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In this paper the Bipolar Random Network is described, which constitutes an exten-
sion of the Random Neural Network model and exhibits autoassociative memory capa-
bilities. This model is characterized by the existence of positive and negative nodes and
symmetrical behavior of positive and negative signals circulating in the network. The
network’s ability of acting as autoassociative memory is examined and several techniques
are developed concerning storage and reconstruction of patterns. These approaches are
either based on properties of the network or constitute adaptations of existing neural
network techniques. The performance of the network under the proposed schemes has
been investigated through experiments showing very good storage and reconstruction
capabilities. Moreover, the scheme exhibiting the best behavior seems to outperform
other well-known associative neural network models, achieving capacities that exceed
0.5n where 7 is the size of the network.

Keywords: Neural computation, associative memory, random neural network, Hebbian
learning, spectral learning.

1. INTRODUCTION

Autoassociative neural network models have been extensively studied, especially the
Hopfield model'® which constitutes the most popular network of this type, mainly
because of its simplicity and the fact that it can be easily implemented on hardware.
However the Hopfield model is characterized by several drawbacks when acting as an
autoassociative memory device: low memory capacity (about 0.15n}, many spurious
patterns, small radius of attraction around each pattern stored and sensitivity to
the properties of the patterns stored.

Several attempts have been made to deal with the above weaknesses. Some of
them aimed at improving performance and storage capacity by introducing more
sophisticated learning rules, while other attempts have focused on improving the
recollection dynamics so as to achieve a better exploitation of the information con-
tained in the weight matrix.!®2122 Our work follows the latter direction in the
sense that we have developed a different autoassociative model, the Bipolar Ran-
dom Network, and we examine its performance with respect to other models (such
as the Hopfield network or Morita’s extensions) using the same incremental learning
schemes (Hebbian or spectral 2° learning algorithms).

The proposed associative network model constitutes an extension of the Ran-
dom Neural Network originally introduced by Gelenbe.”® Although the work on
the Random Neural Network was initially motivated by the behavior of natural
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neural networks, the model can represent general systems containing processes and
resources and supporting some types of control operations. In fact, the model is
based on probabilistic assumptions and belongs to the family of Markovian queueing
networks. The novelty with respect to usual queueing models lies in the concept
of requests for removing work (negative customers) in addition to classical requests
for performing work (positive customers). This novel class of models are referred
to as G-nefworks in queueing network literature and has been studied extensively
during the last few years.9:11.14 .

In the neural network context, the Random Neural Network model has been
the basis of theoretical efforts and applications %%, An important issue is that
the model can be constructed in conformity to usual neural network characteristics.
Moreover, the output of the model can be expressed in terms of its steady-state
solution, that is in terms of quantities obtained through direct numerical computa-
tions. .

The Bipolar Random Network studied here is adapted to associative memory
operation. An application of this model to the retrieval of symbolic pictures is
described in Ref. 19, where the patterns stored were characterized by a special
hierarchical structure. In the present paper we provide a systematic description
of several schemes that can be developed for the bipolar random network and at-
tempt to evaluate the capacity and error correction capability of each scheme based
on experiments with randomly created patterns. Moreover, we introduce an itera-
tive recollection scheme that exhibits the best performance and is characterized by
higher capacity indices when compared with other neural associative memories.

In the next section we briefly present the main characteristics of the bipolar
random network model. Issues related to the encoding of patterns in the network
are addressed in Sec. 3, whereas reconstruction schemes are investigated in Sec. 4.
Section 5 deals with the experimental evaluation of the proposed schemes in com-
parison with other associative memory models. Conclusions are discussed in Sec. 6.

2. DEFINTTION OF THE MODEL
2.1. The Bipolar Random Network

The Random Neural Network™® is a model that reproduces the pulsed behavior of
natural neural systems. It is based on probabilistic assumptions and is characterized
by the existence of signals in the form of spikes of unit amplitude that circulate
among nodes. Positive and negative signals represent excitation and inhibition,
respectively. The major property of the model is that it accepts a product form
solution, i.e., the network’s stationary probability distribution can be written as the
product of the marginal probabilities of the state of each node. In the applications
considered here, we are interested in an extension of the original random network
model that exhibits associative memory capabilities.!®16:1° This extended model
includes two types of nodes — positive and negative ~~ and preserves the main
characteristics of the original model, which considers only positive nodes. The
significant feature of the model — in both the original and the extended version —
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is that it is analytically solvable, and therefore computationally efficient, since its
application is reduced to obtaining solutions to a system of fixed-point equations. In
the remainder of this subsection we will provide a brief description of the extended
version, which will be referred to as the Bipolar Random Network. A detailed
description of this model, along with analytical derivation of its main properties,
can be found in Ref. 19.

