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ABSTRACT
One of the major research issues in data clustering concerns the
estimation of number of clusters. In previous work, the dip-means
clustering algorithm has been proposed as a successful attempt
to tackle this problem. Dip-means is an incremental clustering al-
gorithm that uses a statistical criterion called dip-dist to decide
whether a set of data objects constitutes a homogeneous cluster
or it contains subclusters. The novel aspect of dip-dist is the in-
troduction of the notion of data unimodality when deciding for
cluster compactness and homogeneity. More specifically, the use of
dip-dist criterion for a set of data objects requires the application of
a univariate statistic hypothesis test for unimodality (the so called
dip-test) on each row of the distance (or similarity) matrix contain-
ing the pairwise distances between the data objects. In this work,
we propose an alternative criterion for deciding on the homogeneity
of a set of data vectors that is called projected dip. Instead of testing
the unimodality of the the row vectors of the distance matrix, the
proposed criterion is based on the application of unimodality tests
on appropriate 1-d projections of the data vectors. Therefore it
operates directly on the data vectors and not on the distance matrix.
We also present the projected dip-means (pdip-means) algorithm
that is an adaptation of dip-means using the proposed pdip crite-
rion to decide on cluster splitting. We conducted experiments using
the pdip-means and the dip-means algorithms on artificial and
real datasets to compare their clustering performance and provide
empirical conclusions from the obtained experimental results.
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1 INTRODUCTION
Data clustering is an important machine learning and data mining
task with wide applications in various scientific and practical fields.
The goal of clustering is to automatically reveal the underlying
structure of a given set of data. More specifically, given a dataset
and a similarity (or distance) measure, clustering methods produce
a partition of the dataset into clusters (ie. groups) of similar objects.
Typical clustering methods (such a k-means or spectral clustering)
require that the number of clusters is provided as input by the user.
In the same spirit, other popular techniques (e.g. DBSCAN), require
other types of parameters to be user defined such as cluster radius,
minimum distance between clusters etc.

A very important issue in clustering is to develop methods that
do not require as input critical user defined parameters. In this work
the critical parameter is the number of clusters, thus we focus on
the significant problem of automatically estimating the number of
clusters k in a dataset.

A fundamental issue related to the number of clusters estima-
tion problem is whether a given set of data objects constitutes a
compact (ie. content homogeneous) cluster or it contains two or
more subclusters. If a successful test is used to decide on this issue,
then it is possible to develop incremental (top-down) clustering
methods that proceed as follows. We start with a single cluster
and proceed by splitting clusters. At each stage, assuming k is the
number clusters i) we apply the decision test to every cluster of
the current solution and determine the clusters that contain sub-
clusters, ii) we split one of those clusters in two clusters (ie. the
number of clusters is increased by one, k=k+1), iii) we refine the
k+1 clusters (using for example the k-means algorithm). The above
three steps are repeated until we reach a clustering solution where
all clusters are considered to be compact. The basic components
in this approach are: i) the decision test (the major one), ii) how to
select the cluster to be splitted (if more than one candidate clusters
exist) and iii) the cluster refinement method (usually the k-means
or Expectation-Maximization algorithm are used).

In this spirit, several algorithms have been proposed with the
major difference being in the way that a cluster is decided as split
candidate or not. The first approach was x-means [7] which uses
Bayesian Information Criterion (BIC) that works well only in cases
where there are plenty of data and well-separated spherical clus-
ters. In [2] the G-means algorithm has been proposed, that uses a
statistical test for the hypothesis that each cluster has been gener-
ated from a Gaussian distribution. The algorithm first projects the
datapoints of a cluster on an axis of high variance and then applies
Anderson-Darling statistic with a fixed significance level. Clusters
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that are not accepted are split repeatedly until no further split is
possible.

