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(Received 14 April 1997) 

A new approach is presented to neural network simulation and training that is based on the use of 
general purpose optimization software. This approach requires that the training problem should 
be formulated as theminimization of acost functionof the network weights. Thiscost function is a 
user written code called by the optimization system, which in turn provides the user with a variety 
of minimization procedures that can be combined via user programmable minimization strate- 
gies. Experimental results concerning several learning paradigms indicate that the approach is 
very convenient and effective and leads to the discovery of efficient training strategies. 

Keywords: Neural network simulation; template; Merlin; training strategy 

1. INTRODUCTION 

The increased interest in neural network research has led to the development 
of many software simulators that provide the experimentation means for 
training and testing the variety of the existing models. These simulators can 
be classified into the following categories. 

1 .  Network specific simulators. They are specific to a particular neural 
network type, most often multilayer perceptrons (MLPs), allowing the 
user a limited choice of network's parameters. Their use is limited to the 
application areas of the specific model implemented by them. 

2. Template simulators. A template simulator can be mainly characterized 
by its ease of use, basically through a well constructed graphical user 
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34 A. LIKAS er a1 

interface. One can select a network type from a pool of existing ones and 
after easily specifying its architecture (number of layers, units, activation 
function type etc.) can select its learning rule through a multitude of 
different algorithms. The only flexibility allowed to the user is to easily 
modify architectural and training parameters. However, new training 
rules cannot be incorporated. Defined nets can usually be called from 
high level languages like C, allowing nets to be incorporated in layered 
applications. SNNS (although it lacks the feature of C code generation) is 
a representative example of a powerful template simulator, which 
probably affords the largest number of models and rules. 

3.  Non-template simulators. These more advanced simulators allow the user 
to define new ANN models or implement major modification to existing 
models. For examples new activation functions and learning rules can be 
specified. A feature of nearly all these simulators is the provision of a well 
designed graphical interface, which allows unexpected behaviour of a 
new model to be tracked and understood. The major characteristic of 
non-template simulators is the lack of a well developed and documented 
library to provide the means to build new models not from scratch. 

The objective of this paper is to demonstrate a new approach to neural 
network simulation and training, at least for the models whose training is 
based on optimization methods. Within this methodology all the 
architectural characteristics are integrated in the ANN cost function, which 
should programmed by the user. The user may also provide the derivatives of 
this function. Otherwise, numerical methods for derivative approximation 
are involved. The variety of optimization techniques incorporated in the 
system may be invoked and the many subtle implementation details of 
optimization methods are hidden from the users. This fact constitutes the 
main advantage of the proposed approach which is based on the use of the 
MERLIN package for multidimensional minimization [I, 21. 

It is well known that several types of neural network training problems 
can be formulated as optimization problems that aim at minimizing a 
suitably formulated function. This is true for every type of learning, i.e. 
supervised, reinforcement and unsupervised learning. MERLIN has given us 
the opportunity to easily test several minimization algorithms, assess their 
effectiveness and discover appropriate combinations of methods that exhibit 
superior minimization performance. More specifically, we have devised 
effective strategies for supervised training of multilayer perceptrons and for 
delayed reinforcement problems and in addition, we also provide 
preliminary results on the unsupervised training of clustering networks. 
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NEURAL NETWORK SIMULATION 35 

In the next section the basic characteristics of the MERLIN optimization 
environment are described. Section 3 describes a training strategy for 
multilayer perceptrons while Section 4 presents an appropriate strategy for 
training reinforcement neurocontrollers. Section 5 shows how MERLIN can 
be used to train clustering networks and describes a set of candidate 
unsupervised learning problems that may be examined using the proposed 
approach. Finally Section 6 contains conclusions and directions for future 
work. 

2. MERLIN DESCRIPTION 

MERLIN [l ,  21 is a software package for multidimensional minimization that 
handles the following category of problems: 

Find a local minimum of the function: 

under the conditions 

xi E [a;, b;] for i = 1,2, . . . , N 

Special merit has been taken for problems where the objective function can 
be written as a sum of squares i.e: 

MERLIN supports various minimization algorithms that can be divided into 
two catogeries: 

A) Methods that use only function values, and 
0 B) Methods that use gradient information as well. 

