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Abstract 

A diagnostic system is presented that employs morphometry combined 
with a fuzzy neural network approach, for the discrimination of benign from 
malignant gastric lesions. The input to the system consists of images of 
routine processed gastric smears stained by Papanicolaou technique. The 
analysis of the images provides a data set of cell features. The fuzzy min-
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max neural network classifier, an efficient pattern recognition approach, is 
used to classify benign and malignant cells based on the extracted 
morphometry and textural features. The fuzzy min-max classification 
network is based on hyperbox fuzzy sets and can be incrementally trained 
requiring only one pass through the training set. The application of the 
fuzzy min-max neural network yields high rates of correct classification at 
both the cell level and the patient level. These results indicate that the use of 
intelligent computational techniques along with image morphometry may 
offer very useful information about the potential of malignancy of gastric 
cells. 

Key Words 
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1. Introduction 

The diagnostic process used in Image Cytometry aims to exploit 
information extracted from medical images. In usual real life situations, 
cytopathologists look through the microscope and make a diagnosis probably 
using a subconscious process based on pattern recognition. Therefore, in 
practice it is quite difficult to extract and formulate the expert knowledge 
used by a cytopathologist during diagnosis. The problem in diagnosis is to 
map the morphometric quantitative descriptions measured to the known 
qualitative pathological entities. 

The application of intelligent computational techniques, such as neural 
networks and fuzzy systems, seems to provide a solution to the above 
situation and constitutes a new emerging field in Diagnostic Cytology. 
Pattern recognition, data base search, knowledge extraction and decision-
making, are some of the most important applications of neural networks in 
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the field of Cytology (Dawson, 1991; Astion and Wilding, 1992a; Astion 
and Wilding, 1992b; Truong, 1995). Up to now neural networks have been 
successfully applied for the mass screening of Gynaecological Cytology 
samples (Rosenthal and Mango, 1994). 

Gastric Cytology has not reached wide acceptance in the investigation of 
gastric lesions because of the difficulties in the discrimination of benign 
lesions with severe regenerative alterations from well differentiated cancer 
cells (Kasugai and Kobayashi, 1974; Husain, 1991). However the same 
diagnostic dilemmas are also present in tissue sections from gastric mucosa 
biopsies with dysplastic or regenerative changes. 

The diagnostic system described in the present paper exploits the 
potential of morphometry combined with fuzzy neural networks in the 
discrimination of benign from malignant gastric cells in routine prepared 
gastric smears, and provides a useful medical expert tool that can be very 
helpful to cytopathologists. 

Fuzzy min-max neural networks (Simpson, 1992; Simpson, 1993; Likas 
et al, 1994) constitute one of the many models of computational intelligence 
that have been recently developed from research efforts aiming at 
synthesizing neural networks and fuzzy logic (Bezdek, 1992; Kosko, 1992; 
Kartalopoulos, 1996). 

The fuzzy min-max classification neural network (Simpson, 1992) is an 
on-line supervised learning classifier based on hyperbox fuzzy sets, which 
are regions of the pattern space that can be completely defined by the 
minimum and the maximum points along each dimension. In the case where 
a pattern is not completely contained in any of the hyperboxes, a properly 
computed fuzzy membership function indicates the degree to which the 
pattern falls outside of each of the hyperboxes. Learning in the fuzzy min-
max classification network is an expansion-contraction process that consists 
of creating and adjusting hyperboxes and also associating a class label to 
each of them. During operation, the class associated with the hyperbox 
having maximum membership is taken as the decision of the network. An 
extension of the original definition and operation of the model has been 
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developed (Likas et al., 1994) in order to apply the method to pattern 
recognition problems that involve both discrete and continuous attributes. 

In the following section the application setup and study design are 
described. In Section 3 a brief description of the operation and training of 
the fuzzy min-max classification network is provided. Section 4 represents 
results from the application of the fuzzy min-max method to the 
classification of gastric cells. Evaluation of the proposed approach and 
discussion are provided in Section 5. 

2. System Description and Study Design 

2.1. System Components 

The diagnostic process is complex and can be split into several stages. 
Figure 1 displays a general schema of the process characterizing the 
operation of the diagnostic system. It is actually composed of four stages, 
namely: Image Acquisition, Image Processing, Feature Selection and 
Classification. 

The first stage involves the capturing and analysis of the microscopic 
images and is very difficult because of the presence of noise and the 
complexity of the image. The elimination of noise is essential for the cell 
image acquisition module. The source of the noise is either the sample itself 
and/or the miss-calibrated microscope parameters. The process applied for 
the elimination of noise is median filtering which reduces the image random 
noise, while keeping all the initial information. 
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During median filtering the image array is scanned using 3x3 templates 

(line by line and column by column). For each template, the grey values 

included in this 3x3 template are sorted and the central pixel of the template 

is replaced by the median value of the sorted list. Noisy values (if present in 

the template) are placed at the edges of the sorted list. The median value of 

the list, that replaces the central pixel of the template, is most probably a 

true value (not noise) which was initially contained in the image. 

The noise that comes from the microscope parameters (i.e. noise on the 

microscope optical parts) can only be reduced by carefully clearing the 

corresponding parts using special liquids. 

