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Abstract: Convergence in large optimisation problems
can be aeccelerated through mulliscaling, which consisis
of defining a smaller coarse-scale version of the
problem and alternating beiween ihe fine-scale and
coarse~scale instances during solution. Mulliscaling
lechniques for neural nelworks with continuous valued
unils have been reported in the lLiterature, but these
technigues cannot be applicd lo binary networks.

An original multiscale method for solving oplimisation
problems is presented in this paper, suilable for
Hopfield-type neural networks with binary units.

The method has been tested in the context of the Set
Partitioning Problem by constructing a Boltzmann
Machine Optimizer operating af various levels of
coarseness. The approach appears very promising, as
results indicate that a significant execution speed-up
can be achieved while at the same time the quality of
the solution is preserved.
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1. Introduction

The neural network-approach has been shown to deal
effectively with hard optimisation problems commonly
arising in real world applications, for which no algo-
rithm is known to provide an exact solution in poly-
nomial computation time (Garey & Johnson 1979;
Papadimitriou & Steiglitz 1981).

In many cases, neural networks yield near-optimal
solutions in polynomial time. More specifically, the
Hopfield neural network model {Hopfield 1982; Hop-
field & Tank 1985), and closely related models like the
Boltzmann Machine {Aarts & Korst 1987; Ackley et al.
1085), are widely used in the context of combinatorial
optimisation (Dahl 1987, Guizmann 1987; Herault &
Niez 1991; Zissimopoulos ef al. 1991). The basic idea is
the encoding of the objective function and the problem
constraints in terms of an appropriate energy funclion
or consensus function (Aarts & Korst 1989). This en-
coding must have the property that the local maxima
of the consensus function (local minima of the energy
function) correspond to acceptable solutions of the orig-
inal problem. The objective of the network’s operation
is the minimisation of the energy function or the max-
imisation of the consensus function. In the following,
our presentation wiil be done in terms of the consensus
function of the neural network.

It is well known (Hopfield 1982) that a symmetric
Hopfield network operating in sequential mode wili al-
ways settle into a stable (equilibrium) state correspond-
ing to a local maximum of the consensus function. This
happens because, at each step during operation, the con-
sensus of the network either increases or remains the
same. In general, there are many states corresponding
to tocal maxima of the consensus function. As a con-
sequence, 1t is very likely that the network will settle
te a local maximum while ocur obiective is to reach the
global consensus maximum, i.e. the local maximum with
the most positive consensus.

An efficient approach for finding high consensus
states is to use the Simulated Annealing methodol-
ogy (Kirkpatrick et al. 1983; Kirkpatrick 1984; ven
Laarhoven 1987}, which helps the network escape from
stable states of low consensus and settle into states
of better quality (higher consensus). The resulting
Boltzmann Machine Optimizer (Aarts & Korst 1989)
is the main neural network technique used to solve opti-
misation problems. The main idea is that we introduce
an annealtng schedule from an initial high temperature
down to a temperature value near zero. Associated with
each temperature is a probability that the network can
move towards states of lower consensus during opera-
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tion. As temperature decreases the probability also de-
creases, becoming zero when the temperature reaches
near zero values. In this case the operation of the net-
work is the same as in the pure Hopfield case.

In this paper we develop a multiscale method for hi-
nary Hopfield-type networks. According to this method,
a smaller network is constructed by grouping the nodes
of the original network. The maximisation of the ob-
jective consensus function is carried out by performing
iterations in either the original or the coarse-scale net-
work. An application of the multiscale method is pre-
sented for the solution of the Set Partitioning Problem
(SPP) using a Boltzmann Machine Optimizer. First we
present the architecture of this Optimizer.

2. A neural network architecture for solving
the SPP

A set-theoretic interpretation of the SPP -has the
following {Garey & Johnson 1979). Given a set M =
{my,ma,...,m}, and a family 5 = {51,8,...,5,} of
sets S; © M, any subfamily 5" = {5;,,8;,,--- S}
such that U5, S; = M and S;, NS;, = @ for each A,
p € {1,...,k} with h # p is called a Set-Partitioning
of z‘t'f. )

Moreover, if there is a cost ¢; > 0 associated with
each S; € S then the SPP takes the following definition:
find that set-partitioning S’ of the set A/ which has the
muinimum cost, where the cost of §' = {S;,,...,5;,} is
$°F_¢j; In terms of a O-1 linear program this can be
formulated as: minimise

n

HEEDWOET

j=1

subject to

n

Zdijﬂ.‘j =1

j=l

for each i = 1,...,1. The value of z; is 1 (0) depending
on S; € S, (S5 ¢ §') and the value of a;; is 1 (0)
depending on m; € 55, (m; ¢ 5;).

