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A synchronous Hopfield-type neural network model containing units with analog input and 
binary output, which is suitable for parallel implementation, is examined in the context of 
solving discrete optimization problems. A hybrid parallel update scheme concerning the 
stochastic input-output behaviour of each unit is presented. This parallel update scheme 
maintains the solution quality of the Boltzmann Machine optimizer, which is inherently 
sequential. Experimental results on the Maximum Independent Set problem demonstrate the 
benefit of using the proposed optimizer in terms of computation time. Excellent speedup has 
been obtained through parallel implementation on both shared memory and distributed 
memory architecures. 

Keyword: Optimization; parallel computing; Boltanam Machine; Cauchy Machine 

1. INTRODUCTION 

The usual approach for solving a discrete optimization problem using neural 
network techniques, is to formulate the cost function and the constraints of 
the problem in terms of the minimization of a quadratic energy function, 
which is defined over the binary space ( 0 , l ) "  and has the following form: 

It is assumed that wij= wji for every i = 1, . . . , n, j = 1 ,  . . . , n and wii = 0 for 
every i. 
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224 G. PAPAGEORGIOU et al. 

The most widely studied neural network approaches that can be used for 
the minimization of the above energy function are based on the Boltzmann 
Machine [ l ,  21 (which extends the discrete Hopfield model [9]) and the 
analog Hopfield network [lo]. 

The operation of the Boltzmann Machine is based on an intergration of 
the dynamics of the discrete Hopfield model with the Simulated Annealing 
methodology 111. At each step, a unit i is randomly selected and the energy 
difference AEi that would be caused by a change in the state of this unit is 
computed as follows 

If AE, < 0 the change is accepted, otherwise it is accepted with probability 
that depends on the quantity exp ( A E i / T ) ,  where the temperature 
parameter T decreases according to a specified annealing schedule. 

The Boltrmann Machine optimizer is very effective when an appropriate 
annealing schedule is used. The proper mapping of problems onto the 
network, as well as efficient operation schemes can be very crucial for the 
performance of the model [ll]. However, as is the general case with 
Simulated Annealing, it has the disadvantage of being strictly sequential: 
each unit is examined after the update of the previous one has been 
completed. Although the Simulated Annealing and Boltzmann Machine 
approaches are of inherently sequential nature, several attempts have been 
made to reduce the required computation time through the use of parallel 
machines [l,  4, 8,131. Parallel implementations can be obtained either on 
general purpose parallel machines (for example on Transputer-based 
machines [ 5 , 6 ] )  or using special purpose VLSI [3,14,15] or optical 
neuroprocessors [21]. The parallel schemes considered vary depending on 
the type of computation performed or the synchronization policy adopted, 
and are characterized by some sort of trade-off between solution quality and 
speedup. In general, attempts to parailelize the operation of the Boltzmann 
Machine are not very successful, since simultaneous update of many 
network units can lead to oscillations and low quality of solutions [I]. 

On the other hand, in the analog Hopfield neural network model all units 
are updated simultaneously at each time instant, but due to the existence of 
a sigmoid output function, the output vi of each unit i can take any 
continuous value in the unit interval. This has the disadvantage that in many 
cases the network is trapped in local minimum states inside the unit 
hypercube and does not manage to reach one of the comers. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Io

an
ni

na
] 

at
 0

4:
20

 1
8 

A
pr

il 
20

12
 



HYBRID NEURAL OPTIMIZATION SCHEMES 225 

By applying a step threshold function to the analog Hopfield network in 
place of the typically used sigmoid function a type of Hopfield neural 
network is obtained which is capable of operating in a synchronous way. 
Each unit of this model has analog input and discrete output. Such a model 
has been considered in [IS]. We shall refer to this model as the synchronous 
discrete Hop$eld neural network. This characterization distinguishes the 
model from both the discrete Hopfield model [9], which is discrete but 
sequential. and the analog Hopfield model which is synchronous but not 
discrete [lo]. The employment of units with discrete outputs offers a more 
effective exploration of the binary problem state space in comparison to the 
case of analog outputs, since the search is confined only at the comers of the 
hypercube that has to be explored [7,17-201. 