The correct calibration of the microscope is another essential step for 

successful classification of the cells. The method used is based on the 

digitization of a standard sample through the microscope. This sample does 

not contain any cells in the field of view (empty field). The system analyses 

this sample and extracts various parameters that characterize the noise 

percentage of the microscope system, lighting and focusing conditions etc. 

The extracted parameters are compared with the predefined calibration ones 

resulting to a measure that identifies the capturing behaviour of the system. 

Segmentation of cytoplasm and the cell nuclei is performed during the 

second stage. To achieve this, a suitable preprocessing of the image is 

applied in such a way that a global threshold based on the histogram can 

segment the cell nuclei and the cytoplasm. The preprocessing involves 

image filtering and enhancement of the cell nuclei. Enhancement of the cell 

nuclei increases the contrast between the nuclei and the background. This 

enhancement is carried out using min filtering. 

The characteristics for the discrimination of cells involve two general 

categories: geometric characteristics and characteristics that are based on 

individual pixel values (optical or density features). The following sub-

section provides a more detailed description of the above characteristics. 

2.2 Specimens and Extracted Features 

Sixty eight patients with gastric lesions were investigated in studying the 

proposed diagnostic approach. The study was performed on brushing 
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cytology smears taken during endoscopy. The smears were routinely fixed in 

96° ethanol for 30 minutes and stained with Papanicolaou technique. The 

cytological diagnosis was made by at least two cytopathologists with 10 

years experience in gastric cytology and was also confirmed by the histologic 

examination of biopsies and/or surgical specimens. The output of the 

cytological examination assigns a cell to one of five classes (cancer, gastritis, 

inflammatory dysplasia, true dysplasia and ulcer). The correlation of the 

cytological with the final diagnosis (referring to three classes, namely 

cancer, gastritis and ulcer) is presented in Table 1. 

Table 1 
Correlation of final and cytological diagnosis 

F i n a l d i agnos i s 
C y t o l o g i c a l d iagnos is cancer gastritis ulcer 

cancer 19 
gastritis 18 

inflammatory dysplasia 3 
true dysplasia 4 

ulcer 24 

The basic measurements/features that are extracted from every cell can 
be grouped according to their physical characteristics into two main 
categories: geometric and densitometric). 

The geometric features are extracted both from the nucleus and the 
cytoplasm, according to the computational method and the mathematical 
models reported in the literature (Baak, 1991; Baxes, 1994; Sonka et al„ 
1994). These characteristics describe properties relative to the size (e.g. area, 
perimeter, diameter etc.) or properties that give information about the shape 
(e.g. Form area, Form perimeter etc.) as well as the relative position of the 
nuclei inside the cell. When the cytoplasm is absent the geometric features 
of the cytoplasm are considered equal to the geometric features of the 
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nucleus. The feature 'mean radius' of the nucleus is considered as the mean 
value of the mean radius of all the nuclei included in the cell; for a cell with 
one nucleus or for a naked nucleus it is considered equal to the mean radius 
of the nucleus. 

Other features that are also extracted are: a) the number of nuclei per 
cell; if it is a naked nucleus this feature is taken equal to one, b) the mean 
value of the length of the axes that connect the cell center of mass and the 
nuclei centers of mass; if it is a naked nucleus this feature has a value of 
zero (as if one nucleus is in the center of the cell), and finally c) the nucleo-
cytoplasmic ratio, which is considered equal to one if the cytoplasm is 
absent. 

The densitometric features provide textural information about nuclei. 
From the various methods that have been proposed for the description of 
chromatine texture, it was preferred to implement four models: Histogram, 
Differences Histogram, Run Length and Co-occurrence Matrix. The first two 
models have the advantage of computational simplicity at the cost of poor 
texture discrimination, while the last two models give more precise 
information on the nuclei structure. The histogram of an object represents 
the relative frequency of occurrence of the various gray levels in the image, 
while the differences histogram method provides features by computing the 
difference of each pixel value from the neighbouring pixels that lie at a 
specific distance. The run length method reveals directional and coarseness 
information about the texture. Finally, the co-occurrence matrix gives the 
joint probability of two pixels lying at a specific distance in the image. 

During this study never was a cell encountered with more than one 
nucleus, so each cell was represented by a vector with 41 elements: 12 
geometric features for the nucleus, 12 geometric features for the cytoplasm, 
the number of nuclei, the mean value of the length of the axes that connect 
the cell center of mass and the nuclei centers of mass, the nucleus 
cytoplasmic ratio, and 14 densitometric features for the nucleus. These 
features are displayed in Table 2, while their descriptive statistics are 
summarized in Appendix A. 
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Table 2 

