustering Strategies. Following the above guidelines, al-
most every online clustering technique may be considered in the RC frame-
work by appropriately specifying the reinforcement values r; provided to
the clustering units. Such an attempt would introduce the characteristics of
“noisy search” in the dynamics of the corresponding technique and would
make it more effective in the same sense that the RGCL algorithm seems to
be more effective than LVQ according to the experimental tests. Moreover,
any distance measure d(x, w;) may be used provided that the derivative
0d(x, w;)/owjj can be computed.

We consider now the specification of the reinforcements r; to be used in
the RC weight update equation, 2.7, in the cases of some well-known online
clustering techniques.

3.1.1 Frequency Sensitive Competitive Learning (FSCL) (Ahalt, Krishnamurty,
Chen, & Melton, 1990). Inthe FSCL case itis considered d(x, w;) = yilx—w;|?
withy; = n;/ Zj n;, where n; is the number of times that unit i is the winning
unit. Also,

1 ifi=/andy; =1
ri=4-1 ifi=i*andy; =0
0  ifi=i*

3.1.2 Rival Penalized Competitive Learning (RPCL) (Xu et al., 1993). This
is a modification of FSCL where the second winning unit i* moves to the op-
posite direction with respect to the input vector x. This means that d(x, w;) =
yilx —w;l* and

1 ifi=iandy; =1
-1 ifi=i*andy; =0

ri=1—p ifi=fandy; =1 ,
g ifi=iFfandy; =0
0 ifi#i*

where 8 « 1 according to the specification of RPCL.

3.1.3 Maximum Entropy Clustering (Rose, Gurewitz, & Fox,1990).  The ap-
plication of the RC technique to the maximum entropy clustering approach

suggests that d(x, w;) = |x — w;|? and
exp(—Blx—w;|?) .
—_ ify; =1
ST ewpiup)
i = exp(—plx—w;*) if y; = 0

B Z;Zl exp(—Blx—w;?)

where the parameter § gradually increases with time.
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3.1.4 Self-Organizing Map (SOM) (Kohonen, 1989). 1t is also possible to
apply the RC technique to the SOM network by using d(x, w;) = |x — w;l?
and specifying the reinforcements r; as follows:

el ifyi=1
PE  —holi i) ifyi =0,

where h,(i, j) is a unimodal function that decreases monotonically with
respect to the distance of the two units i and j in the network lattice and &
is a characteristic decay parameter.

4 Sustained Exploration

The RGCL algorithm can be easily adapted in order to obtain the prop-
erty of sustained exploration. This is a mechanism that gives a search al-
gorithm the ability to escape from local minima through the broadening
of the search at certain times (Ackley, 1987; Willams & Peng, 1991). The
property of sustained exploration actually emphasizes divergence—return
to global searching without completely forgetting what has been learned.
The important issue is that such a divergence mechanism is not external to
the learning system (as, for example, in the case of multiple restarts); it is
an internal mechanism that broadens the search when the learning system
tends to settle on a certain state, without any external intervention.

In the case of REINFORCE algorithms with Bernoulli units, sustained
exploration is very easily obtained by adding a term —nw;; to the weight
update equation, 2.2, which takes the form (Williams & Peng, 1991)

olng;
Awij = alr — bij)_awjl — Nwj;. (4.1)

Consequently the update equation, 3.4, of the RGCL algorithm now takes
the form

Awii = ari(y; — pi)(xj — wy) — nwyj, (4.2)

where r; is given from equation 3.2. The modification of RGCL that em-
ploys the above weight update scheme will be called the SRGCL algorithm
(sustained RGCL). The parameter n > 0 must be much smaller than the
parameter a so the term —nw;; does not affect the local search properties of
the algorithms—that is, the movement toward local minimum states.