From the above formulaiion it is obvious that a
valid SPP solution should satisfy two kinds of con-
straints: mutual exclusion and covering constraints. In
Zissimopoulos et al. (1991) the solutions that satisfy the
first constraint without satisfying the second are referred
to as valid partial solutions, while the solutions satisfy-
ing both constraints are referred to as feasible solutions.

A neural network architecture suitable for the SPP
can be defined as follows. The number of computing
elements in the network is equal to the number of sub-
sets included in the family S, so that each corhputing
elernent i represents a subset S;. Also the computing
elements are assumed to be binary.
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As far as the connections between elements are con-
cerned, the basic idea is to impose an inhibitory con- .
nection (with negative value of strength) between unils
that correspond to non-disjeint subsets and to impose
no connection between units that correspond to disjcint
subsets. Moreover the weights are chosen to be sym-
metrical in order to ensure convergence. It has been
found (Zissimopouios et al. 1991) that a counection ma-
trix W = (w;;) suitable for the SPP has the following
form:

v | —imax{8;,8;} e} by HiFE
Wij = { 4] ifi=3j (1)
where i = 1,...,n, j = 1.....n and the thresholds &
(i=1,...,n) take the value

;= @lS;E - i (2)

|5;] is the cardinality of the subset represented by the
whit i, ¢ is the cost of the subset 5;, © = Z:’mc;, € is
a very small positive value, and &; = 1(0) if subsets 5;,
S; are not disjoint (otherwise).

The consensus function corresponding to this neural

network has the form

7 n

i = —;— Z Z Yiy;wi -+ Z Biy: {3)

i=) j=1 f=1

where §¥ = (¥1,...,¥n) is the state of the network. At
each time instant a unit { is selected randomly and the
following quantity is calculated:

S = (1= 2)(D_ wjy; +0:) (4)

i=1

The update rule for each node is as follows. If
8C:(7) > 0 then the state of node i changes. In case
8C; () < 0 the state changes according to some proba-
bility function which in general depends on the quantity
exp{—6C{{)/T, where T' is the temperature parameter
described in the introduction.

The network will finally settle into a state that cor-
responds to a local maxtmum of the consensus function
(Aarts & Korst 1989; Hopfield 1982). In this local max-
imum state only units corresponding to disjoint subsets
could be ‘on’. If a unit is ‘on’, the corresponding subset
must be incorporated in the final solution. Thus, we see
that the mutual exclusion consiraint is satisfied. More-
over, it has been proved that a local maximum state
corresponding to a feasible solution has greater consen-
sus than a local maximum state corresponding to a valid
partial solution (Zissimopoulos ef al. 1991). In addition,
the higher the consensus of the local maximum state,
the lower the total cost of the final solution. Since the
Boltzmann Machine Optimizer generally leads to final
states of high consensus, it is expected that a feasible
solution of low cost will finally be obtained.
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In the next section we present a general multiscale

method suitable for Hopfield-type neural networks with
" binary units and quadratic consensus function. The effi-
ciency of the method will be investigated in the context,
of the Set Partitioning Problem.

3. The multiscale method

8.1. Principles of multiscaling

The idea of multiscaling has its origin in the field of nu-
merical analysis (Chatelin & Miranker 1982; Miranker
1981}. In particular, this is the idea behind the mults-
grid methods (Huckbusch 1978), which are widely used
to solve partial differential equations by optimising
quadratic objective funetions defined on geometric do-
mains.

The basic function is that we can speed up conver-
gence in a large optimisation problem by introducing a
smaller approximate version at a coarser scale and al-
ternating the relaxation steps between the fine-scale and
coarse-scale instances of the probierm.