Features of data 

Type Feature 
Geometr ic Areas of (.."ells 

for Circularities of O i l s 
cytoplasm Major Axis of Cells 

Minor Axis of Cells 
Perimeter of Cells 
Form area of Cells 

Form perimeter of Cells 
CI of Cells 

Contour Rat io of Cells 
Roundness Factor of Cells 

Diameter of Cells 
Mean Radius of Cells 

Geometr ic Areas of Nuclei 
for Circularities of Nuclei 

nucleus Major Axis of Nuclei 
Minor Axis of Nuclei 
Perimeter of Nuclei 

Form of Nuclei 
Form perimeter of Nuclei 

CI of Nuclei 
Contour Rat io of Nuclei 

Roundness Factor of Histogram 
Diameter of Nuclei 

Mean Radius of Nuclei in Cell 

Densitometrie Mean of Nuclei Histogram 
(textural Std of Nuclei Histogram 

information Var of Nuclei Histogram 
about Run Length Short Run of Nuclei 
nuclei) Run Length Long Run of Nuclei 

Run Length Gray Level of Nuclei 
Run Length Distribution of Nuclei 

Cooccurrence Matrix Maximum of Nuclei 
Cooccurrence Matr ix Entropy of Nuclei 
Cooccurrence Matr ix Inertia of Nuclei 

Mean of Differences Histogram 
Variance of Differences Histogram 
Contrast of Differences Histogram 
Entropy of Differences Histogram 

Other Nuclei Cytoplasm Rat io 
Nuclei per Cell 

Mean Distance of Nuclei in Cell 
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3. The Fuzzy Min-Max Classification Network 

We have selected a fast and efficient mechanism for the classification 

part of the diagnostic system, the fuzzy min-max neural network classifier. 

The fuzzy min-max neural network is an on-line supervised learning 
classifier whose operation and training are based on the concepts of 
hyperbox fuzzy sets. Consider a classification problem with η continuous 
attributes that have been rescaled in the interval [0,1], hence the pattern 
space is Γ ([0, 1]"). Moreover, consider that there exist ρ classes and Β 
hyperboxes with corresponding minimum and maximum values v,, and wß, 
respectively (J=\,...,B, i= 1, ...,«) (Figure 2). Let also ck denote the class 
label associated with hyperbox Bk. 

When the h'h input pattern Ah = (ahh ... ,ah„) is presented to the network, 
the corresponding membership function for hyperbox B} is (Simpson, 1992) 

1 n 

bj{Ah) = - - f(ahi - Wjui) - / ( V ß - aht, 7 ) ] (1) 
n i=i 

where βχ, γ) = χγ, if 0 ^ χγ ^ 1 ,βχ, γ) = 1 ί ί χ γ > 1 and βχ, γ) = 0 if χ γ < 0. 

If the input pattern Λ» falls inside the hyperbox Bj then bj (Ah) = 1, otherwise 
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the membership decreases and the parameter γ S 1 regulates the decrease 
rate. As already noted, the class of the hyperbox with the maximum 
membership is considered as the output of the network. 

In a neural network formulation, each hyperbox By can be considered as a 
hidden unit of a feedforward neural network that receives the input pattern 
and computes the corresponding membership value. The values νβ and wjt 

can be considered as the weights from the input to the hidden layer. The 
output layer contains as many output nodes as the number of classes. The 
weights Uß(j = 1, ... , Β, k = 1, ... , ρ) from the hidden to the output layer 
express the class corresponding to each hyperbox: ujk = 1 if Bj is a hyperbox 
for class ck, otherwise it is zero. Figure 3 represents the architecture of the 
fuzzy min-max classification neural network. 

I n p u t Nodes Hyperbox Nodes Class Nodes 

Fig. 3: Neural network formulation of the fuzzy min-max classifier 

During learning, each training pattern Ah is presented once to the 
network and the following process takes place. First we find the hyperbox bj 
with the maximum membership value among those that correspond to the 
same class as pattern Ah and meet the expansion criterion: 

η 
ηθ > x(wji,ahi) - min(uj;, ahi)) (2) 

i= 1 
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The parameter θ (Ο ^ θ ^ 1) is a user-defined value that imposes a bound 
on the size of a hyperbox and its value significantly affects the effectiveness 
of the training algorithm. In the case where an expandable hyperbox (of the 
same class) cannot be found, then a new hyperbox Bk is spawned and we set 
Wfe = Vi, = ah, for each /'. Otherwise, the hyperbox Bj with the maximum 
membership value is expanded in order to incorporate the new pattern Ah, 
i.e., for each i = 1 , . . . , n\ 

υ?Τ = mm(v$d,ahi) (3) 

iu]r = m a x ( ^ f , ahl) (4) 

Following the expansion of a hyperbox, an overlap test takes place to 
determine if any overlap exists between hyperboxes from different classes. In 
case such an overlap exists, it is eliminated by a contraction process} during 
which the size of each of the overlapping hyperboxes is minimally adjusted. 
Details concerning the overlap test and the contraction process can be found 
in (Simpson, 1992). The effectiveness of the training algorithm generally 
depends on two factors: the value of the parameter θ and the order with 
which the training patterns are presented to the network. 

4. Results 

The image analysis part of the system is composed of an IBM compatible 
Pentium 133MHz computer, equipped with a 1MB Matrox MVP-AT frame 
grabber and a SONY DXC-151P color CCD camera. The camera is attached 
to a Nicon Labophot 2 microscope through a C-mount adapter and to the 
frame grabber by proper cabling. The CCD sensor of the camera has a 
resolution of 756x581. All images were captured using a 40x objective and 
digitized to 512x512 pixels. 