Moreover, integration of the synchronous discrete Hopfield network with 
a fast Simulated Annealing methodology [16] results in the Distributed 
Cauchy Machine [IS], which incorporates Cauchy colour noise in the update 
process of each neuron, in order to provide stochastic hillclimbing 
capabilities and avoid convergence to false local minima. As a general 
purpose optimizer, the Cauchy Machine has the advantage of exhibiting full 
parallelism, but generally provides solutions of lower quality than the 
Boltzmann Machine optimizer. In this paper we propose a hybrid stochastic 
update scheme for the synchronous discrete Hopfield network that results 
from a combination of features of both the Cauchy and the Boltzmann 
Machine. The proposed scheme exhibits exploration performance analogous 
with that of the Boltzmann Machine optimizer. In terms of execution time it 
is clearly superior to the Cauchy Machine and outperforms the Boltzrnann 
Machine if implemented in parallel. 

The organization of the paper has as follows. In Section 2 results 
concerning the synchronous discrete Hopfield neural network and the 
Distributed Cauchy Machine are presented along with their basic features. 
In Section 3 the hybrid scheme is introduced, whereas Section 4 contains 
comparative experimental results from the solution of the Maximum 
Independent Set Problem. The parallel implementation of the proposed 
model is described in Section 5, and the main conclusions are summarized 
in Section 6. 

2. THE CAUCHY MACHINE 

The synchronous discrete Hopfield network is a fully parallel neural 
network mode. Each network unit i is characterized by analog input ui 
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226 G. PAPAGEORGIOU el al. 

(taking any real value) and binary output vi (taking values in (0,l)). The 
input-output behaviour of each unit at time t is based on the McCulloch- 
Pitts model of operation: 

During operation, the value of ui is updated at each time step using the 
following motion equation: 

where AEi is the difference in the energy of the network that would be 
caused by a change in the output of unit i. Simulation of the dynamics is 
based on first-order discrete approximation: ui(t + At) = ui(t) + Aui. 

Equation (4) means that each unit follows gradient descent dynamics 
which in general leads the synchronous discrete Hopfield network to an 
equilibrium state. In the case where the energy function is given by 
Equation (I), the motion equation of each unit i is given by 

A binary vector (vl,. . . , v,) constitutes an equilibrium state of the 
synchronous discrete Hopfield network if for each i = 1, . . . , n, 

vi = 1 and Aui 2 0 

v, = 0 and Aui 5 0. 

The above conditions state in essence that once the network has reached an 
equilibrium state it will remain there forever, since no change is possible in 
the output of any unit. For a unit with vi = 1 the value of ui will keep on 
increasing and vi will always be 1. For a unit with vi = 0 the requirement 
Aui 5 0 ensures that the value of ui will always remain negative and hence vi 
will always be 0. 

Moreover it is easy to show that there exists a one-to-one correspondence 
between the stable states of a discrete Hopfield network (or Boltzmann 
Machine) and the equilibrium states of a synchronous discrete Hopfield 
network having the same set of weights. Indeed, let v = (v,, . . . , v,) be a 
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HYBRID NEURAL OPTIMIZATION SCHEMES 227 

stable state of a discrete (binary) Hopfield network. Then for each 
i = 1,. . . ,n it holds that AEi 2 0, where AE; denotes the difference in the 
energy that will be caused in case the state of unit i is changed. According to 
Equation (2) this implies that either vi = 1 and Cr=, wij vj + Oi 2 0 or vi = 0 
and Cy= wij v, + Bi 5 0. Taking into account Equation (9, it is straightfor- 
ward to establish the one-to-one correspondence between the stable states of 
the discrete Hopfield network and the equilibrium states of a synchronous 
discrete Hopfield network characterized by the same energy function. 

The most important feature of the synchronous discrete Hopfield network 
is that the output of each unit i depends solely on the value of ui and not on 
the difference in the network's energy AEi as is the case with the discrete 
Hopfield network (or the Boltzrnann Machine). The quantities ui can be 
considered as a kind of 'memory' representing the cumulative activation of 
each unit during network operation. In order for two units to change their 
state simultaneously, not only must the corresponding Aui have the 
appropriate sign, but, in addition, the signs of the values ui should also 
change at the same time instant. Thus, although the network operates 
synchronously, the probability that many output updates be performed 
simultaneously is significantly reduced. 

In order to provide the synchronous discrete Hopfield network with 
stochastic hillclimbing capabilities, the Distributed Cauchy Machine [18] has 
been developed, in which the output of each unit i is stochastically updated 
at each time step t using the Cauchy distribution: 

1 1  
si ( t )  = Pr {v i  ( t )  = 1) - + - arctan 

2 7T 

In the above equation, Tc is an artificial temperature parameter that is 
adjusted according to a fast annealing schedule [18] as a function of time t : 

where To is the initial temperature value and p is a value in the range (0,l) 
that controls the speed of the schedule. If the value of Tc is equal to 0, we 
have the case of a deterministic synchronous discrete Hopfield network. 