Mjolsness ¢t el (1991} use the above idea to optimise
a general Hopfield objective function of the form

= ——E Wik Ui vg — g Wigg Uil

ijk
thb: Z(Pz Uz (3}

where v; are continuous neural variables. They suggest
a quite general methodology, according to which the fol-
lowing additional components must be defined:

e a mapping from the original variables v; to fewer
coarse-scale variables V,, called the resiriction or
aggregation map V = R[¥];

e a mapping back from the coarse-scale variables v,
to the original variables v;, called the prolongation
or disaggregation map and given by ¥ = P{V]'

t

e a coarse-scale objective function E‘[Q"], which is in-
tended to approximate the original objective func-
tion E[#] and is cheaper to evaluate and differ-
entiate;

e a suitable algorithm (strategy) for alternating be-
tween the fine- and coarse-scale domains;

o a modification of the basic cycle in order to be able
to operate on several scales concurrently.

The coarse-scale objective function E is chosen to be
the restriction of £ to a subspace parameterised by V.
This subspace is given by the prolongation map P:

E[V) = E[P[V] (6)
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Thus the choice of the prolongation map is of particular
importance. A simple special case is when the chjective
function is quadratic and the maps P and R are matrix—
vector multiplications, with B = P7. This means that
the coarse-scale variables are obtained as a linear com-
bination of the original fine-scale variables. In that case,
the coarse-scale objective function £ has the foll lowing
form: i

B = (RWP)usVaVs N

of

Hence, there is a simple form for the coarse objective
function which is easy to evaluate.

The above described procedure is not _easy to apply
in the case where both vectors # and V should have
binary elements. This happens because the prolongation
map and the restriction map could not have the simple
form (7 = PV, V = R7) defined above, since the linear
combination of binary variables does not yield a binary
variable. Indeed, the fact that both vectors # and V
contain binary valued elements makes the dependence of
the maps on the current state of the fine~scale network
necessary. The multiscale method discussed next uses a
transformation (or map) of special nature and is applied
to neural network optimisers with binary units.

3.2. A multiscale approach for binary networks

Consider a Hopfield-type neural network with n binary
units {n-net). The connection strengths of the network
are wyj, with wy; = wy; and wy; = 0 i=1,....n, =
L,...,n), and the threshold values are 8; {(i=1,...,nk
Suppose now that we wish to switch to a smaller network
with p nodes that we shall call the p-net. The p-net is
also assumed to be a Hopfield-type neural network with
binary units. The mapping from the n-net to the p-net
is based on partitioning the nodes of the n-net into p
disjoint groups, such that each «roup corresponds o a
node of the p-net.

We shall use the notation s(k} to specify the number
of nodes corresponding to group & {k = 1,...,p). The
correspondence between groups of nodes in the n-net
and nodes in the p-net can then be expressed by means
of the mapping function v(k,&') (& = 1,...,p, &' =
1,... s(k)) as follows. The equation v(k, k') = i (i =
i,...,n) expresses the fact that node 7 of the original
network corresponds to the k’-th element of group k.
Thus, the mapping function represents each node i of
the n-net in terms of the index k of the group to which
it belongs and the respective index £ within that group.

If the state of the n-net is y* = (1, .-.Yn). then the
corresponding consensus function C(y*) can be written:

Cly) = 3 Z Z Yy wij + Z iyt
i=l

i=] j=1
rposlk) p s(h)

i
Y Z Z Z y:{k,k')yf(r,z')wu(k,kf}u(l,rf)
k=1k'=1

1i=1
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p_s(k)

+ Z Z Buk k3 Yok k) (8}

k=t k=1

Suppose that while being in state y we decide to switch
to the small network. Suppose also that we have a way
of appropriately constructing the p-net. At some later
time, after operation of the small network, we decide
to switch back to the n-net. Then, if the final state
of the p-net is £ = (&,...,&), the transformation for
obtaining the new state ¥ = {y,...,yn} of the original
network has the following formu:

Ytk k) = Yagropry T gk €k (9)

The quantities uy¢p p1) {or u;) are defined as

uu(;_.,k:) jrems L - 2‘1;:{,‘..;;,) (H}}
be1,...,p, & =1,...,s(k). This means that if g7 = 0
then u; = 1, and if y¥ = 1 then u; = ~1. The advantage

of the above transformation (9) ks that it can ensure that
the new state vector § of the n-net contains binary com-
ponents. There is an interesting physical interpretation
of the transformation: for each group &, £ =1,...,p, if
the final state of unit & in the p-net is 1, then all nodes
belonging to group & change their state (with respect
to the state vector y";‘). Inversely, if the resulting value
£, 15 0, the nodes belonging to group k retain the state
thev had before switching to the p-net.