It is obvious that the sustained exploration term emphasizes divergence
and starts to dominate in the update equations, 4.1 and 4.2, when the algo-
rithm is trapped in local minimum states. In such a case, it holds that the
quantity y; — p; becomes small, and therefore the first term has negligible
contribution. As the search broadens, the difference y; — p; tends to become
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higher, and the first term again starts to dominate over the second term. It
must be noted that according to equation 4.2, not only the weights of the
winning unit are updated at each step of SRGCL, but also the weights of
the units with r; = 0.

The sustained exploration term —nw;; can also be added to the LVQ up-
date equation, which takes the form
Awy = {ai(x]- - w;i) — Nwjj ift;is th.e winning unit 43)
—nwj otherwise.

The modified algorithm will be called SLVQ (sustained LVQ) and improves
the performance of the LVQ in terms of minimizing the clustering objective
function J.

Due to the sustained exploration property of SRGCL and SLVQ, they do
not converge at local minima of the objective function, since their divergence
mechanism allows them to escape from them and continue the exploration
of the weight space. Therefore, a criterion must be specified in order to ter-
minate the search, which is usually the specification of a maximum number
of steps.

5 Experimental Results

The proposed techniques have been tested using two well-known data sets:
the IRISdata set (Anderson, 1935) and the “synthetic” data set used in Ripley
(1996). In all experiments the value of 2 = 0.001 was used for LVQ, while
for SLVQ we set ¢ = 0.001 and n = 0.00001. For RGCL we have assumed
a = 0.5 for the first 500 iterations and afterward a = 0.1, the same holding
for SRGCL where we set n = 0.0001. These parameter values have been
found to lead to best performance for all algorithms. Moreover, the RGCL
and LVQ algorithms were run for 1500 iterations and the SRGCL and SLVQ
for 4000 iterations, where one iteration corresponds to a single pass through
all data samples in arbitrary order. In addition, in order to specify the final
solution (with Jmin) in the case of SRGCL and SLVQ, which do not regularly
converge to a final state, we computed the value of | every 10 iterations,
and, if it were lower than the current minimum value of |, we saved the
weight values of the clustering units.

In previous studies (Williams & Peng, 1991) the effectiveness of stochas-
tic search using reinforcement algorithms has been demonstrated. Never-
theless, in order to compare the effectiveness of RGCL as a randomized
clustering technique, we have also implemented the following adaptation
of LVQ, called randomized LVQ (RLVQ). At every step of the RLVQ pro-
cess, each actual distance d(x, w;) is first modified by adding noise; that is,
we compute the quantities d'(x, w;) = (1 — n)d(x, w;), where n is uniformly
selected in the range [—L, L] (with 0 < L < 1). A new value of n is drawn
for every computation of d'(x, w;). Then the selection of the winning unit is
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Table 1: Average Value of the Objective Function | Corresponding to the Solu-
tions Obtained Using the RGCL, LVQ, RLVQ, SRGCL, and SLVQ Algorithms
(IRIS Data Set).

Average |

Number of Clusters RGCL LVQ RLVQ SRGCL SLVQ

3 98.6 115.5 106.8 86.3 94.5
4 75.5 94.3 87.8 62.5 70.8
5 65.3 71.2 69.4 52.4 60.3

Table 2: Average Value of the Objective Function | Corresponding to the Solu-
tions Obtained Using the RGCL, LVQ, RLVQ, SRGCL, and SLVQ Algorithms
(Synthetic Data Set).

Average |

Number of Clusters RGCL LVQ RLVQ SRGCL SLVQ

4 14.4 15.3 14.8 12.4 13.3
6 12.6 13.7 13.3 10.3 12.3
8 10.3 11.4 10.8 9.2 10.1

done by considering the perturbed values d’(x, w;), and finally the ordinary
LVQ update formula is applied.