The imaging software operates under MS-Windows and is used for the 
segmentation of cells and their nuclei and for the extraction of the 
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measurements that correspond to the features. The S/W is in a high degree 
customized. A commercially available image processing product is used 
(OPTIMAS from BioScan Inc.) which supplies a variety of image processing 
functions and the ability to extract basic geometric and densitometric 
characteristics from images or parts of images. On the top of this package is 
applied a library of custom functions. These are written in C (mainly for the 
segmentation and for texture estimation) and in the macro language that 
OPTIMAS supports (ALI=Analytical Language for Images) for the user 
interface, for image storage/retrieval, storage of measurements and for the 
extraction of texture features." 

The study group of our system consisted of data from 68 patients with 
gastric lesions. Using the custom image analysis described above, these 
cases provided a data set of 5933 cells (see Table 3). Before entering the data 
set into the fuzzy neural network classifier the feature values were 
normalized to the interval [0, 1], as prescribed by the classifier model. 

In order to evaluate the overall performance of our system four different 
series of experiments were carried out with respect to the level of 
examination and the number of classes. 

With respect to the level of examination experiments were conducted 
considering both individual cells randomly selected from the total cell 

Table 3 
Data set 

5 classes 2 classes 
Cancer Gastritis 1-dvspl T-dyspl Ulcer Malignant Benign 

Cells 851 207S 148 171 2685 1022 4911 
Patients 19 IS 3 4 24 23 45 
I-dyspl : Inflammatory dysplasia Malignant : Cancer and T-dvspl 
T-dyspl : True dysplasia Benign : Gastritis, I-dyspl and Ulcer 

*The development of the imaging system has been financially supported in 
part by 01-Pliroforiki SA under EC Project VALUE/CCS. 
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collection (cellular} level) and the total number of cells belonging to a 

specific patient (patient} level), in order to characterize a patient case. At 

the patient level the input pattern presented to the system consisted of the 

mean and standard deviation of the values of the 41 features regarding the 

cells obtained from that patient. At the cellular level 1785 cases were used as 

the training set for the fuzzy min-max neural network classifier, while the 

remaining 4148 cells were used as the testing set. At the patient level 23 

patient cases were used as training set and the other 45 as testing set. 

From another point of view, we can divide the above two datasets into 

either five or two classes. In other words we may represent the problem 

either as the discrimination of five classes (cancer, gastritis, inflammatory 

dysplasia, true dysplasia, and ulcer) or as a more coarse classification 

problem involving only two classes: malignant and benign, that can be 

obtained from the union of the cancer and true dysplasia cases to one class 

(malignant), and the three other cases to another class (benign). 

From the above analysis it is clear that we can examine the performance 

of our system in four different classification problems. Table 4 shows the 

training set for the four cases that was randomly composed by selecting 

30\% of the entire dataset, while Table 5 represents the respective testing set 

for the same classification problems. 

Table 4 
Training set 

5 classes 2 classes 
Cancer Gastritis I-dvspl T-dyspl Ulcer Malignant Benign 

Cells 257 626 44 50 80S 307 147S 
Patients 6 ' 6 2 2 7 S 15 

Table 5 
Testing set 

5 classes 2 classes 
Cancer Gastritis I-dvspl T-dyspl Ulcer Malignant Benign 

Cells 594 1452 104 121 1877 715 3433 
Patients 13 12 1 2 17 15 30 
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The performance of the fuzzy min-max neural network classifier was 
evaluated for all four classification problems. The diagrams in Figures 4 and 
5 concern the problems of five classes and two classes respectively and draw 
up the correct classification rate at the cellular level. Different values of the 
parameter θ are considered in the range of [0.09, 0.20] with a 0.01 step. For 
all the obtained rates the number of constructed hyperboxes (B) is also 
represented. As shown by the diagrams, in the case of five classes the best 
classification rate was 95.18% and was obtained for the value θ = 0.1, where 
the neural network contained 537 hyperboxes. Table 6 illustrates the success 
rate at the cellular level obtained by the best fuzzy min-max neural network 
constructed, by providing the classification rate for each of the five classes 
together with the distribution of misclassified cases. For example, the correct 
classification rate in the case of cancer is 90.74% and erroneous 

95 • 

94 · 

93 -

B=37 

B=l( ) l 

g o ! I I ! : I I I I 1 1 I I I 

0 , 0 9 0 . 1 0 . 1 1 0 . 1 2 0 . 1 3 0 . 1 4 0 . 1 5 0 . 1 6 0 . 1 7 0 . 1 8 0 . 1 9 0 . 2 

θ parameter 

Fig. 4: Classification performance for 5 classes 
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ß=!4y B=K8 B=67 

B=5K 

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

θ parameter 

Fig. 5: Classification performance for 2 classes 

Table 6 

Percentages of success and failure (cellular level) of fuzzy min-max 

Fuzz y Min-Max Classification Network 
Distribution of failure 

Success Cancer Gastritis I-dvspl T-dyspl Ulcer 
Cancer 90.74% 65.5% 6.9% 5.2% 22.4% 

Gastritis 96.90% 17.8% 11.1% 2.2% 68.9% 
I-dvspl 91.35% 11.1% 33.3% 11.1% 44.5% 

T-dyspl 56.20% 30.2% 7.5% 20.8% 41.5% 
Ulcer 98.14% 20.0% 40.0% 25.7% 14.3% 
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classification cases are assigned to gastritis at 65.5%, inflammatory 
dysplasia at 6.9%, true dysplasia at 5.2% and ulcer at 22.4%. 