3. THE HYBRID UPDATE SCHEME 

In terms of optimality of the obtained solutions, the Boltzmann Machine is 
superior to the Cauchy Machine and exhibits greater flexibility during 
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228 G. PAPAGEORGIOU et al. 

operation, in the sense that it is able to perform a wider search of the 
problem state space. The reason is twofold. First, since each unit of the 
Boltzmann Machine is updated sequentially, the decision about changing its 
state is made based on the correct energy difference. Second, in the case 
where a unit i of the Boltzmann Machine is found with AEi 5 0, its state is 
updated immediately. On the contrary, in a similar situation, a unit i of the 
Cauchy Machine may not change its state due to the current value of its 
input u,, which can change sign ,only after many time steps. 

The above frequently encountered update delay can be both advanta- 
geous and disadvantageous. The benefit is that it does not allow many units 
to simultaneously change state (especially at low temperatures), thus 
allowing the Cauchy Machine to. converge although it operates synchro- 
nously. The drawback is the lack of flexibility that makes difficult the 
acceptance of state changes suggested by the values Au. The latter 
constitutes a serious problem especially in cases where a Cauchy Machine 
has operated for a long time and the quantities ui have attained high 
absolute values. Therefore, there is a trade-off between the necessity to 
accept a suggested state transition as soon as possible and the necessity to 
maintain the convergence property. To make such state transitions more 
probable and enhance the exploration capability of the network without 
sacrificing convergence, we have developed a hybrid operation scheme of the 
synchronous discrete Hopfield network, in which the stochastic update rule 
is based on a convex combination of the Cauchy Machine update rule 
involving ui (Equation (6)) and a criterion involving Aui or eqivalently AEi. 
As such we have considered the Metropolis acceptance criterion frequently 
employed in the Boltzmann Machine case. 

According to the Metropolis criterion [12], if AEi (t) is the change in the 
energy of the network caused by the change in the state of a unit i at time t ,  
then the probability of accepting this state transition at a temperature TB ( t )  
is given by 

It is interesting to note that the energy difference is given by A&(t) = 

(2vi (t) - 1) Aui (t) / At, thus, the computation of AEi (t) does not impose any 
additional burden to the usual computations required for the operation of 
the Cauchy Machine. 
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HYBRID NEURAL OPTIMIZATION SCHEMES 229 

On the other hand, according to the Cauchy acceptance criterion the 
probability that a state transition be accepted at temperature T c ( t )  is 

where s i ( t )  is computed using Equation (6). 
The proposed update scheme is based on a combination of the above 

probabilities. More specifically, at each time step, a state transition 
concerning unit i is accepted with probability: 

where the control parameter cu takes values in the interval (0, 1). A small 
value of this parameter can destroy the property of convergence since the 
network will behave in essence as a synchronous Boltzmann Machine. On 
the other hand, a large value of the parameter cr results in fast convergence ' 

but the state space will not be adequately explored, since the network will 
behave as a typical Cauchy Machine. Thus, an appropriate adjustment of 
the value of parameter cu is needed in order to combine the desirable 
characteristics of the two approaches without causing any negative effects. 

The above stochastic update scheme increases the probability that the 
output of a unit i will be modified in case such a change is suggested by the 
value of AEi, although the corresponding input ui may have large absolute 
value and the corresponding probability p f may be small. In order for this 
flexibility to be exploited, it is necessary that a change in the output be 
followed by a change in the sign of the input. Otherwise, the output would 
probably change back to its previous value at the next step, since the value 
of ui would continue to suggest that value. For this reason, in order to 
enable the network to quickly follow transitions that lead to lower energy 
states, we have incorporated the following rule in the adjustment of the 
quantities ui, which is applied only in the case where a change occurs in the 
output vj : 

if vi ( t  + At) # vi ( t )  and f ( t )  < 0.25 then ui ( t  + At) = -ui ( t )  

(11) 

Another remark is that the temperature values TB and Tc used in tlie 
computation of the probabilities p and p may not be the same and may 
be adjusted according to different annealing schedules. This is reasonable, 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Io

an
ni

na
] 

at
 0

4:
20

 1
8 

A
pr

il 
20

12
 



230 G. PAPAGEORGIOU et a1 

especially in what concerns the initial annealing temperatures which 
generally depend on the average values of A E  and u respectively, since, 
obviously, the latter quantities are not of the same order of magnitude. The 
proposed algorithm is summarized below. 