Experimental results from the application of all methods are summarized
in Tables 1 and 2. The performance of the RLVQ heuristic was very sensitive
to the level of the injected noise—the value of L. A high value of L leads to
pure random search, while a small value of L makes the behavior of RLVQ
similar to the behavior of LVQ. Best results were obtained for L = 0.35. We
have also tested the case where the algorithm starts with a high initial L
value (L = 0.5) that gradually decreases to a small final value L = 0.05, but
no performance improvement was obtained. Finally, it must be stressed that
RLVQ may also be adapted in the reinforcement learning framework (in the
spirit of subsection 3.1); it can be considered as an extension of RGCL with
additional noise injected in the evaluation of the reinforcement signal r;.

5.1 IRIS Data Set. The IRIS data set is a set of 150 data points in R*. Each
point corresponds to three classes, and there are 50 points of each class in the
data set. Of course, the class information is not available during training.
When three clusters are considered, the minimum value of the objective
function J is Jmin = 78.9 (Hathaway & Bezdek, 1995) in the case where the
Euclidean distance is used.

The IRIS data set contains two distinct clusters, while the third cluster
is not distinctly separate from the other two. For this reason, when three
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Figure 1: Minimization of the objective function J using the LVQ and the RGCL
algorithm for the IRIS problem with three cluster units.

clusters are considered, there is the problem of the flat local minimum (with
J &~ 150), which corresponds to a solution with two clusters (there exists one
dead unit).

Figure 1 displays the minimization of the objective function ] in a typical
run of the RGCL and LVQ algorithm with three cluster units. Both algo-
rithms started from the same initial weight values. It is apparent that the
existence of the local minimum with | &~ 150 that corresponds to the solution
with two clusters mentioned previously. This is where the LVQ algorithm is
trapped. On the other hand, the RGCL algorithm manages to escape from
the local minimum and oscillate near the global minimum value | = 78.9.

We have examined the cases of three, four, and five cluster units. In
each case, a series of 20 experiments was conducted. In each experiment
the LVQ, RGCL, and RLVQ algorithms were tested starting from the same
weight values that were randomly specified. Table 1 presents the average
values (over the 20 runs) of the objective function | corresponding to the
solutions obtained using each algorithm. In all cases, the RGCL algorithm is
more effective compared to the LVQ algorithm. As expected, the RLVQ algo-
rithm was in all experiments at least as effective as the LVQ, but its average
performance is inferior compared to RGCL. This means that the injection
of noise during prototype selection was sometimes helpful and assisted the
LVQ algorithm to achieve better solutions, while in other experiments ithad
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no effect on LVQ performance.

Table 1 also presents results concerning the same series of experiments
(using the same initial weights) for SRGCL and SLVQ. It is clear that signifi-
cant improvement is obtained by using the SLVQ algorithm in place of LVQ,
as well as that the SRGCL is more effective than SLVQ and, as expected, it
also improves the RGCL algorithm. On the other hand, the sustained ver-
sions require a greater number of iterations.

5.2 Synthetic Data Set. The same observations were verified in a second
series of experiments where the synthetic data set is used. In this data set
(Ripley, 1996), the patterns are two-dimensional, and there are two classes,
each having a bimodal distribution; thus, there are four clusters with small
overlaps. We have used the 250 patterns that are considered in Ripley (1996)
as the training set, and we make no use of class information.

Several experiments have been conducted on this data set concerning the
RGCL, LVQ, and RLVQ algorithms first and then SRGCL and SLVQ. The
experiments were performed assuming four, six, and eight cluster units. In
analogy with the IRIS data set, for each number of clusters, a series of 20
experiments were performed (with different initial weights). In each exper-
iment, each of the four algorithms is applied with the same initial weight
values. The obtained results concerning the average value of | correspond-
ing to the solutions provided by each method are summarized in Table 2.
Comparative performance results are similar to those obtained with the IRIS
data set.