Experiments of the two-class problem considering different θ values gave 
a best classification rate of 98.0% at the value θ = 0.1 with a network of 392 
hyperboxes. The neural network classified the malignant cells with a correct 
rate of 91.75% while the benign cells were almost perfectly classified 
(99.30%). 

At the patient level the fuzzy neural network classifier was trained and 
tested in the same maimer considering five classes and two classes. In the 
two cases the network gave a correct overall classification rate of 93.34% 
and 97.78% respectively, almost irrespective of the θ values taken in the 
range [0.09, 0.2], The number of constructed hyperboxes was 20 in the case 
of five classes and 17 in the case of two classes. Considering five classes the 
network confused only the two dysplasia classes (inflammatory and true) 
matching them as ulcer class. During the testing operation with two classes 
(malignant and benign) the neural network responded almost perfectly, 
making only one erroneous diagnosis of malignant class. It must be noted 
that in all the above experiments the value of the parameter γ was the same 
(equal to 2.0). 

In order to assess the potential of the fuzzy min-max algorithm, we have 
also applied learning vector quantization to the four classification cases 
using the same data. For that reason we have selected the LVQ1 algorithm 
(Kohonen, 1990). A sufficient number of 'codebook vectors' for the four 
classification problems (2 for the cellular level and 2 for patient level) was 
found to be 40, 20, 10 and 10 respectively. The learning parameter α was set 
initially to a small value 0.04 and was linearly decreased with time. Table 7 
shows the performance of the LVQ1 algorithm in comparison with the 
results of the fuzzy min-max method, i.e. the classification rate of the testing 
set for all four cases. Moreover, Table 8 provides an analysis of the success 
rate obtained by the LVQ1 algorithm at the cellular level, in contrast to 
Table 6 which concerns the fuzzy min-max network. The superiority of the 
fuzzy min-max algorithm is apparent from the above tables that illustrate 
the capability of the method to eliminate overlapping in the feature space. 

70 
Brought to you by | University of Ioannina (University of Ioannina)

Authenticated | 172.16.1.226
Download Date | 4/18/12 1:19 PM



D. Kontoravdis, A. Likas and P. Krakitsos Journal of Intelligent Systems 

Table 7 
Comparison of fuzzy min-max and LVQ 

Fuzzy Min-Max LVQ1 
Cells 5 classes 

2 classes 
95.18% 87.73% Cells 5 classes 

2 classes 98.00% 92.02% 

P a t i e n t s 5 classes 
2 classes 

93.34% 64.44% P a t i e n t s 5 classes 
2 classes 97.78% 95.56% 

Table 8 
Percentages of success and failure (cellular level) of LVQ 

Learninq Vector Quantization 
Distribution of failure 

Success Cancer Gastritis I-dvspl T-dyspl Ulcer 
Cancer 78.28% 41.1% 4.6% 21.7% 32.6% 

Gastritis 91.25% 42.0% 4.7% 20.5% 32.3% 
I-dyspl 92.30% 37.5% 0.0% 62.5% 0.0% 

T-dyspl 76.03% 48.2% 3.5% 34.5% 13.8% 
Ulcer 88.49% 27.4% 44.9% 6.9% 20.8% 

5. Discussion 

Cytology has not reached a wide acceptance in the investigation of 
gastric lesions because of the relatively high rate of false negative and false 
positive results. However the same problems may also occur in histologic 
examination of tissue biopsies (Kasugai and Kobayashi, 1974; Husain, 
1991). 

The aim of this study was to investigate the potential role of a diagnostic 
system in the area of gastric cytology. We have tried to apply effective 
methods from the fields of medical analysis and pattern recognition in order 
to overcome the difficulties usually encountered by cytopathologists. The 
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diagnostic system is a combination of morphometry with fuzzy neural 
networks and the objective is to discriminate benign from malignant gastric 
cells in routine prepared gastric smears. 

An important phase of the process was the selection of the data. The 
features used in our study were selected because they represent classical 
morphometric and textural characteristics, which correspond to objective 
estimation of cellular characteristics examined by the eye of a skilled 
cytopathologist during routine screening. Although the importance of each 
individual feature is out of the scope of this study, it was decided that several 
features be extracted from the system, as it is accepted that texture gives an 
indication of the DNA activation, and that changes in the nuclear and 

cellular size, shape and texture reflect alterations which may be accounted 
for in the behaviour of cells. 

According to the results, the performance of the fuzzy min-max neural 
network was excellent in the discrimination of benign from malignant cells. 
Actually, at the cellular level, the network could discriminate either five 
classes or two general classes with a high success rate. From the results of 
Table 6 we can extract some significant information about the behaviour and 
the level of accuracy of our system. The fuzzy neural classifier responds 
successfully in the cases of ulcer, gastritis, inflammatoiy dysplasia and 
cancer. The low correct classification rate in the case of true dysplasia is 
very reasonable since this kind of cells corresponds to well differentiated 
carcinomas. When considering only two classes (benign, malignant) we 
obtained higher classification performance, 91.75% of malignant and almost 
100% of benign cells. The last rate is very important for cytological 
diagnosis because it could reduce uncertainty. 