In the bipolar random network, each node accumulates signals that either arrive
from the cutside of the network or from other nodes. External positive and nega-
tive signal arrivals to each node 4 are considered Poisson with rates A(¢) and A(7),
respectively. If the total signal count of a node at a given time instant is strictly
positive, the node fires and sends out spikes to other nodes or to the outside of the
network. The intervals between successive firing instants at node 1 are random vari-
ables following an exponential distribution with mean 1/r(é). Positive (negative)
nodes accumulate and emit only positive (negative) signals. The role of negative
(positive) signals at positive (negative) nodes is purely suppressive, i.e., they simply
cancel signals of the opposite sign if there are any.

Connections between nodes can be positive or negative, so that a signal leaving
a node can move to another node as a signal of the same or the opposite sign, re-
spectively. More specifically, a positive (negative) signal leaving positive (negative)
node i arrives to node j as a positive (negative) signal with probability p* (4,7) and
as a negative (positive) signal with probability p~(4, 7). Also, a signal leaving node
i departs from the network with probability d(:). Obviously, for a network with n
nodes we shall have D 7, [p*(4,7) + p~(8,5)] +d(@) =1, for i = 1,.

As already stated, the above described Markovian network has product form
solution. This property has been shown in Ref. 7 for the original version of the
random neural network and in Ref. 19 for the extended version including positive
and negative nodes. Results concerning the existence and uniqueness of the solution
can be found in Ref. 8. Additional properties of the random neural network model
have been established in Refs. 12 and 13.

The steady-state characteristics of the bipolar random network can be summa-
rized as follows.!® Considering a network with n nodes its stationary probability
distribution is given by p(k) = lim¢eo ProblK(t) = k|, whenever this limit exists,
where K(t) is the state vector at time ¢ representing the signal count at each node
of the network, and k= (ki,...,kn) denotes a particular value of the vector. Since
both types of nodes accumulate signals of the corresponding sign only, an unsigned
value k; is sufficient for describing the state of a node 7, once the sign of the node is
given. If we denote by P and A the sets of positive and negative nodes, respectively,
the flow of signals in the network can be described by the following equations in
terms of the arrival rates 47 (i) and v~ (¢) of positive and negative signals to node
5
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where v, (1), v5..(1) represent the internal arrival rates of positive and negative
signals respectively, and

O, ; ‘
“=rro <7 @)
_ @) ew (4)

ORI G}
It can be shown'® that, if a unique non-negative solution {y*(z),v™(¢)} exists in
relation to the above equations such that ¢; < 1, then the steady-state network
probability distribution has the form:
TL
p(k) = [T(t - alaf* (5)
im=l
Clearly, g; is the steady-state probability that node 7 is excited and is the key
quantity associated with application of the model. It represents the level of ex-
citation as an analog rather than as a binary variable, thus leading to a more
detailed information on system state. In a sense, each node acts as a non-linear
frequency demodulator, since it transforms the frequency of incoming spike trains
into an “amplitude” value ¢;. We take advantage of this feature when employ-
ing the steady-state solution of the network. An analytical solution of the set of
Egs. (1)-(4) is not always feasible. However, there exist cases of networks, for which
the existence of a solution can be proved.® In the work presented here, standard
numerical analysis techniques are used for the solution of the non-linear system of
equations.

2.2. Associative Memory Operation

Our aim is to use the bipolar random network as the basis for autoassociative
memory operation in a manner analogous to relevant neural network models, such
as the Hopfield network. In general, the construction of a bipolar random network
requires specification of the following characteristics:

e Routing probabilities and firing rates
e External arrival rates
o Sign of nodes

An analogy between usual neural network representation and the random net-
work model can be constructed.” Each neuron is represented by a node of the
random network. Considering the non-output neuron 1, the parameters of the cor-
responding node ¢ are chosen as follows:

d(i) =0 (6)
r(i)pt(i,j) = wsj, ifwy; >0 )
r()p~ (4,7) = |lwi;], fwy <0 (8)
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where w;; is the connection weight from neuron 4 to neuron j. Summing over all 7,
the firing rate r{i) of the non-output node ¢ is set

i) = 3 by ©

Finally, for each output node 7, we set d{i) = 1 and some appropriate value is
assigned to r{i). Although the above quantities represent rates (or frequencies) of
spike emission, they clearly play a role similar to that of synaptic weights.