Map problem on Hopfield Network (Boltzmann Machine). 
Initialize ui and v i  for all units. 
Repeat steps 1-2 below until termination condition is reached ( t  denotes 
current time step). 

1. Update temperatures Tc (t) and TB (t). 
2. For all units do: 

- Aui = (xy=, wij v, ( l  - 1) -+ 6'i) A t .  
- u; ( t )  = ui (t - 1 )  + Aui. 
- Compute p B  (t) using Equation (8). 
- Compute ( t )  using Equation (9).  
- Compute p H  (t) using Equation (10). 
- Generate state vi(t) of unit i according to pH(t). 
- Change ui(t) if necessary, according to the rule (1 1). 

4. EXPERIMENTAL RESULTS 

We tested the effectiveness of the proposed approach on instances of the 
Weighted Maximum Independent Set (MIS) problem and compared its 
performance with the performance of both the Boltzmann Machine and the 
pure Cauchy Machine. The Weighted Maximum Independent Set consti- 
tutes an important discrete optimization problem and many other problems 
(for example Set Partitioning, Set Packing, Set Covering etc. [22]) can be 
solved through the solution of the weighted MIS. 

The formulation of the MIS problem (weighted case) is the following: 
Consider an undirected graph G = (V, E) where V(with 1 V I = n) is the set of 
vertices and E denotes the set of edges. Let also A denote the adjacency 
matrix of graph G, i.e., aii = 1 if (i, j )  E E, otherwise aij = 0. An independent 
set V' of this graph is a subset of V that contains vertices not connected to 
each other. If c: V-t ?Ri is a cost function assigning a cost to each vertex of 
the graph, the Maximum Independent Set problem is to find the 
independent set V' of maximum cost, where the cost f,(V1) is defined as 
fc(v') = c k  ~ ~ i c k .  
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HYBRID NEURAL OPTIMIZATION SCHEMES 23 1 

A Hopfield-type neural architecture suitable for the MIS consists of n 
units with the following specification of weights wij and thresholds Oi [l,  221: 

where E is a very small positive value (which is set equal to 0.5 in our 
experiments). 

The above specification of the weights and thresholds ensures that, if a 
discrete Hopfield network (or Boltzmann Machine) is employed to solve the 
problem, the network will finally settle into an equilibrium state 
corresponding to an independent set of the graph. In addition, this set is 
maximal in the sense that no other vertex can be added to it without 
violating the disjointness constraint. Moreover, the resulting energy 
function is order preserving in the sense that the lower the final energy 
value, the better the cost of the final solution [I]. Due to the correspondence 
discussed in Section 2 it is obvious that the local minimum states of the 
Boltzmann Machine will also be equilibrium states of the corresponding 
synchronous discrete Hopfield network. 

Experiments have been conducted on randomly generated graphs of sizes 
200, 500, 1000, 1500 and 2000. For each graph size, 15 instances were 
created and tested on a Silicon Graphics Power Challenge machine with 
R8000 processors. A graph instance was constructed by determining with 
probability 0.1 whether an edge exists between each pair of graph vertices. 
In addition, a cost value was assigned to each vertex which was a randomly 
selected integer in the range from 5 to 15. Since the generated graphs are 
sparse, each of them is characterized by many independent sets and finding 
the best one is generally dficult. For each instance 5 runs were camed out 
using different seed values for the random number generator. 

For each generated graph instance experiments were performed using: a) 
the Boltzmann Machine optimizer, b) the pure Cauchy Machine and c) the 
hybrid model. In the last case three experiments were conducted with 
different parameter settings. 

The application of the Boltzmann Machme to the solution of the 
Maximum Independent Set problem has been extensively examined in 
[I, 221. It has been verified that high quality near-optimal solutions can be 
obtained, provided that an appropriate (slow) annealing schedule is 
employed. In our experiments with the pure Boltzmann Machine, we have 
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232 G. PAPAGEORGIOU et al. 

used the logarithmic schedule suggested in [22], which prescribes the value of 
the temperature at the k th step of the annealing process as follows: 

The function f has the form f ( k) = f (k  - 1) (1 + r) with f (0) = 1, where r is 
the parameter that adjusts the speed of the schedule. All experiments were 
conducted starting from temperature To = 5.0 and using a temperature 
reduction rate P. = lop6. At each temperature, 2n units were randomly 
selected and examined, and the annealing was terminated if for 212 
consecutive time steps no update was performed on the state of any of the 
examined units. 