The connection weights zy, (k= L...,p, [ =
1,...,p) of the p-net can be computed by means of the
following argument. The consensus of the new state i
of the n-net is:

1 <E s(k) p s
Gy = 5 Z Z Z Yol ke &y Hu i Y Work k(1)
bzl kml =1 =1
p o s(k)
DY Buekn Yok i (11)
ka=l A=

Using the transformation equation (9) the above equa-
tion can be rewritben:

o
oD = 533

p s{k}
- [ g 1)

x (y:(k‘kr) + “z-(h.k')fk)

(y:(k.k'} + “u(k‘k’]f»\‘)
XAy e anbnd

KWtk kel yu(l

(12)

After performing some algebra, equation {12} takes the
form

Cl) = C(y*) + C(€) (13)
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where C(y*) is the consensus function given by (8) and
the quantity C(£) can be written as:

1 p P s(k) s(I)
§ Z Z fkél Z Z ( Yok kW e(la") )

X W,k
kol foi ki=1=1 vk udn D)

s(k)
p D Buk iy ugh i)
] g
+ Z‘Sk i(k} o) (14)

e ()

kel lmi V=l X Wutktyuii )

We can easily observe that the above equation corre-
sponds to the consensus of a network of size p whose
state is given by the vector € = (£;,....&) and whose
connection weights xy, b = 1, .,p, f = 1,...,p, take

the form
s{hY s(l)
Ty = Z Z U (& mltv(r YWy b pu(l17) (13)
Ll——l lf_-

Note that to be consistent with the consensus defini-
tion the quantities xyy, k = 1,...,p, should be equal to
zero. We can achieve this by making a slight change to
equation (14). We add the terms

(kY s(k)

By = Z Z Uu(h k) Un(k k) Wolk ke k k)

=1b7=]

k=1,...,p, to the threshold values w;, and set app = 0,
k= 1,...,p. Thus, taking advantage of the faci that

the & values are binary and hence & = &, for the
consensus of the small network we can write

» P

C(€) = Z}:Lm& + ka (16)
k=t izl
where
(k3 (D Uk k) Yo (i) if k
Tjp == Blel faliml ( X Wyl k(47 ) ik #1
0 if b=

(17

and the threshold w; of each node k (& = 1,...,p) of
the small network is

s{k)

wy = zgv(k,k’}uu(k.k')
k=1

sk} po s

+ Z Z Z uv{k,k‘)y:(t,lf)wv(k.k’)v(fxf’)

k=1 i=1 V=1

International Journat of Neural Networks, Vol. 3, No. 2, June 1992

C e e TR




s(k) s(k)

1
-+ 5 ;.-Z—; k;1 Uy (k By Yok B YWy lk EDv{k k)

(18)

Since the change in the network’s consensus from state
y* due to update of node v(k, £} is

§Cor kry(y™) =

p o osti)
Ualk k0 ZZ( L )

V=i X W 31’

8 kty
{19
the threshold value w; can also be expressed as
5(1':.) B
we = ) 8CGan ()
Liml
1 W&,
— wik, k)W ugk, k77 20
2 g Z: ( X Worr kfyulk k') ) ( )

It is important to note that, since the original net-

work has symmetrical weights (fe. wy; = wy; for all
o= 1,...,m, § = 1,...,n), the p-net also has sym-
metrical weights (ie. o = a2y forall & = 1,...,p,
{ = 1,...,p), as we can easily observe from equation

(17). This symmetric behaviour exsures convergence of
the p-net when used in Hopfield-type operations. An-
other important observation concerns the computation
of the values xyy, using equation (17). The importance
lies in the fact that in order to compute the weight g
only the weights w;; connecting the nodes belonging to
groups k£ and ! are involved. This fact implies on the
onre hand a reduced complexity and on the other hand
that there is an inherent parallelism in the transforma-
tion task, i.e. the weights of the small network can be
computed in parallel and each computation requires a
different portion of the connection matrix W.