In what follows, we will restrict our interest to networks constructed according
to the following assumptions:

1. All nodes are non-output (d{i) = 0 for each 7).

2. External signals arriving to each node 7 have the same sign as this node, 1.e.
either A(3) # 0 and A(7) = 0 or A(4) = 0 and A(¢) # 0.

Since all nodes are non-output, the choice of routing probabilities and firing rates
can also be expressed in terms of a matrix W of connection weights by using
Eqs. (7)-(9). Once the connection weights w;; have been .determined, the com-
putation of routing probabilities and firing rates is straightforward. Also we denote
by & = (21,...,%n) the vector representing the sign of nodes, i.e. z; = 1if node ¢ is
positive, otherwise z; = —1. Therefore, the specification of the sign vector can be
viewed as the application of a bipolar pattern to the network. Upon this notion of
applying a pattern as input to the network is based on the operation of the network
as an associative memory. More specifically, an input pattern (also called a probe
pattern) constitutes a partial or distorted version of one of a number of fundamental
patterns that are stored or memorized by the network. The result of the network’s
operation is the correction of the input pattern or equivalently reconstruction of the
respective stored pattern (also referred to as retrieval or recollection). The corrected
version of the input pattern will be considered as the output of the network.

Let {£#},...,2™} bem bipolar patterns to be stored in a bipolar random network
with n nodes and zf € {-1,1} denoting the ith component of pattern % In
order to store these patterns, first the connection weights w;; must be determined
according to some learning rule and then the parameters pt(i,7), p7 (4, 7), r(i) will
be computed using Eas. {7)-(9). Therefore, using a learning rule, the fized part
(routing probabilities and firing rates) of a bipolar random network is specified.

There is also the variable part which consists of the sign of nodes and the external
signal arrival rates. This variable part is determined during operation by the input
pattern that is applied each time to the random network. In particular, if the ith
element of the input pattern is equal to 1, then the 7th node of the network 1s
set positive and the arrival rates of positive and negative signals to this node are
A(5) # 0 and A(3) = 0, respectively. If the ith element of the input pattern is equal
to —1, then the ith node is set negative with A(Z) = 0 and A(7) # 0.

Each time an input pattern is applied to the network during operation, the
numerical solution of the nonlinear system (1)—(4) yields the quantities ai, v, (1),
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v.(8) for ¢ = 1,...,n. Then a correction procedure takes place which consists
of identifying the wrong components of the input pattern based on information
provided by those values.

3. ENCODING OF BIPOLAR PATTERNS

A general remark concerning the learning algorithms that are used fo train autoas-
sociative networks is that their objective is to establish a characteristic property of
the patterns stored. Such a property must be “supported” by the operation of the
network, in the sense that the network should be able to provide output patterns
satisfying the property. Moreover, it is desirable that after the learning phase only
the patterns already stored possess the above characteristic so that they can be
identified during recollection and distinguished from other patterns.

In what concerns the bipolar random network we are interested in incremental
learning algorithms. Such algorithms have the property that, each time a new
pattern must be stored in the network, the update of weights is performed based
on information related to the current weight values and to the pattern to be stored,
without needing to reconsider the patterns already stored.

3.1. Learning Algorithms based on Stability

Two simple incremental learning algorithms that have been used in our experi-
ments are the outer-product rule and the spectral rule. Both learning schemes have
been developed in the context of the Hopfield neural network and are characterized
by their ability to provide (to some extent) the patterns stored with the stability
property. This means that if the network has attained a state corresponding to a
pattern stored, no transition out of this state can occur according to the dynamics
of the network.!® More specifically, in order for a stored pattern {%!,...,2™} to be
a stable state of a Hopfield network with weights w;;, the following condition must
be true!+5:17;

sign(Zm?wﬁ) =sign(zf), i=1,...,n, k=1,...,m (10)
F=1 ' ‘

The above requirement can also be written as

T Z zjwi (2w > 0) — Z |z jw;ild (zjwy < 0)) >0,
b ki

(11)
r=1...,n, k=1,...,m

where the indicator function I(X) is 1 if X is true and 0 otherwise.
In the outer-product case the weights are computed according to the simple