At the patient level the results were analogous. Even though the number 
of data available for training was relatively small and the number of features 
was twice the number considered at the cellular level (by adding standard 
deviation), the system exhibited an excellent behaviour in both inter-
pretations of classes, making only four and one mistakes respectively. 

The inability of perfect (100%) classification of benign and malignant 
cells and lesions arises from the fact that in the feature space the borders of 
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the two classes are not always clear. This fact is displayed in Figure 6 
showing benign cells from ulcer cases and corresponding cancer cells which 
are very similar. 

Due to the overlap observed in the feature space the discrimination 
between benign and malignant cells using statistical classifiers has not been 
successful, although a statistically significant difference was observed 
(Danno, 1976; Boon et al„ 1981; Tosi et al„ 1987). The data set considered 
in our experiments has also been used to train a neural network classifier by 
means of the backpropagation algorithm (Karakitsos et al., 1995). Although 
the neural network exhibited high success rates in the discrimination of two 
classes, it showed poor performance when tested in the classification of data 
into 5 classes. Back propagation suffers from the inability to build very 
efficient discriminating rules for significant cases of data overlapping. Also, 

A. benign cell B. cancer cell 

C. benign cell D. cancer cell 

Fig. 6: Sample benign and cancer cells from ulcer cases 
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it has the disadvantage of requiring a large amount of time to learn the 
decision boundaries of the classes. On the other hand, the fuzzy min-max 
neural network classifier bears some desirable features which are due to the 
expansion, overlapping test and contraction operations. Thus, it succeeds in 
determining efficient building blocks (hyperboxes) and eliminating 
overlapping in the feature space between hyperboxes of different classes, 
yielding a fast learning procedure. Another important advantage of the fuzzy 
min-max classifier is its robustness with respect to the selection of the value 
of the θ parameter. As can be observed from Figures 4 and 5, the classifier 
shows high classification performance all over the range [0.09, 0.2] of Θ. 

Moreover, the effectiveness of the fuzzy min-max neural network in 
overcoming difficulties that arise from overlapping has been shown by 
means of its superiority over LVQ. It must be noted that in order to assess 
problem difficulty we have preferred to perform experiments with LVQ 
rather than consider data analysis or visualization techniques (like the one 
based on SOM proposed in (Mao and Jain, 1995)). The inability of methods 
like LVQ to achieve high recognition rates suggests that the classification 
problem is hard and we did not expect to obtain any significant information 
by performing data visualization (which is mainly based on clustering 
techniques). 

As the experiments indicated, the fuzzy min-max classification neural 
network constitutes a very promising method for pattern recognition and, 
more specifically, for medical diagnosis applications. Indeed, through the 
use of fuzzy logic the system can extract useful information, such as the 
degree of membership of a cell data to each concerned class. Thus, a 
cytopathologist may obtain diagnostic opinions about whether a cell or the 
collection of a patient's cells belong to each category. Building efficient 
decision regions and fuzzy geometric structures, the fuzzy min-max neural 
classifier defines fuzzy internal rules providing a powerful diagnostic tool. 
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A P P E N D I X A 

Table 9 

Statistics of the data set 

Feature ( lass Mean Std Feature Mean std 
Cancer 215.SO 202.91 14.31 19.47 

Areas of 
Cells 

Gastritis 196.28 196.74 
Circularities 
of Cells 

4.81 4.82 
Areas of 
Cells 

I dvspl. 927.99 887.84 Circularities 
of Cells 

5.42 81.61 Areas of 
Cells Γ dvspl. 4.33E+5 4285.60 

Circularities 
of Cells 6.22 5.94 

Ulcer 117.282 112.29 845.39 1071.00 
Cancer 19.11 18.76 14.58 14.52 

Major Axis 
of Cells 

Gastritis 4.03 4.06 
Minor Axis 
of Cells 

2.74 2.76 
Major Axis 
of Cells 

I dvspl. 9.94 9.97 Minor Axis 
of Cells 

7.0S 10.59 Major Axis 
of Cells Τ dvspl. 18.29 15.20 

Minor Axis 
of Cells 8.83 6.94 

Ulcer 5.70 5.49 7.40 8.83 
Cancer 53.52 51.05 0.05 2.11 

Perimeter 
of Cells 

Gastritis 14.87 14.96 
Form area 
of Cells 

0.50 0.50 
Perimeter 
of Cells 

I dvspl. 42.96 34.44 Form area 
of Cells 

0.02 19.51 Perimeter 
of Cells Τ dvspl. 81.S4 73.85 

Form area 
of Cells 0.00 0.01 

Ulcer 9.25 7.85 24.89 33.02 
Cancer 0.88 0.84 3.77 3.63 

Form Gastritis 0.38 0.38 1.86 1.86 
perimeter 1 dvspl. 0.31 0.03 CI of Cells 1.31 0.33 
of Cells Τ dvspl. -0.07 -0.06 1.47 1.44 