As a conclusion we can state that, once in a state
y* of the original network, we can create a small p-net
as described above. We can then perform iterations on
this network until it reaches a large positive consensus
value. Using equation ($) we can return to the original
network whose consensus is now given by equation (13},
ie. it is increased by an amount equal to the value of
the small network’s consensus. It should be noted that,
in case the consensus of the p-net does not manage to
reach a positive value, the transformation may not be
accepted (i.e. we can continue to work with the orlgmal
network without affecting its state, which remains z*}
An alternative is to accept the transformation acecord-
ing to some probability function. The main drawback of
this method is that the computation of the weights zpy
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and the values w; depends strongly on the state y* of
the n-net at the time of transformation. Thus, the com-
putation must be repeated each time we wish to switch
to a p-net. This imposes a considerable overhead that
may restrict the number of transitions between the net-
works. It should be stressed, however, that the cost of
switching back to the n-net is negligible.

Another issue that must be stated is that 1t 15 not nec-
essary for all nodes of the fine-scale network to partici-
pate in a group, i.e. the grouping procedure may ignore
some nodes and not incorporate them in any group. in
fact we may consider that all ignored nodes constitute
a group and that the node of the coarse-scale nstwork
which corresponds to that group is set initially to 0 and
1s never selected for update during the operation of the
p-net; the state of the corresponding fine-scale nodes
thus remains unchanged. Since the state of the node is
0, it has no effect on the input of the other p-net nodes
and its connection weights need not be computed.

As a final remark it must be noted that there is no
hint of the initial state of the p-net. The above algo-
rithm does not provide any information concerning the
calculation of a suitable initial value of the vector €.
Thus, the initial state could be assigned at random. In
the next section we shall provide an effective algorithm
for grouping the nodes of the n-net and constructing the
p-net.

3.3, An efficient transformalion scheme

As stated previously, once in a state y* of the original
fine-scale network, we can construct a coarse-scale net-
work by computing the connection weights 2g and the
threshold values wp using equations (17} and (13) {or
(20)). It has also been stated that due to the depen-
dence of these equations on the state y*, the computa-
tions must be repeated every time we wish to switch to
a coarse-scale network.

1t can be verified that the computational cost of the
p-net construction is equivalent to performing i.5n it-
erations i the original fine-scale network. (This figure
corresponds to the case where every node of the n-net
participates in one of the groups.) This cost is not exces-
sively high with respect to total execution time. More-
over, it is possible to take advantage of the computa-
tions performed during the creation of the p-net so that
an improved performance can be ensured for the small
network without any additional cost. The idea is to de-
termine a reasonable grouping of the nodes of the n-net
and at the same time to create the corresponding p-net.

Suppose that starting from the state y* of the fine-

" scale networly, we perform n iterations in the n-net, con-

cerning all n nodes of the network. This means that all
n nodes are sequentially considered for update accord-
ing to an arbitrary order. (To facilitate the presentation
we assume that nodes are selected following an increas-
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ing index order.) In reality, we simply simulate these
updates as follows,

We define two sets P and V. The set P contains the
indexes of the nodes for which the trial was successful
(i.e. the state of these nodes should change if updates
were performed), while the set N contains the indexes
of the nodes for which the trial was unsuccessful. Ini-
tially the two sets are empty. After each iteration, if the
resulting 6C; is positive then the corresponding node i
is added to the set F, otherwise it is added to the set N.
The state of the node is not affected, i.e. the network
remains in state y*. The consensus difference computed
during the i-th iteration (concerning node i) can be ex-
pressed as:

& = 5(;‘1{%}) + ui( Z gy ) {21)

i<i, jeP

From equations (17) and (20} we can observe that dur-
ing the p-net’s construction the quantities 6C;{y*) and
wujwij are computed. Thus, the main idea is to calcu-
late the zy; and wy while constructing the sets F and &
and to create groups dynamically with the property that
all their nodes belong either to P or to N. The imple-
mentation is easy once the group size has been specified
in advance. .