In what concerns the experiments with the Cauchy Machine, we have used 
the annealing schedule of Equation (7), with P = 1 and starting temperature 
To = 2.0. The time step At was very small (equal to 0.001) to ensure slow 
annealing. The annealing was terminated if for 2 consecutive time steps no 
change had occured in the output of any unit and, additionally, the 
equilibrium condition of Section 2 was valid. It must be noted here, that the 
number of 2 consecutive time steps in the case of the Cauchy Machine, 
whern n units operate in parallel, corresponds to the number 2n consecutive 
time steps in the case of the Boltzmann Machine, where only one unit is 
examined at a time. 

As far as the hybrid model is concerned, the values of P, At and To, as 
well as the update of parameter Tc and the stopping criterion were similar to 
those used in the case of the pure Cauchy Machine. For the update of the 
Boltzmann temperature TB, we have considered that at each step TB(t) = X 
Tc(t), where X is an adjustable parameter. In order to determine the best 
setting of the parameter A, we performed experiments with various 
combinations of the parameters X and a, for many problem instances. In 
all cases, the best results were obtained for values of X close to 5.0, therefore 
we have adopted t h s  value in all experiments. 

Tables I and I1 show performance results as a function of the size n of the 
problem. The displayed values are averages obtained from the experiments 
conducted for each value of the size. The results concern both the 
effectiveness (qualhy of the obtained solutions) and the efficiency (execution 
time). 

The results shown in Table I concern the Cauchy and the Boltzmann 
Machine considered individually. It can be observed that the Boltzmann 
Machine is clearly superior in both the quality of the obtained solutions and 
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HYBRID NEURAL OPTIMIZATION SCHEMES 233 

TABLE I Comparative results for the Boltzmann and the Cauchy Machine 

n Boltzmann Machine Cauchy Machine 

Avg. Time Avg. Cost Avg. Time Avg. Cost 

200 52 sec 417 lmin 15sec 365 
500 jmin 30 sec 571 15 min 475 
1000 22min 678 I h 22min 563 
1500 5lmin 74 1 4h 1 lmin 617 
2000 1 h 30min 7 87 8h 25min 649 

TABLE I1 Comparative results for three configurations of the hybrid model 

n a = 0.25 cr = 0.50 a = 0.75 

Avg. Time Avg. Cost Avg. Time Avg. Cost Avg. Time Avg. Cost 

200 85sec 416 lrnin 416 lmin 391 
500 9min 574 8min 558 9min 528 
1000 45min 689 39min 67 1 45min 616 
1500 2h 740 1 h 45min 729 1 h 5 h i n  699 
2000 4h 775 4h 1Omin 771 5h 734 

the execution time in sequential implementation. This superiority becomes 
more apparent as the size of the problem (and hence the difficulty) increases. 
The difference in the quality of solutions was not reduced even when we used 
a slower cooling schedule and a higher initial temperature for the Cauchy 
Machine. Indeed, the Cauchy Machine is characterized by premature 
convergence that limits the possibility of improving the quality of the 
solutions, since it hardly accepts updates at low temperatures. 

The results of Table I1 make apparent the benefit of using the hybrid 
model, which yields solution quality equivalent to that of the Boltzmann 
Machine and much better than that of the Cauchy Machine. The best 
behaviour is obtained in the case ct = 0.25, that is characterized by 25% 
contribution of and 75% of in the computation of 8. 

The effectiveness of the hybrid model is analogous with that of the 
Boltzmann Machine, in spite of the fact that the network operates 
synchronously, which could be unfavourable for the convergence of the 
Boltzmann Machine part. It is worth noting, however, that if the value of a 
is further decreased oscillation phenomena are produced, since the 
synchronous operation of the Boltzmann Machine becomes dominant. 