Hebbian rule:
UJ{J‘:ZII:?ZB?, i=1,...,n,7=1,...,n, i £ ] (12)
k=1

wﬁzO, iml,...,n ' (13)
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If the Hebbian rule is used for constructing the connection matrix W, the sta-
bility property of each pattern stored holds with high probability, especially when
the size of the network is significantly larger than the number of patterns.2®!'7 In
general, we cannot guarantee that the stability property holds for every pattern ik
(especially when m has a magnitude comparable to n), except for the case where
all patterns are orthogonal. Orthogonality can be established with high probability
when the patterns £* are generated from a sequence of symmetric Bernoulli trials.
In this case, the capacity of the outer-product scheme is m = O(n/log n).1?

The spectral scheme?® guarantees that each pattern 2% will be a stable state of a
Hopfield network provided that the m patterns to be stored are linearly independent.
It seems to exhibit better performance than the outer-product scheme {capacity m =
O(n)), but the computational cost of constructing the interconnection matrix W is
higher. Several “spectral” formulations of the matrix W have been proposed.®#° We
have considered the following incremental computation scheme. Once the patterns
211 < 1 < k — 1, have already been stored, to store the pattern £ the current
value of the weight matrix becomes:

ekekT

W{k]mﬂ;{k—l}“'rw, kﬂl,...,m (14)

with W0} = 0 and e* = (Al — W[k —1})&*. The parameter A was set equal to n in
our experiments. _

The above learning schemes that establish stable patterns in the context of
the Hopfield network, can also be used for storing patterns in a bipolar random
network. It has been experimentally observed that when one of the patterns stored
is presented as input to a random network that has been trained using the above
rules, the resulting ¢; values are relatively high and close to each other. On the
contrary when an erroneous pattern is presented as input to the network, the g;
values corresponding to erroneous nodes are in general lower than the g; values
corresponding to correct nodes. This characteristic can be used for identification of
wrong components. Another characteristic of the patterns stored that is supported
by the above learning algorithms and is closely related to the operation of the
bipolar random network is the property of consistency defined next.

3.2. The Consistency Property

Definition 1. We shall say that a node of the bipolar random network is consistent
(with its sign) if, in the steady-state, the internal arrival rate of signals it accepts
exceeds the internal arrival rate of signals it rejects:

zi(Yihe (8) — ¥ime(3)) > O (15)

Definition 2. We define the degree of consistency of each node of a bipolar random
network as the guantity:

B: = 2i(Vihe (1) — Yine (D)) (16)

Clearly, nodes with positive degree of consistency are consistent, as defined above.
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Definition 3. A bipolar random network is called consistent if all its nodes are
consistent with their sign. A bipolar pattern & = (z;,...,2,), that is presented as
input to a given bipolar random network, is called a consistent pattern with respect
to the network if it makes the network consistent. |

The interpretation of the above definitions is that when a consistent pattern is
presented as input, the resulting network has the property that the sign of each
node is consistent with its input rate from the other nodes of the network.

The consistency property of a given pattern can also be expressed as:

x; Z ijﬂjwjif(ﬁj"LUji > 0) - Z qj[xjwjilf(:cjwji < 0) >0, i=1,...,n (17)
) J

It is important to notice the similarity between the definition of a stable pattern
in the context of the Hopfield neural network and the definition of a consistent
pattern in the context of the bipolar random network.'® In fact, as Eqs. (11) and (17)
indicate, if all the g; values are equal to each other for a given network, then the two
properties become equivalent, in the sense that if one of them holds for a given node,
the other will hold too. In the Hopfield model, the asynchronous update algorithm
is based on checking whether a selected node satisfies the stability property. The
same principle can be applied in order to develop analogous algorithms for the
bipolar random network that exploit the consistency property.

4. CORRECTION PROCEDURES

As mentioned in the previous section, a first general approach for defining the cor-
rection procedure can be based on the fact that the solution of the flow equations
yields low and high g; values for nodes corresponding to wrong and correct com-
ponents of the input pattern, respectively. This means that the wrong components
of the input pattern are expected to correspond to the lowest ¢; values. In fact,
experimental results show that the network clearly tends to enhance the distance
between g; values which are supposed to indicate wrong and correct components,
but this differentiation is not always strong enough and can vary following the input
pattern. Hence, it is not easy to define an appropriate threshold value that could
help us perform the discrimination.