Consider now a state £* of the p-net defined as
£r = { I if the nodes of group & belong to P (22)

E= 1 0 if the nodes of group k belong to ¥

The state 5_;‘ of the p-net corresponds to a state § of the
n-net, which is derived from state y*= by changing the
state of the nodes belonging to the set P, It is clear that,
if P is not empty, the consensus C(£%) = C{#) — C{¥*)
has a positive value. Hence, the above construction
scheme ensures the existence of at least one state of the
p-net that increases the consensus of the n-net. More-
over, a considerable increase can be expected because
moving to state £* is equivalent to performing n itera-
tions in the n-net. .

A first idea could be to choose £~ as the initial state
for the operation of the p-net. However, since the con-
SENsUS (5‘(5*) is expected to have a large positive value,
a steep ascent could take place and hence the search
area of the network in the consensus space would be
restricted. So, it seems more reasonable to start the op-
eration of the p-net from a state of low consensus and
to let it evolve to a state whose consensus will probably
be much higher than that of £*.

This construction scheme ensures that the p-net ob-
tained can provide a considerable improvement in the
network’s consensus. Moreover, an efficient exploitation
of the computations is achieved since the construction of
the p-net is now effectively used to simulate n iterations
in the n-net. Since these iterations are not performed in
reality, the benefit thereof lies in the quality of the con-
structed p-net. Hence, we could claim that the above
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procedure essentizlly reduces the cost of the construc-
tion algorithm from 1.5n to 0.5n iterations.

4, Implementation and results

We have already shown that every state of the p-net with
consensus greater than zero corresponds to an increase
in the consensus of the original network. Actually, if the
state of the p-net is of positive consensus then every it-
eration in this network that increases its consensus also
increases the consensus of the original network. This no-
tion of group updates is of particular importance, since
it exhibits several useful characteristics. Besides reduc-
ing the computational cost of the update it can also be
seen as introducing a kind of ‘thermal noise’ in the oper-
ation of the original network. Grouping nodes together
and ‘simulating’ the interactiorn among the groups can
help us avoid local minima. As a matter ol fact, the
problem of local minima arising in Hopfield-type neu-
ral networks is a direct consequence of the locality of
control existing in those networks. Each node operates
asynchronously and independently and the network is
unable to avoid the local minima ‘traps’. In the multi-
scale approach described here, a small network is con-
structed by grouping nodes together. Each node of the
p-net also operates asynchronously and independently
but each iteration in the coarse-scale network simulates
the interaction among a group of nodes in the fine-scale
network. Thus, using the multiscale technique, on the
one hand locality of control is maintained while on the
other hand multiple interaction is achileved.

It is apparent that the multiscale method is of great
potential, but a ot of appropriate decisions have to be
made 1n order to exploit that potential. We use the
term swilching sirategy to denote the control scheme
which determines the sequence of alternations between
the original network and the smaller size network. Sev-
eral strategies could be developed. For example, in-
stead of alternating between the original and the small
network, we could start from the original network and
create a smaller network. Then we could apply the
multiscale technique to this smaller network and pro-
ceed by repeatedly applying multiscaling to smaller net-
works. Thus we could construct a ‘nested’ multiscaling
approach consisting of a scale hierarchy (Mjolsness el
al. 1991), such that multiscale operation at level I of the
scale hierarchy consists of ordinary operafion at level [
alternated with multiscale operation at level I+ 1, which
is supposed to be coarser than level I

After specifying the sequence of switches between the
networks, as well as the sizes of the constructed coarse-
scale networks, we have to determine the grouping strat-
egy. This term characterises the partitioning of nodes of
the original network into groups in order to create the
small network, i.e. the way in which the function v{k,)
is determined. For example one could group nodes that
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Figure 1. Mulliscale versus single-scale: n = 180, p = 60.

are strongly connected together, as suggested in Mjol-
sness ef al (1991), but this option requires a prepro-
cessing stage to be included in the multiscale procedure,
which may impose unaffordable overhead. In the case
where this preprocessing stage is not acceptable, one
could choose the groups of nodes to be almost equal {the
size of some groups is equal to n/p, while the size of the
remaining groups is equal to n/p -+ 1) and the nodes
of the original network participating in each group to
be selected at random. Also, another grouping scheme
is suggested by the algorithm presented in the previous
section.