From category A, the SIMPLEX method [4], and a pattern search 
method (termed ROLL [I]) are implemented. From category B, conjugate 
gradient methods along with Quasi-Newton methods are the chosen ones. 
Specifically the Fletcher-Reeves [5], Polak-Ribiere [6] and the Generalized 
Polak-Ribiere [q are implemented from the conjugate gradient family and 
the DFP [8] and several versions of the BFGS [9] method from the 
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36 A. LIKAS et a1 

Quasi-Newton (variable metric) family. The special Sum-of-Squares form, is 
treated in addition with a Levenberg-Marquardt method [lo]. 

Generally speaking, methods that use derivatives, are more efficient. 
However some problems correspond to objective functions that by nature 
are non-differentiable and hence these methods will not work. Such a case is 
described in Section 4, where the pole-balancing problem is solved by a 
training strategy based on the SIMPLEX method. 

An interesting and useful feature of the package is that it can approximate 
the derivatives of the objective function numerically. In fact the gradient can 
be approximated either via a forward difference formula, or more accurately 
via a central difference two-point formula. An additional numerical 
estimation option of high accuracy but computationally expensive uses a 
six (or more) points in a symmetric finite difference formula to approximate 
the gradient. The user may also provide his own code for the calculation of 
the gradient. Moreover, since the calculation of the gradient is often quite 
complicated. it is very common for the user written code to be erroneous. To 
help the development of correct code for the gradient, there is a built-in 
facility that allows the user to compare the results of his code against the 
finite difference estimates. 

The philosophy followed for Merlin construction was similar to that 
usually adopted for building operating systems shells. The system idles 
expecting an input command. Once this is entered (by the user), it is 
identified and if it is a valid command it is executed. Upon its completion the 
system idles again and so on so forth. This structure is very important since it 
permits the programmability of minimization strategies. In fact, a language 
has been defined [3] to control the MERLIN system and the associated 
compiler has been implemented. The MERLIN Control Language (MCL) 
supports all the MERLI-N commands plus commands to control loops, 
conditions and branching. For simple problems one does not need to use 
MCL, however in problems where an algorithrmc strategy is needed, MCL 
programming is instrumental. Via MCL one can code very easily global 
optimization procedures (for instance stochastic ones) for problems where 
local minima do not represent acceptable solutions. In addition using MCL, 
one can handle non-linear constraints by employing penalty and bamer 
methods. Other facilities offered that may be useful are one-dimensional 
plots, confidence intervals for the parameters (for the case of the Sum of 
squares form, where the maximum likehood notion is meaningful), fking 
one or more parameters to a certain value, freeing previously fixed para- 
meters, imposing box constraints on the parameters, etc. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Io

an
ni

na
] 

at
 0

4:
17

 1
8 

A
pr

il 
20

12
 



NEURAL NETWORK SIMULATION 37 

3. TRAINING OF MLPs 

Minimizing the MLP error function in realistic problems is a difficult task 
since the many layers, the multitude of training patterns and the variety of 
categories cast a very complex landscape with wide plateaus and narrow 
valleys [12]. There is no single algorithm that can be used as a panacea to 
solve such optimization problems. Algorithms that use gradient information 
perform well only at regions of the parameter space where the function is 
smooth, while algorithms using only function values may be effective at 
regions where the derivatives are not well defined. From this point of view, 
the main weak point of the existing MLP training procedures is the use of a 
single optimization algorithm. Through the use of MERLIN we were able to 
discover a novel multi-algorithm optimization procedure governed by a 
strategy that exploits the virtues and strengths of the participating 
algorithms. This renders the procedure efficient and robust and although 
it is an established approach in the field of optimization, it has never been 
employed in MLP training before. This new methodology has been 
implemented within the novel simulating approach defined in the previous 
sections. 