Instead, we can successively correct the sign of components of the output pat-
tern 9 starting from the lowest ¢; value and following an increasing g; value order,
until a good reconstruction is obtained. Since the number of wrong components
is generally not known a priori, we need a means of estimating the quality of the
reconstruction in order to stop the correction procedure. Estimating the quality of
the reconstruction is equivalent to being in a position to identify a stored pattern.
Therefore, the characteristic properties discussed previously are very helpful in this
direction. If an output pattern is found that satisfies such a property, then we
can consider that a stored pattern has been reconstructed, thus, the recall should
terminate. Otherwise, the procedure should continue by correcting the sign of the
component corresponding to the immediately succeeding g; value.
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In general, it is possible to apply one of the following two strategies: a direct
strategy, where the non-linear system is solved only once for the initially provided
input pattern and the choice of the nodes that should be updated is based on the
resulting ¢; values; an iferative strategy, in which the non-linear system is solved
each time the sign of one or more nodes is corrected, in order to find the ¢; values
that correspond to the new sign vector, and reconstruction continues based on the
updated ¢; values. It is obvious that the iterative strategy is more effective than the
direct one, but it is more expensive in terms of the required computational effort.
The schemes presented next follow either of the above general directions.

4.1. Direct Correction

Direct correction schemes can be developed that are based either on the stability
or the consistency property.

When the Hebbian rule or the Spectral learning scheme is used for computing
the matrix W of a bipolar random network, the stability property is satisfied by the
patterns stored with high probability as stated previously. We should note here,
that the stability property must be viewed as a characteristic of stored patterns
expressed mathematically by (10). This property is due to the learning scheme
and is not related to the operation of the network, as is the case with the Hopfield
network. Being a characteristic of stored patterns the stability property can be used
for their identification. Thus, during the correction procedure described previously,
each candidate output pattern 4 = (y1,...,yn) i associated with a counter, whose
value is equal to the number of indices ¢ that do not satisfy the equation

sign() _ yjwys) = sign(y:) (18)
j=1

The pattern with zero counter or minimum counter after a predefined maximum
number of corrections is taken as the output pattern.

In the above scheme, the analog quantities g; are simply used to imply erroneous
nodes. Indeed, the stability property, used as a criterion for identification, involves
only sign information. On the other hand, the consistency property involves both
the signs of nodes and the information provided by the quantities ¢;. Therefore, a
direct scheme based on the consistency property cannot be applied in the same man-
ner, since checking whether each candidate output pattern § is consistent, requires
the non-linear system to be solved again. This is what happens in the iterative
asynchronous schemes described in the following subsections.

Nevertheless, a reasonable heuristic would be to apply the consistency criterion
to each node separately; thus there is an indication for wrong components and
correction can be obtained in a straightforward manner. More specifically, when
a noisy version of a pattern stored is presented as input to the network, we solve
the non-linear system of equations and compute the analog vector § = (g1,.-.,¢n)-
Then we recognize the erroneous nodes based on the notion of consistency, by
calculating the quantities 7}, (1), vin,(¢) and checking whether condition (15) holds
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for each 7 = 1,...,n. In case a node i does not satisfy the a,bove'condition, we can
consider that there exists an error in the component 7 of the input pattern. Thus,
we can identify erroneous nodes and reconstruct the noisy input pattern. This
method is very simple and fast and provides identification and correction based on
information that is local to each node of the network.

The above described direct correction schemes have been introduced in Ref. 19
where the bipolar random network was employed in an application of symbolic
picture storage and retrieval. They are included here for reasons of completeness
and comparison with the iterative schemes introduced nexs.

4.2. Iterative Correction

In the synchronous case described previously, once the analog vector § has been
computed, all nodes are simultaneously examined for satisfaction of the consistency
criterion. In this way, the effect caused on other nodes by the change of the sign of a
node is neglected. To take this effect into account, an iterative correction scheme is
needed, where the non-linear system is solved each time the sign of a node changes
during correction.

More specifically, we start by providing a noisy pattern as input to the network
and find the corresponding analog vector § through the solution of the non-linear
system of equations. Then at each step of the method, a node is selected and
checked for consistency using Eq. (15). If this is the case, no changes will occur,
otherwise the sign. of node 4 will change and the new vector § corresponding to the
updated network will be computed. By proceeding in this fashion, a state is reached
(in most cases) that corresponds to a consistent network and no further sign change
is possible. Since oscillations may appear in some cases, an upper bound (taken
equal to 4n in our experiments) can be imposed on the number of iterations that
the network is allowed to perform.