Another important point in developing the overall
strategy is to specify the conditions for switching. This
must be considered in conjunction with the specifica-
tion of the annealing schedule, and there are several
choices. For example, each network could have its own
annealing schedule, i.e. we could start the original net-
work from an initial temperature and perform some it-
erations (temperature decrements} in that network, and
then switch to a small network where we perform the
annealing procedure from a suitable initial temperature
until we reach a low temperature. We could then return
to the original network where we would continue the
annealing schedule from the point where 1t was previ-
ously interrupted. Another possible strategy considers
a unified annealing schedule for the entire system. This
means that we keep a global temperature variable which
is successively decremented, either in the n-net or in the
p-net. We have elected to experiment with the second
approach, which seems more elegant, and to keep one
annealing schedule independent of the network alterna-
tions.

The basic element that should be kept in mind when
designing the switching strategy is the overall execution
time. Operation on the coarse-scale network implies the
following advantages:
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e Since the size of the p-net is considerably smaller
compared to the size of the criginal network, the
computation time required to perform an iteration
is considerably reduced.

o The state-space of the p-nei is logarithmically re-
duced with respect to the state-space of the n-net
and the number of iterations required to perform
a search of the state-space of the p-net is much
lower. Thus, the number of iterations per temper-
ature that should be performed on the p-net is sig-
nmificantly lower.

o As already stated, the notion of group update that
is incorporated in the multiscale approach assisls
the original network in escaping from consensus
traps and can lead to higher consensus maxima.

The previous considerations indicate that the execution
time associated with performing iterations on the p-net
is a small fraction of the overall execution tirme. On the
other hand, there is an overhead associated with the
cost of creating the p-net and computing its weights.
Since this computation depends on the current state of
the original network, it must be performed every time
we wish to switch to the coarse-scale network. Thisis a
fact that imposes a restriction on the number of switches
between the networks. Actually, as stated in Mjolsness
el al (1991) and also indicated from our experiments,
there is a limit in the number of switches, over which no
significant benefit is achieved. It should be recalled that
the computational cost of the switch from the coarse-
scale to the fine-scale network is negligible. Therefore,
in order to achieve acceleration it is important that the
benefit from increasing the consensus using the p-net
exceeds the transformation overhead.

Figures 1, 2 and 3 present experimental results of the
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Figure 2. Multiscale versus single-scale: n = 450, p = 150.
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Figure 3. Multiscale versus single-scale: n = 1300, p = 130.

International Journal of Neural Networks, Vol. 3, No. 2, June 1992




Table 1. Consensus values: n = 130, p = 60.

Table 2. Consensus values: n = 450, p = 150,

Initial Multiscale Single- Single- initial Multiscale Single- Single-
scale scale scale scale
Switch Final Finat Final Switch Final Final Final

(High T3)  (Low 7%} (High Tp) (Low Tp)
-4 122 017 2867 11477 11 911 8321 - 93 T34 912 28 841 94 6B 89 987 51 286
~ 4 337 126 2918 12193 10 739 8324 -~ 88 616 §v2 35 696 101 478 101 497 84 450

use of the multiscaling technique for solving the Set Par-
titioning Problem, compared against the single network
case. The curves indicate the evolution of the quantity
max -~ O versus elapsed time. where € is the current
value of the network consensus and Cl.y corresponds
to the final maximum consensus state that is atiained
in each run. The method has been tested on problems
of several network sizes on a Sun 3/60 workstation with
16 Mb of main memory. The results displaved concern
three sizes—n = 180, n = 450 and n = 1300—and two
runs are shown for each case. The group size was se-
lected to be 3 for the first two cases and 19 for the last
case, resulting in coarse-scale networks of size p = 60,
p = 130 and p = 130 respectively. As already stated,
the strategy that we have selected considers a unified
annealing schedule, ie. there 1s a global temperature
which is updated in turn by the networks. In these ex-
periments we consider only one transition to the p-net
and this trapsition takes place at the heginning of each
experiment. Figures 1, 2 and J do not show the con-
struction phase. An initial temperature value Ty = 2.0
was used in all the experiments, whereas switching from
the coarse scale to the fine-scale took place at a temper-
ature equal to 1.0.