The suggested procedure uses three different algorithms, specifically the 
quasi-Newton BFGS, the Polak-Ribiere (PR) conjugate gradient algorithm 
and a pattern search method (ROLL) that uses only function values. Pattern 
search methods have not been used in MLP training so far. Since the above 
algorithm employs no derivatives it is expected to be effective at the regions 
with plateaus of the weight space where the BFGS and PR techniques that 
use gradient information fail to perform. Since the ROLL method is not 
widely known we provide a brief description for it. Let E(W1, W2 , . . . , W%) 
be the error function in MLPs with Wj corresponding to the weight 
variables. Let, also, W e  = ( W f ,  W ;  , . . . , Wh) be the current point in the 
optimization process of E and Ec=E(Wc).  Finally, let S, be a step 
associated with each free variable Wi. 

1. Pick a trail point: W,! = W; for all j #  i and W :  = Wf + Si 
2. Calculate E+ = E(Wt ). 
3. If E+ < Ec set W c =  W', Ec=E+ and &=asi. Then, go to step 8. 
4. If E+ > = Ec pick another trail point as: W,! = W; for all j #  i and 

w: = Wf - si. 
5. Calculate E- = E( W' ). 
6.  If E- < Ec set W c =  W', Ec=E- and Si= -asi. Then, go to step 8. 
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38 A. LIKAS et a1 

7. If E- > = E, calculate an appropriate step by: Si = -112 Si (E+ - E-)/ 
(E+ + E-2Ec). 

8. Proceed with step 1 for the next value of i. 

In the above, a > 1, is a user set factor (in our experiments a=3.0). If 
after looping over all variables there is no progress, a line search is 
performed in the direction S= (SI , S2, . . . , S,). The above procedure is 
repeated until a present number of calls to the objective function is reached. 

In what follows we give a rather detailed account of the proposed Multi 
ALgorithm Optimization (MALO) strategy that was coded in MCL. 

Initialization: Pick at random an initial set of weights all in [-I, 11. 
Set the maximum allowed number of calls to the error function. 
Set the target value (a satisfactory value for the error function) Eo. 
Set the value for the rate of progress r. (We used r = 1/100). 

Step (1): 
Step (2): 

Step (3): 

Step (4): 

Step (5): 
Step (6): 

Step (7): 

Step (8): 

Test the number of calls to decide whether to stop or not. 
Determine and fix the non-influential weights. These weights w 
have the property I ;E E , where E > 0 a small present value, 
i.e. the error function is not very sensitive to changes in these 
weights. This step adds efficiency since at this point these weights 
are not important. 
Apply in succession the BFGS and the ROLL algorithms (this 
adds efficiency and robustness since these two methods are 
successful for different types of landscapes). 
Redetermine the non-influential weights and fix them (tempora- 
rily fixing non-influential weights is beneficial since, due to 
dimensionality reduction, the optimization problem becomes 
easier). 
Test if Eo has been reached to decide whether to stop or not 
If the relative rate of progress per call (l/Noc) AE/E 5 r 
enhance the weight range as b = min (d, b, a) = (Noc = Number 
of calls). 
Apply the PR method (Usually it is less efficient than BFGS, but 
performs less bookkeeping operations). 
Repeat from step (1). 

In order to demonstrate the efficiency of our approach in MLP training 
we considered two real problems, since the increasing demand for high 
performance neural networks in real world applications renders obsolete 
any research based only on artificial benchmarks like XOR etc. Both real 
problems wer'e selected from the Proben 1 real world benchmark collection 
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NEURAL NETWORK SIMULATION 39 

[14], since they are considered especially difficult and hence suitable for 
testing. In the first problem the approval of a credit card to a customer 
should be predicted, while in the second the diabetes of Pima Indians should 
be diagnosed. There are 51 (8) inputs, 2 outputs and 690 (768) examples 
divided randomly three times in 345 (384), 173 (192) and 172 (192) patterns 
for training, validating and testing respectively, hence forming cardl, card2 
and card3 (diabetesl, diabetes2 and diabetes3) tasks. In Table I we compare 
the results obtained in these six tasks by our Multi-Algorithm Optimization 
(MALO) methodology against to those obtained by the offline Back- 
propagation (Off-BP) (learning-rate = 0.01, momentum = 0.05) and the 
Polak-Ribiere Conjugate gradient method (PR-BP), according to Probenl 
specifications concerning architectures, error measures and number of runs. 
MALO clearly outperforms the other methods as well as the RPROP 
algorithm used in Probenl in terms of training average error reduction 
(notice an improvement of 16-90% regarding the best results obtained in 
Probenl [14] with no-shortcut architectures). 