In what concerns the node to be selected each time for update there are several
options. One of them is to select the node with the lowest ¢; value since this node
has the greater probability of being inconsistent. An alternative is to randomly
select a node. The latter scheme has been adopted in our experiments since it
makes the operation of the bipolar random network totally analogous to that of the
Hopfield network, with stability checking being replaced by consistency checking.

An interpretation of the operation.of the bipolar random network can be ob-
tained by considering the effect of the ¢; values computed at each iteration. For a
given sign vector, the value ¢; provides an indication of the degree to which node
1 i$ active or not. In contrast to the Hopfield case, the decision of whether a node
should change its sign or not depends not only on the sign of the other nodes to
which it is connected, but also on the degree to which these nodes are active (either
positively or negatively). A node corresponding to a noisy component of the input
vector, will generally have a low ¢; value (and a low degree of consistency). Thus,
the effect of this node to the input rate of the other nodes is reduced and the cor-
rection decisions are based mainly on the nodes which are active enough. Indeed,
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the role of highly active nodes is most significant for the recollection behavior of
the model, as will be discussed next.

4.3 Two-scale Iterative Correction

As suggested in Ref. 18, the capacity of the autocorrelation (Hopfield) model can
be increased by modifying the conventional network dynamics so that the influence
of neurons which are strongly excited (if they are positive) or strongly inhibited (if
they are negative) is reduced. This implies an operation scheme that involves two
phases at each step. During the first phase the conventional Hopfield dynamics is
used and the neurons that are strongly excited (or inhibited) are identified. During
the second phase the percentage of total excitation (or inhibition) of each neuron
that is due to the strong neurons is computed and the outputs of some neurons are
reversed in case this percentage is significant.

“The above procedure is referred to as the partial reverse method'® and is ap-
plied to discrete Hopfield networks with discrete-time dynamics in an attempt to
enhance the recollection capability of the network by moving the state trajectory
away from spurious patterns. Indeed, it is shown in Ref. 18 that the influence of
largely active neurons increases the overlapping of the network state with stored
patterns other than the pattern of interest. These patterns attract the network
state, eventually making it deviate and retreat from the target pattern. This leads
to the idea of helping the network avoid local minima by reducing the influence of
strong neurons, thus making the network state distant from patterns other than the
target. The analog version of the partial reverse method, which is based on neurons
with nonmonotone output function, has better recollection capabilities*®?? and is
considered a successful scheme for continuous-time network models.

Following the above principle, we have developed an iterative two-phase opera-
tion scheme for the bipolar random network. At éach iteration step the non-linear
system is solved twice, once for the whole network and a second time for a subnet-
work of the original network. This two-scale approach is based on the identification
of nodes that are strongly consistent and the exclusion of these nodes from the com-
putations of the second phase. The proposed scheme takes into account not only
the sign but also the degree of consistency that characterizes each node. The ex-
ploitation of this additional information leads to a correction scheme that exhibits
significantly improved reconstruction performance. In what concerns the number
of nodes that are corrected at each iteration, it can be considered as an interme-
diate approach between the direct scheme where all inconsistent nodes change sign
synchronously and the previous one-scale iterative scheme where a single node is
examined at each iteration.

Definition 4. We shall say that a node 7 of the bipolar random network is strongly
consistent if its consistency degree 3; exceeds a positive threshold value pd >0

2V () = Vit (8) > oF (19)

Definition 5. We shall say that a node 1 of the bipolar random network is sirongly
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inconsistent if its consistency degree §; is lower than a negative threshold value
p; <O
i(Yims (1) = Yina (1) < p7 (20)
In our 1mplementat10n, the values of p1 . pz are taken equal for all ¢ and are
computed at each iteration as follows:

.
+ ﬁ +ﬁ$ax

pl s b e (21)
- =Bt B a2

where ﬁ+ > 0 is the average degree of consistency computed over all 7 with 3; > 0
and Bt,. = max(0,max; ;). Similarly, 3 < 0 is the average degree of inconsis-
tency computed over all 4 with 8; <0 and S, = min(0, min; &;).

The following operations take place at each iteration step of the proposed cor-
rection procedure.

® F:rst the non-linear system is solved and based on the resulting ¢; va,lues the
strongly consistent nodes are identified.

e The subnetwork that results from the removal of the strongly consistent nodes
is considered and the corresponding non-linear system is solved to find the new
¢; values of the subnetwork nodes. Based on the resulting ¢; values the strongly
inconsistent nodes are found and their sign is changed. If no such nodes are
detected, convergence has been attained, otherwise we proceed to a new iteration
step.