Ulcer 0.01 -0.03 0.42 0.27 
Cancer 1.13 1.28 1.06 1.07 

Contour Gastritis 1.39 1.40 Roundness 1.24 1.24 
Ratio of I dvspl. 0.41 1.31 Factor of 0.37 0.41 
Cells Τ dvspl. 0.80 0.78 Cells 0.71 0.70 

' Ulcer 1.59 1.55 1.11 1.07 
Cancer 15.98 15.11 7.91 8.07 

Diameter 
of Cells 

Gastritis 3.01 3.02 Mean 1.34 1.35 
Diameter 
of Cells 

1 dvspl. 7.19 3.52 Radius of 2.99 6.68 Diameter 
of Cells Τ dvspl. 10.20 7.95 Cells 4.00 2.91 

Ulcer 1.84 1.33 4.65 4.76 
Cancer 148.53 138.04 14.53 15.40 

Areas of 
Nuclei 

Gastritis 89.73 89.67 
Circularities 
of Nuclei 

4.74 4.78 
Areas of 
Nuclei 

I dyspl. 113.OS 105.39 Circularities 
of Nuclei 

7.54 43.92 Areas of 
Nuclei Τ dyspl. 829.91 811.86 

Circularities 
of Nuclei 4.11 4.18 

Ulcer 16.02 14.79 204.77 223.10 
Cancer 15.75 15.47 12.07 11.72 

Major Axis 
of Nuclei 

Gastritis 3.09 3.09 
Minor Axis 
of Nuclei 

2.23 2.21 
Major Axis 
of Nuclei 

1 dyspl. 4.79 6.7S Minor Axis 
of Nuclei 

3.23 6.12 Major Axis 
of Nuclei Τ dyspl. 7.04 5.79 

Minor Axis 
of Nuclei 5.47 4.53 

Ulcer 4.53 4.23 3.96 3.92 
Cancer 44.84 42.16 0.06 1.16 

Perimeter 
of Nuclei 

Gastritis 11.21 11.18 
Form area 
of Nuclei 

0.46 0.46 
Perimeter 
of Nuclei 

I dyspl. 19.40 16.32 Form area 
of Nuclei 

0.02 13.36 Perimeter 
of Nuclei Τ dvspl. 31.28 27.90 

Form area 
of Nuclei 0.02 0.02 

Ulcer 5.12 4.34 13.23 14.37 
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Table 9 (continued) 

Statistics of the data set 

Cancer 0.87 0.83 3.80 3.64 
Form Gast r i t i s 0.3!) 0.38 

CI of 
Nuclei 

1.83 1.84 
per imeter I dvspl. 0.3-2 0.05 CI of 

Nuclei 
1.39 0.42 

of Nuclei Τ dvspl . -o.i·.' -0.12 

CI of 
Nuclei 1.37 1.38 

Ulcer 0.01 -0.02 0.43 0.27 
Cancer 1.15 1.28 1.07 1.07 

Contour Gas t r i t i s 1.37 1.37 Roundness 1.21 1.21 
Rat io of I dvspl . 0.47 1.30 Factor of 0.39 0.39 
Nuclei Τ dvspl. 0.74 0.75 Histogram 0.70 0.70 

Ulcer 1.57 1.52 1.09 1.05 
Cancer 13.2S 12.49 144.39 135.67 

Diamete r 
of Nuclei 

Gastr i t i s 2.36 2.35 Mean of 233.94 233.56 
Diamete r 
of Nuclei 

I dvspl. 3.63 1.94 Nuclei 424.44 411.35 
Diamete r 
of Nuclei Τ dvspl. 5.70 4.65 Histogram 519.36 497.73 

Ulcer 1.39 1.14 55.92 53.87 
Cancer 13.14 15.57 217.20 208.76 

Std of Gastr i t i s 17.S2 17.84 V a r o f 2 .5E+4 2 .5E+4 
Nuclei I dvspl. 14.05 59.46 Nuclei 7 .5E+3 7 , 4 E + 3 
Histogram Τ dvspl. 20.04 19.57 Histogram 1 .4E+4 Γ.4Ε+4 

Ulcer 183.45 219.80 950.23 943.36 

Run 
Length 
Sort R u n 
of Nuclei 

Cancer 1.9E+4 1.7E+4 
Run 
Length 
Long Run 
of Nuclei 

0.01 295.43 
Run 
Length 
Sort R u n 
of Nuclei 

Gas t r i t i s S .3E+5 8 . 3 E + 5 
Run 
Length 
Long Run 
of Nuclei 

3.51 3.51 Run 
Length 
Sort R u n 
of Nuclei 

I dvspl. 1 .4E+S 1.3E+7 

Run 
Length 
Long Run 
of Nuclei 

0.01 8 . 8 E + 3 

Run 
Length 
Sort R u n 
of Nuclei 

Τ dyspl. 2 . 9E+7 •2.9E+7 

Run 
Length 
Long Run 
of Nuclei 

0.7 0.67 

Run 
Length 
Sort R u n 
of Nuclei Ulcer 1.7E+6 1.6E+6 

Run 
Length 
Long Run 
of Nuclei 

5 . 5 E + 6 6 .6E+6 

Run 
Length 
Gray Level 
of Nuclei 

Cancer 3 .3E+6 3 . 0 E + 6 Run 8 . 4 E + 4 8 .3E+4 
Run 
Length 
Gray Level 
of Nuclei 