4. A STRATEGY FOR TRAINING REINFORCEMENT 
NEUROCONTROLLERS 

Another learning category where the MERLIN optimization system has been 
proved very useful is the case of delayed reinforcement learning. In this 
framework, a system receives input from its environment, selects and 
executes a sequence of actions, and at the end, receives a reinforcement 
signal, namely a grade for the made decision. A broad class of reinforcement 
problems is related with task of controlling a system in such a way, so that 
its state variables always remain within prescribed ranges. In the case where 
one or more state variables violate this restriction, the action selection 
system is penalized by receiving a "penalty" reinforcement signal. Examples 

TABLE I Comparative results of different methodologies in MLP training 

Problem Average (60 runs) training/vdidation/test error 

MALO 

card 1 0.98/8.44/10.10 
card 2 0.78/10.60/14.85 
card 3 0.75/8.55/12.98 
diabetes 1 12.05/15.47/16.25 
diabetes 2 10.35/16.80/17.94 
diabetes 3 10.04/17.47/15.88 

PR-BP 

8.83/8.75/10.40 
8.47/10.95/15.10 
7.50/8.58/13.40 

14.10/15.80/16.81 
13.32/17.05/18.40 
13.79/17.95/16.35 
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40 A. LIKAS et al. 

of such kinds of problems are the pole balancing problem, teaching an 
autonomous robot to avoid obstacles, the ball and beam problem [13] etc. 

A category of reinforcement learning techniques are the direct ones that 
consider only the action model (in order to provide the action policy) and 
optimization methods must be employed to adjust the parameters of the action 
model so that a stochastic integer-valued function is maximized. This function 
is actually proportional to the number of successful decisions (i.e. actions that 
do not lead to the receipt of penalty signal). In our case the action model has 
the architecture of a multilayer perceptron with input units accepting the 
system state at each time instant, and sigmoid output units providing output 
values pi in the range (0,l). Based on these values the specification of the 
action to be taken is made either stochastically or deterministically. 

Training is performed in cycles with each cycle starting with the system 
placed at a random initial position and ending with a failure signal. The 
number of time steps of the cycle constitutes the performance measure to be 
optimized by appropriately adjusting the parameters of the action network. 
In practice, when the length of a cycle exceeds a preset maximum number of 
steps, we consider that the controller has been adequately trained. This is 
used as a criterion for terminating the training process. There is also the 
possibility of unsuccessful training termination which occurs when the 
number of unsuccessful cycles (i.e. function evaluations without reaching 
maximum value) exceeds a preset upper bound. 

Since the function to be optimized is integer-valued, gradient-based 
optimization techniques cannot be employed. A previous reinforcement 
learning approach that follows the direct strategy uses genetic algorithms to 
perfom optimization with very good results in terms of training speed 
(required number of cycles) [15]. In our case, we have considered the 
derivative-free optimization procedures provided by MERLIN. Among 
them, the SIMPLEX method has been found to be very effective. The 
simplex algorithm (or polytope algorithm) starts with an initial simplex, 
which is subsequently adapted in order to reach the area of a minimum and, 
finally, it is shrinked around the minimum point. 

The initial simplex may be constructed in various ways. At this point 
MERLIN has been found very useful since it gave us the capability to test 
several construction schemes of the initial polytope. The approach we 
followed was to pick the first vertex at random. The rest of the vertices were 
obtained by line searches originating at the first vertex, along each of the n 
directions. This initialization scheme proved to be very effective for the pole 
balancing problem. Other schemes such as, random initial vertices or 
constrained random vertices on predefined directions, etc, did not work well. 
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NEURAL NETWORK SIMULATION 4 1 