As is the case with the partial reverse method, the above procedure does not
always converge and frequently exhibits oscillation problems. In order to deal with
this problem we have employed a heuristic that is based on the following remark. We
have observed that in most reconstruction experiments, all erroneous nodes were
contained in the set of inconsistent nodes (not necessarily strongly inconsistent)
identified during the second phase of the first iteration. To exploit this observation,
at the first iteration step we mark the nodes that belong to the above set and our
task then is to distinguish which of these nodes correspond to erroneous components
in order to change their sign. Therefore, during the second phase of each iteration,
only the strongly inconsistent nodes that are marked bave permission to change
their sign. :

The employment of the above heuristic has the advantage that the search for
erroneous nodes is confined to the subset containing the marked network nodes.
Moreover, the oscillation problem is reduced, sincé the number of nodes that are
allowed to change their sign at each iteration is smaller. Convergence is attained, if
at some iteration no marked nodes exist that are strongly inconsistent. Since it is
not possible to prove guaranteed convergence, an upper bound must be imposed on
the number of iterations that the network is allowed to perform (which was taken
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equal to 10 in our experiments). The sign vector at the iteration step, at which this
upper bound is exceeded, is considered as the recollection of the network.

5. EXPERIMENTAL RESULTS AND PERFORMANCE ISSUES

The four operation schemes described in the previous section (two direct and two
iterative) were tested. For reasons of comparison we have also tested the perfor-
mance of the Hopfield model and the Morita partial reverse model using exactly the
same patterns. For each scheme both the Hebbian and the spectral learning rules
were employed. The partial reverse method was not tested under spectral learning,
since it is closely related to autocorrelation (Hebbian) storage and using another
learning scheme would require adjustment of model parameters as given in Ref. 18
(a non-trivial intervention to the model).

We were interested in assessing the capacity and error correction capability of
the various operation schemes for several values of the network size n (in the range
between 20 and 200) and under several levels of distortion d, as explained below.
In particular we have considered four values of d, namely 0.1, 0.15, 0.2 and 0.25.

Experiments for given values of n, m and d were conducted as follows. First the
m patterns to be stored in the network were generated by a sequence of symmetric
Bernoulli trials (each component was set to 1 with a probability 0.5, otherwise it
was set to —1). Then, the weights of the network were computed accordingly using
either the Hebbian or the spectral formulation. During operation, 10 experiments
were performed for each stored pattern. In each experiment, the stored pattern was
randomly distorted to the given distortion level d (by flipping the state of dn nodes
selected at random) and the resulting erroneous pattern was presented as input to
the random network (applying each of the four operation schemes described previ-
ously), as well as the Hopfield network and the partial reverse model. The recall
for a given operation scheme was considered successful, if perfect reconstruction of
the original pattern stored was achieved. Thus, for given values of n, m and d, 10m
reconstruction experiments were performed, and the percentage of correct recollec-
tions was computed. In the case where this percentage was greater than 85%, we
considered that the network “accepted” m patterns under distortion level d. For
specific values of n and d, the maximum value M(n,d) of m for which the network
exhibits acceptable performance is used to determine the storage capacity of the net-
work under the selected operation scheme. We have adopted this definition, which
is close to the most commonly considered notion of capacity, but is also specific
in what concerns distortion of input patterns and reconstruction requirements and,
thus, well-suited for systematic experimentation and comparative evaluation.

Figures 1-4 illustrate the storage capacity of the various schemes as a function of
the size of the network under Hebbian and spectral learning for two different levels
of distortion. It can be readily verified that a much higher performance is generally
achieved under the spectral learning algorithm. This happens because on the one
hand the spectral scheme seems to increase the reconstruction capability of the
network, and on the other hand it also increases the reliability during identification.
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In all cases, the direct correction schemes feature the lowest capacity (as was more or
less expected), whereas the one-scale iterative correction scheme and the Hopfield
model have comparable capacity especially under spectral learning. The partial
- to the two-scale
iterative scheme under Hebbian encoding (Figs. 1 and 2). The latter exhibits an
even better performance under spectral encoding (Figs. 3 and 4) achieving a capacity

reverse method is superior to the above, but is clearly inferior to

larger than 0.5n for a 10% distortion.