The choice to perform only one switeh to the pnet
is due to two reasons. The first concerns the minimi-
sation of the overhead associated with the construction
of the p-net. The second reason is that, as the figures
indicate, a single run in the coarse-scale network signifi-
cantly increases the consensus in a very short fime inter-
val. Thus, starting from an arbitrary initial state of the
n-net, the switch to the coarse-scale network causes a
fast transition to a near maximum state. Afterwards, we
return o the fine-scale network where a more localised
search is performed to find the best possible consensus
maximum.

Tables 1-3 display characteristic values of the consen-
sus function related to the experiments corresponding to
the figures. The first column contains the consensus of
the initial state, which is the same for the runs rep-
resented in each row. For each run of the multiscale
method both the consensus at the moment of switch
and the final consensus value (Chnayx) are reported. It
is apparent from the table values that the largest part
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Table 3. Consensus values: n = 1300, p = 130.

Initial Multiscale Single~ Single-
scale scale
Switch Final Final Final
(High To) {(Low Tp)
- 1288 327112 610 034 811 471 811 410 BAT 194
-1 271 694 848 687 T60 908 400 899 212 690 910

of the consensus ascending process is carried out by the
coarse-scale network. The last two columns of the tables
display the final values (Ciyax) of the consensus function
when a single-scale network is used starting from two
different initial temperature values Tp. The high tem-
perature is the one used as initial temperature in the
multiscale annealing schedule, while the low tempera-
ture corresponds to the point of switch from the coarse-
scale to the fine-scale network. Note that the runs cor-
responding to the last column are not represented in the
figures,

It must be emphasised that whether we perform only
one alternation between the n-net and the p-net depends
on the specific problem we are dealing with and perhaps
on the size of the problem. For sizes of tens or hundreds
of thousands of nodes we do not expect that a single
transformation could be adequate.

Experiments indicate that both the single-scale and
the multiscale methods converge to a solution of accept-
abie quality (near optimal). As indicated by the tables,
the application of multiscaling does not result in any
loss of quality in the solution; on the contrary, in many
cases it provides a slightly higher consensus value. But
in terms of the computational cost and the elapsed time
for convergence the multiscale algorithm is strongly su-
petior. A comparison of the two methods can be ob-
tained in terms of the p speed-up achieved through mui-
tiscaling until a state close to convergence is attained.
In general the improvement lies in the range between 4
and 8, without taking into account the cost of the p-net
construction which is a constant term and represents a
small percentage of the execution cost.
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The values of the last eoluran in each table are in-
tended to illustrate the impact of the coarse-scale phase
on the quality of the solution. As a matter of fact, using
a single-scale network starting from a [ower temperature
provides faster execution but yields solutions of clearly
inferior quality, as indicated by the tables. However,
it should be noted that the above considerations are
closely related to the role of initial temperature, which
is a critical issue for the performance of Boltzmann Ma-
chines in general. '

Further experiments are needed to investigate the ca-
pabilities of the method. Since there is a significant
number of parameters that have to be adjusted (deter-
mining the size p, the switching strategy, the grouping
strategy, etc.), the muliiscale method must be exten-
sively studied in the context of several problems in order
for its full potential to be explored.

5. Conclusions

We have developed an original multiscale approach
suitable for Hopfield-type neural networks with binary
units. The method has been tested in the context of
the Set Partitioning Problem, where a Boltzmann Ma-
chine Optimizer operating at various levels of coarseness
has been constructed. Results indicate that significant
improvements can be achieved and the method appears
very promising.

An important aspect of multiscaling concerns the
specification of appropriate grouping strategies. Hence,
further research should be directed towards specifying
general or problem-dependent criteria for determining
suitable groups and techniques should be developed for
the efficient partitioning of nodes. Also, attempts should
be made to assign a meaningful physical interpretation
to the consensus function of the coarse-scale network, as
well as to the states where it finally setiles.

Finally, it is interesting to examine the muliiscale
method in the context of Hopfield-type neural networks
with bipolar computing elements. We have recently ob-
tained results indicating that the cost of the construc-
tion of the coarse-scale network can be significantly re-
duced if bipolar units are used, but we have not yet
experimented extensively with this case.
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