4.1. Solving the Pole Balancing Problem 

The simplex-based delayed reinforcement training scheme was tested on the 
well-studied pole balancing problem. In this problem a single pole is hinged 
on a cart that may move left or right on a horizontal track of finite length. The 
pole has only one degree of freedom (rotation about the hinge point). The 
control objective is to push the cart either left or right with a force so that the 
pole remains balanced and the cart is kept within the track limits. At each 
time instant the status of the system is described by the following variables: 
the horizontal position of the cart (x), the cart velocity (x), the angle of the 
pole (8) and the angular velocity (8) and the action network decides the 
direction and magnitude of force Fto  be exerted to the cart. It is assumed that 
a failure occurs when 181 > I2 degrees or 1x1 > 2.4m and that training has 
been successfully completed if the pole remains balanced for more than 
120000 consecutive time steps. We are concerned with the case where the 
magnitude is fixed (IF1 = ION) and the controller must decide only the 
direction of the force at each time step. Obviously the control problem is more 
difficult compared to the case where any value for the magnitude is allowed. 
Details concerning the equations of motion of the cart-pole system can be 
found in [I 1, 15, 131. These motion equations are unknown to the controller. 

According to the specifications of [15,11] the action network is a multi- 
layer perceptron with four input units (accepting the system state), one 
hidden layer with five sigrnoid units and one sigmoid unit in the output 
layer. There are also direct connections from the input units to the 
output unit. The specification of the applied force characteristics from the 
output value y E (0, 1) was performed in the following way. To introduce a 
degree of randomness in the function evaluation process, at the first ten 
steps of each cycle the specification was probabilistic, i.e. F= ION with 
probability equal to y. At the remaining steps the specification was 
deterministic, i.e., if y > 0.5 then F= ION, otherwise F= -10N. 

The simplex algorithm was very effective being able to balance the pole in 
a relative few number of cycles (function evaluations) which was less than 
1000 in many cases. Since the algorithm is deterministic its effectiveness 
depends partly on the initial weight values. For this reason we have 
employed an optimization strategy that is based on the simplex algorithm 
with random restarts. The following strategy was implemented in MCL: 
First simplex initialization takes place and then the simplex algorithm is run 
for up to 100 function evaluations (cycles) and the optimization progress is 
monitored. If a cycle has been found lasting more than 100 steps, 
application of the polytope algorithm continues for additional 750 cycles, 
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42 A. LIKAS et al. 

otherwise we consider that the initial polytope was not proper and a random 
restart takes place. A random restart is also performed when after the 
additional 750 function evaluations a solution was not encountered. 
Moreover, a maximum of 15 restarts was allowed. 

For comparison purposes we have also implemented the Adaptive 
Heuristic Critic (AHC) [ l l ]  method which belongs to the category of 
critic-based methods and assumes two separate models: an action model that 
selects the action to be taken at each step current state. Both models are 
implemented using feedforward neural networks that are trained on-line 
through backpropagation with the error being determined using the method 
of temporal differences [ll]. A series of 50 experiments were conducted for 
each method and the average number of training cycles (function 
evaluations) was 2250 for the proposed technique and 6175 for the AHC 
method. Moreover, according to the results reported in [I!], the average 
number of cycles for genetic reinforcement approach is 4097. It is clear that 
the simplex-based training strategy implemented using the MERLIN 
optimization environment exhibits significantly better performance with 
respect to the AHC case and it also outperforms the genetic approach. 

5. UNSUPERVISED TRAINING OF CLUSTERING NETWORKS 

Another neural network area of significant importance where MERLIN 
facilities can offer great convenience is the area of unsupervised training of 
neural networks and especially the problem of training a neural network to 
perform clustering, i.e. to organize unlabeled feature vectors into natural 
groups and represent them compactly with one or more prototypes. Almost 
any kind of unsupervised learning problem can be stated as an error 
minimization problem where the quantity to be minimized is appropriately 
formulated in order to satisfy the training objective. 

Let X= { x l ,  ~ 2 , .  . ., x,) (xi E RP) denote the set of unlabeled data and c 
denote the number of clusters. In the case of hard clustering, clustering 
networks are winner-take-all networks (Fig. 1), where each network unit 
i(i= 1,. . ., c) in the competitive layer corresponds to a cluster center vi= 
(vil,. . . ,v,,) whose coordinates vii can be considered as the weights of the p 
inputs to unit i. The objective of training is to adjust the weights of each unit 
(receptive fields) so that the clustering error J is minimized [16]: 

J = min,d(xi, v,) 
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KEURAL NETWORK SIMULATION 

FIGURE 1 Clustering network. 

where d (xi, v,) is the distance (usually Euclidean) between the vectors xi and 
v,. Many training algorithms have been developed to minimize the above 
clustering error. Most of them belong to the competitive learning frame- 
work with appropriate modifications in order to overcome certain training 
difficulties. Those algorithms operate on-line, in the sense that patterns are 
presented to the network one at a time, and the appropriate weight 
modifications take place at each step. 