M
50
4 Direct - Stability Direct - Consistency  One-scala Rerative
40 Two-scale herative Hopfield network Partial revorse e

Fig. 1. Storage capacity for 10% distortion (Hebbian learning).
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Fig. 2. Storage capacity for 20% distortion (Hebbian learning).
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Fig. 3. Storage capacity for 10% distortion (Spectral learning).
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Fig. 4. Storage capacity for 20% distortion (Spectral learning).

Figures 5 and 6 display the success rate, i.e. the percentage of correctly retrieved
patterns, as a function of the number of patterns stored in a network of large size
(n = 200). The three schemes yielding the best capacity are considered, namely
the Hopfield network, the partial reverse method and the two-scale iterative scheme
of the bipolar random network. Both Hebbian and spectral learning is considered
{only Hebbian for the partial reverse model). As can be observed, the two-scale
iterative method is by far superior and achieves a. 100% success rate under spectral
learning (Fig. 6) for as many as 0.4n patterns with a 15% distortion.
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Fig. 6. Success rate (Spectral learning).

Table 1. Capacity as a function of distortion for n = 100 {Hebbian learning).

Storage capacity

d Two-scale iterative = Hopfield network  Partial reverse
0.10 22 15 18
0.15 20 14 17
0.20 16 12 . 15

0.25 14 .10 13
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Table 2. Capacity as a function of distortion for n = 100 (Spectral learning).

Storage capacity

d T'wo-scale iterative Hopfield network
0.10 85 35
0.15 48 30
0.20 40 26
0.25 31 19

Finally, Tables 1 and 2 display the variation of storage capacity as a function
of the distortion level for the best performing schemes, as before. The two-scale
iterative scheme clearly outperforms the other two at all levels of distortion. It
should be noted, however, that the relative improvement with respect to the partial
reverse model (under Hebbian learning) decreases as distortion grows, which means
that the latter method is more robust to noise. Nevertheless, as shown in Table 2,
the capacity figures obtained by the two-scale scheme under spectral learning are
very satisfactory even for high levels of distortion. '

A few remarks are in place concerning the performance of the proposed two-
scale iterative scheme. The high storage capacity achieved through this scheme
can be attributed to a successful adaptation of ideas improving the recollection
dynamics of autocorrelation models to the specific characteristics of the random
network model. Our experiments have shown that the use of nonconventional dy-
namics {such as techniques analogous to the partial reverse method}, that improve
attractor-like behavior and help avoid spurious memories, can be very effective when
combined with the information contained in the random network. Indeed, the no-
tion of consistency involving both analog and discrete information can be the basis
for developing powerful recollection algorithms. Relative theoretical work coricern-
ing mathematical analysis of the proposed approaches would be very helpful in this
direction. | :

The random network model is an approach based on probabilistic assumptions
that features significant biological relevance, since it aims at reproducing the pulsed
behavior of natural neural systems. The associative memory techniques considered
here are built upon results concerning the steady-state behavior of the network.
Although this leads to numerical procedures based on the solution of a non-linear
system of equations, the potential of the resulting techniques is closely related to
notions with clear physical interpretation (such as activation and consistency) that
reflect the properties of the underlying natural paradigm. A possible drawback
of the proposed schemes is that the solution of non-linear syste'ms makes them
computationally intensive for large-sized problems. It should be noted, however,
that the numerical computations involved are easily parallelizable and, hence, the
method could greatly benefit from implementation on parallel hardware.
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6. CONCLUSION

In this paper we have studied the performance of the Bipolar Random Network,
which constitutes an adaptation of the Random Neural Network model developed
by Gelenbe. In the bipolar network model two types of signals are considered
and two types of nodes with opposite behavior. This symmetry seems to be well
adapted to the mechanisms involved in associative memory operation. In fact, this
network model naturally fits the autoassociative memory paradigm and, in some
sense, constitutes a generalization of the Hopfield neural network model in that
it exploits both analog {g; values) and discrete (sign of nodes) information during
recall.

Several schemes related to the learning and recall phases can be devised. The
learning performance and error correction capability of the model under such schemes
have been investigated in a systematic way through various experiments. Exper-
iments have also been conducted allowing a comparison of the bipolar random
network with other neural associative memory models such as the discrete Hop-
field network and Morita’s partial reverse model. The results obtained were very
promising and, in particular, a reconstruction scheme has been proposed that seems
to provide better storage capacity than other well-known associative neural network
models.
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