A typical run of the RGCL and LVQ algorithms with four cluster units
starting from the same positions (far from the optimal) is depicted in Fig-
ures 2 and 3, respectively. These figures display the data set (represented
with crosses), as well as the traces of the four cluster units until they reach
their final positions (represented with squares). It is clear that the RGCL
provides a four-cluster optimal solution (with | = 12.4), while the LVQ al-
gorithm provides a three-cluster solution with ] = 17.1. The existence of
a dead unit at position (—1.9, —0.55) (square at the low left corner of Fig-
ure 3) in the LVQ solution and the effect of randomness on the RGCL traces
that supplies the algorithm with better exploration capabilities are easily
observed.

Moreover, in order to perform a more reliable comparison between the
RGCL and RLVQ algorithms, we have conducted an additional series of
experiments on the synthetic data set assuming four, six, and eight clus-
ter units. For each number of clusters we have conducted 100 runs with
each algorithm in exactly the same manner with the previous experiments.
Tables 3 and 4 display the statistics of the final value of | obtained with
each algorithm, and Table 5 displays the percentage of runs for which
the performance of RGCL was superior (Jrccr < Jrrvo), similar (Jrger ~
JrLvQ), or inferior to RLVQ (Jrger > Jrrvo)- More specifically, the perfor-
mance of the RGCL algorithm with respect to RLVQ was superior when
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Figure 2: Synthetic data set and traces of the four cluster prototypes correspond-
ing to a run of the RGCL algorithm with four cluster units (four traces).
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Figure 3: Synthetic data set and traces of the cluster prototypes corresponding
to a run of the LVQ algorithm with four cluster units (three traces and one dead

unit).
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Table 3: Statistics of the Objective Function | Corresponding to Solutions Ob-
tained from 100 Runs with the RGCL Algorithm, Synthetic Data Set.

]
Number of Clusters Average Standard Best Worst
4 14.5 22 12.4 28.9
6 12.4 1.8 9.1 17.2
8 10.2 2.5 7.1 17.2

Table 4: Statistics of the Objective Function | Corresponding to Solutions Ob-
tained from 100 Runs with the RLVQ Algorithm, Synthetic Data Set.

]
Number of Clusters Average Standard Best Worst
4 15.1 3.1 12.4 28.9
6 13.3 3.7 9.1 28.9
8 10.7 4.2 7.5 28.9

Jrcer < Jrrvo — 0.3, similar when [Jrger — Jrrvol < 0.3, and inferior when
Jrcer > Jrrvo + 0.3. The displayed results make clear the superiority of the
RGCL approach, which not only provides solutions that are almost always
better or similar to RLVQ but also leads to solutions that are more reliable
and consistent, as indicated by the significantly lower values of the standard
deviation measure.

6 Conclusion

We have proposed reinforcement clustering as a reinforcement-based tech-
nique for online clustering. This approach can be combined with any online
clustering algorithm based on competitive learning and introduces a degree
of randomness to the weight update equations that has a positive effect on
clustering performance.

Further research will be directed to the application of the approach to

Table 5: Percentage of Runs for Which the Performance of the RGCL Algorithm
was Superior, Similar, or Inferior to RLVQ.

Number of Clusters Jreer < JrRLvQ Jreer ~ JrLvQ Jrcer > JrRLvQ
4 47% 51% 2%
6 52 45 3

8 64 34 2
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clustering algorithms other than LVQ, for example, the ones that are re-
ported in section 3. The assessment of the performance of those algorithms
under the RC framework needs to be examined and assessed. Moreover, the
application of the proposed technique to real-world clustering problems (for
example, image segmentation) constitutes another important future objec-
tive.

Another interesting direction concerns the application of reinforcement
algorithms to mixture density problems. In this case, the employment of
doubly stochastic units—those with a normal component followed by a
Bernoulli component—seems appropriate (Kontoravdis, Likas, &
Stafylopatis, 1995). Also of great interest is the possible application of the
RC approach to fuzzy clustering, as well as the development of suitable
criteria for inserting, deleting, splitting, and merging cluster units.
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