Since we deal with an optimization problem it is straightforward to 
consider the optimization capabilities provided by MERLIN. We consider as 
many network units as the desirable number of clusters and employ 
optimization strategies to minimize J, with the adjustable parameters being 
the input weights to each cluster unit. In fact, this is the approach proposed 
in [18] where simplex optimization procedure (provided by the Matlab 
optimization package) was employed. A disadvantage of this approach is 
that it does not fully exploit problem information since it is possible for the 
training algorithm to move cluster centers outside the domain area where 
the data points have been gathered. If mi and Mi denote the minimum and 
maximum values at each dimension i(i= (1, . . ., p)), then the problem can be 
transformed to a constrained minimization one: 

minimize J with vg E [m j ,  Mi]. 
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44 A. LIKAS et al. 

Then above problem can be easily handled by MERLIN by initially 
restricting the range of each adjustable parameter using the margin 
specification commands. In analogy with the supervised case, each function 
evaluation required a pass through the training set in order for the value of 
J to be computed. Therefore the approach can be classified as a batch 
training one. 

The technique was applied to the well-studied IRIS data [17] which is a 
set of 150 data points in R ~ .  Each point corresponds to one of three classes 
and there are 50 points of each class in the data set. Of course in this case 
class information was not taken into account during training. When three 
clusters are considered, the minimum error value is Jmin= 78.9 [I81 in the 
case where the Euclidean distance is considered. To tackle this clustering 
problem we considered a network with three clustering units, each having 
four inputs, ie. there were 12 training parameters. Each parameter value vii 
was initialized in the range [mi, M,] according to the initialization scheme 
proposed in [19]: 

To perform minimization we considered both derivative-free and derivative- 
based methods. In the latter case numerical computation of the gradient was 
used. 

All tested algorithms exhibited very good performance being able to easily 
locate the global minimum. The number of function evaluations required 
for each of the used optimization methods is presented in Table 11. It can be 
observed that the gradient-based methods are faster despite the fact that the 
gradient is numerically computed. 

The above work constitutes only a first attempt to treat unsupervised 
learning problem using MERLIN. There are many cases to be examined, like 
for example the employment.of a different distance metric (for example the 
Mahalanobis distance), the use of different types of clustering (fuzzy, 

TABLE I1 Average number of function evaluations to 
solve the IRIS clustering problem 

Method Function Evaluations 

BFGS 
SIMPLEX 
ROLL 
CONGRA 
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possibilistic clustering), the use of reference vectors other than points (for 
example lines or spheres) and the examination of MERLIN effectiveness in 
training Radial Basis Function (RBF) networks. All these cases can be easily 
treated with MERLIN and successful optimization strategies may be devised 
to tackle difficult clustering cases. 

6. CONCLUSIONS 

An approach has been proposed to neural network experimentation and 
training that is based on the employment of the MERLIN general purpose 
optimization software [ I ,  21. Such an approach requires that the user defines 
training as a minimization problem that is subsequently solved by invoking 
the procedures provided by the optimization environment. The user need 
not know exact details concerning the implementation of the procedures. In 
addition the capability of programming appropriate combinations of 
methods in terms of minimization strategies provides a very convenient 
way to implement and experiment with multialgorithm methods. The 
approach has been used in supervised, reinforcement and unsupervised 
learning problems with very good results. In the first two cases it has led to 
the development of novel effective training strategies, while in the 
unsupervised case it has very easily provided the optimal solution to a 
classical benchmark problem. 

Future work will focus on the development of graphical user interfaces 
that will provide a convenient way for the specification of the training 
architecture and will automatically generate the code for the cost function to 
be minimized. In addition we will continue to experiment with other kinds of 
training problems as for example the training of recurrent neural networks 
and fuzzy neural networks. 
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