Gastr i t i s 1.2E+10 1.2E+10 Length 1 .4E+7 1 .4E+7 Run 
Length 
Gray Level 
of Nuclei 

1 dyspl. 7 .3E+9 7 .3E+9 Distribu- 3 . 4 E + 6 4 . 0 E + 6 

Run 
Length 
Gray Level 
of Nuclei 

'Γ dyspl. 9 .7E+11 9 .7E+11 tion of 1 .9E+9 1 .9E+9 

Run 
Length 
Gray Level 
of Nuclei Ulcer 9 .2E+8 9 . 2 E + 8 Nuclei l . S E + 1 1 1.9E+11 

Cooccurrence 
Matr ix 
M a x i m u m 
of Nuclei 

Cancer 0.00 208.27 
Cooccurrence 
Matrix 
Entropy of 
Nuclei 

0.001 0.001 
Cooccurrence 
Matr ix 
M a x i m u m 
of Nuclei 

Gastr i t i s 1.66 1.66 
Cooccurrence 
Matrix 
Entropy of 
Nuclei 

1.54 1.54 Cooccurrence 
Matr ix 
M a x i m u m 
of Nuclei 

I dyspl. 0.00 1.7SE+4 

Cooccurrence 
Matrix 
Entropy of 
Nuclei 

0.01 0.01 

Cooccurrence 
Matr ix 
M a x i m u m 
of Nuclei 

Τ dvspl. 0.61 0.61 

Cooccurrence 
Matrix 
Entropy of 
Nuclei 

0.56 0.56 

Cooccurrence 
Matr ix 
M a x i m u m 
of Nuclei Ulcer 3 .3E+8 3 . 3 E + 8 

Cooccurrence 
Matrix 
Entropy of 
Nuclei 

1.35 1.35 

Cooccurrence 
Mat r ix 
Iner t ia of 
Nuclei 

Cancer 1.82 1.79 18.98 18.28 
Cooccurrence 
Mat r ix 
Iner t ia of 
Nuclei 

Gastr i t is 6.86 6.92 Mean of 59.11 59.27 Cooccurrence 
Mat r ix 
Iner t ia of 
Nuclei 

1 dyspl. 17.31 16.41 Differences 28.53 23.02 

Cooccurrence 
Mat r ix 
Iner t ia of 
Nuclei 

Τ dyspl. 33.3S 32.51 Histogram 36.81 37.16 

Cooccurrence 
Mat r ix 
Iner t ia of 
Nuclei l : lcer 3.65 3.54 13.48 12.82 

Cancer 333.22 325.33 819.25 805.65 
Variance of Gastr i t is 5 .2E+4 5 . 2 E + 4 Contrast of 6 . S E + 5 6 .SE+5 
Differences I dyspl. 5 . 2 E + 3 5 . 1 E + 3 Differences 6 . 3 E + 4 6 .3E+4 
His togram Τ dyspl. 2 .3E+4 2 . 3 E + 4 Histogram 1 .5E+5 1 .5E+5 

Ulcer 668.07 660.41 l . S E + 4 1.9E+4 
Cancer 3.66 31.92 0.73 0.87 

Ent ropy of Gastr i t is 1.05 1.05 Nuclei 0.16 0.15 
Differences I dyspl. 1.36 341.50 Cytoplasm 0.11 1.30 
His togram Τ dvspl. 0.90 0.90 Ratio 0.34 0.45 

Ulcer 8 .7E+4 8 . 9 E + 3 0.79 0.78 
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Table 9 (continued) 

Statistics of the data set 

Nuclei per 
Cell 

Cancer 1.00 0.96 
Mean 
Distance of 
Nuclei in 
Cell 

0.28 0.32 

Nuclei per 
Cell 

Gastritis 0.22 0.22 Mean 
Distance of 
Nuclei in 
Cell 

0.42 0.42 
Nuclei per 
Cell 

I dvspl. 0.33 0.18 

Mean 
Distance of 
Nuclei in 
Cell 

0.24 0.43 Nuclei per 
Cell Τ dvspl. 0.25 0.25 

Mean 
Distance of 
Nuclei in 
Cell 

-0.33 -0.44 

Nuclei per 
Cell 

Ulcer 0.19 0.15 

Mean 
Distance of 
Nuclei in 
Cell 0.24 0.22 

Mean 
Radius of 
Nuclei in 
Cell 

Cancer 6.57 6.18 
Mean 
Radius of 
Nuclei in 
Cell 

Gastritis 1.03 1.02 Mean 
Radius of 
Nuclei in 
Cell 

I dvspl. 1.54 0.68 

Mean 
Radius of 
Nuclei in 
Cell 

Τ dyspl. 2.47 1.95 

Mean 
Radius of 
Nuclei in 
Cell Ulcer 1.36 1.24 
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