5. PARALLEL IMPLEMENTATION 

Both the Cauchy Machine and the proposed hybrid scheme are 
characterized by a high degree of parallelism. As at each step all the units 
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234 G. PAPAGEORGIOU et al. 

of the network are updated simultaneously, parallelism refers to the 
individual unit level. Consequently, we should need ideally one processor to 
simulate the operation of each unit (fine grain parallelism). Moreover, each 
processor should have immediate access to the data of any other processor. 
Since the computations performed by each unit are very simple, the model 
can be directly implemented in VLSI so as to take the greatest benefit. If 
general purpose hardware is used, then a shared memory architecture seems 
to be the most appropriate. Indeed, we observe that at each step all units 
read in parallel the state vector v'and, after the synchronous computation of 
the new state, each unit independently updates its respective component vi. 
Hence, there is no possibility of collision during writing, since no two 
processors attempt to write simultaneously on the same shared memory 
location. 

We have implemented the hybrid model on three different machines. For 
small problem instances (graph size 40-200) we used a Parsytec Multi- 
cluster 2 with 16 transputers. Due to memory limitations, larger instances 
could not be solved on the transputer system. For large problem instances 
(graph size 200-2000) we used a shared memory Silicon Graphics Power 
Challenge with 14 R8000 processors and a distributed memory Intel 
Paragon with 48 i860XP processors. Programming was performed using the 
C language with additional parallel calls for the coordination of the parallel 
processes. In all cases, the number of experiments, as well as the parameter 
settings and stopping criteria, were the same as in the corresponding 
sequential implementation. Also, the best case found during the sequential 
implementation (a = 0.25) was considered in the parallel implementation. 

In the case of shared memory machine the implementation was 
straightforward. The machine automatically partitions data, i.e. the units 
of the hybrid model, and assigns the partitions to each available processor. 
In the case of the two distributed memory machines apart of manually 
partitioning the data, we also had to simulate the shared memory operation. 
That is, at each repetition of the algorithm, we had to update the state vector 
?in each process. As a result we used an additional process to collect the 
state subvectors corresponding to each one of the p parallel processes, 
compose the vector v', decide whether the terminating criterion has been 
reached and, if not, broadcast ?to all processors. We should make clear at 
this point, that each parallel process manipulates njp units, where p is the 
number of the available processors, and that each available processor runs 
only one such proc2ss. 

The results of the three implementations are shown in Tables I11 -V. We 
can easily observe that the parallel implementation of the proposed method 
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TABLE I11 Speedup for transputer implementation: small problem instances 

n Avg. Speedup 

4 proc. 9 proc. 13 proc. 16 proc. 

40 1.5 1.6 1.4 1.1 
80 1.9 2.8 3.1 3.5 
120 2.1 3.4 4.5 5.8 
160 2.5 3.9 4.6 6.1 
200 2.7 4.1 5.1 6.5 

TABLE IV Speedup for shared memory implementation (Power Challenge): large problem 
instances 

n Avg. Speedup 

4 proc. 8 proc. 

TABLE V Speedup for distributed memory implementation (Intel Paragon): large problem 
instances 

n Avg. Speedup 

5 proc. 11 proc. 21 proc. 

200 3.4 6.5 6.1 
500 3.8 9.0 15.5 
1000 3.9 9.8 18.6 
1500 3.9 9.9 19.7 
2000 4.0 9.9 19.9 

fully exploits the available hardware, especially for large problem instances, 
where there is almost linear speedup. Note that speedup is computed in 
reference to the sequential execution time of the algorithm on the same 
machine. If we combine the results shown in Tables 11 and IV, referring to 
execution of the sequential and the parallel implementation of the proposed 
method on the same machine (shared memory), and compare them with the 
results shown in Table I, it is interesting to see that the hybrid optimization 
method clearly outperforms the Boltzmann Machine in terms of execution 
time when implemented in parallel, for any instance of the problem. Even 
better execution times are expected if more processors are used. 
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6. CONCLUSIONS 

The Boltzmann Machine Optimizer can provide near-optimal solutions of 
high quality to many hard optimization problems. The main disadvantage 
of this approach is that the network must operate sequentially (or with 
limited parallelism) in order to operate correctly and avoid oscillations. This 
sequential execution results in large solution times especially in the case of 
big problem instances. 

The hybrid optimization scheme proposed in this paper has the same 
equilibrium states with the corresponding Boltzmann Machine and exhibits 
similar exploration performance with it. At the same time, it overcomes the 
sequential update bottleneck by incorporating the main features of a 
synchronous neural network model, such as the Cauchy Machine, thus 
allowing for an efficient parallel implementation. This combination results 
in an optimization tool that has the ability to perform effective exploration 
of the state space while operating in a fully parallel and synchronous way. 
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