The dip-means algorithm has been proposed in [5] as a major
extension of g-means that checks for unimodality instead of Gaus-
sianity. Dip-means is an incremental clustering algorithm, that uses
a statistical criterion for unimodality, called dip-dist, that can be
applied into a data subset in order to determine if it contains a
single or multiple cluster structures. The dip-dist criterion is based
on the notion of viewer which is an arbitrary data object whose role
is to suggest on the unimodality of the dataset by forming the set
of its distances to all other data objects and applying a unimodality
test, called dip-test [3], on this set of distances. In practice, the
dip-dist works by applying the dip-test for unimodality on each
row of the distance matrix containing the pairwise distances among
the objects of the dataset. In case of a homogeneous cluster, the
distribution of distances is expected to be unimodal. In the case
where distinct subclusters exist, the distribution of distances should
exhibit distinct modes. The dip-means algorithm has been empiri-
cally found [5] to be highly superior to previous approaches such as
X-means and g-means in estimating the correct number of clusters.

In this work we propose an alternative way to decide on the
homogeneity of a set of data vectors that we call projected dip
(pdip) criterion. In this criterion the unimodality tests are applied
on appropriate 1-d projections of the data vectors, while the dip-dist
criterion used in the dip-means algorithm applies unimodality tests
on the rows of the distance matrix. Then we present pdip-means
(projected dip-means) which is an incremental clustering algorithm
analogous to dip-means, but employing the projected dip criterion
for deciding of whether to split a cluster or not.

In section 2 we review the dip-means algorithm along with the
employed dip-dist criterion. In section 3, the projected dip crite-
rion is presented followed by the proposed projected dip-means
algorithm. Comparative experimental results on synthetic and real
datasets are provided in section 4 along with the empirical conclu-
sions that have been drawn. Finally section 5 provides conclusions
and directions for future research.

2 DIP-MEANS AND THE DIP-DIST
CRITERION

The dip-means algorithm [5] is an incremental clustering algorithm
that relies on the dip-dist criterion [5] to decide on the homogeneity
of a cluster and uses the k-means to algorithm to refine the clus-
tering solutions after each cluster splitting. The dip-dist criterion
is based on unimodality tests and more specifically on the dip-test
[3] that is briefly described next.

2.1 Dip test for unimodality
The dip-test for unimodality [3] takes as input an 1-d dataset (e.g. a
set of real numbers) and provides a statistical decision of whether
this set is unimodal or not. It examines the underlying empirical
probability distribution (e.g. the histogram) of the given set of
numbers and decides whether it contains a single or more than one
mode (peak). Given a set of real numbers X = {x1,x2, . . . ,xn } the
dip-test computes the so-called dip value, which is the departure
from unimodality of the empirical cumulative distribution (cdf)
F (x) of X , which is computed as:

Figure 1: Unimodal and bimodal histograms and the corre-
sponding dip and p-values.

F (x) =
1
n

n∑
i=1

I (xi ≤ x)

where I (z) is the indicator function. The cdf F (x) is considered
unimodal with mode the region m = (tL, tU ), if it is convex in
(fk‼∞, tL], has constant slope in [tL, tU ], and concave in [tU ,∞).
This implies the non-increasing probability density behavior when
moving away from the mode. The dip value provided by the dip test
is the distance of the empirical cdf F (x) from the closest unimodal
distribution. Details on dip computations can be found in [3]. Low
values of dip indicate unimodality of X , while high values indicate
multimodality. Given a 1-d dataset X of size n, the complexity of
computing dip(X ) is O(n) [3]. The dip-test returns not only the
dip value, but also a p-value. The null hypothesis H0 that F (x)
is unimodal, is accepted at significance level α if p − value > α ,
otherwise H0 is rejected in favor of the alternative hypothesis H1
which suggests multimodality. The computation of the p-value
for a unimodality test uses bootstrap samples and expresses the
probability of dip(X ) being less than the dip value of a set Urn of
n observations (where n is the size of X ) sampled from theU [0, 1]
uniform distribution:

p −value = #[dip(X ) < dip(Urn )]/b, r = 1, . . . ,b

where b is the number of bootstrap samples (b=1000 in our experi-
ments).

It should be stressed that for each value of n, the bootstrap
samplesUrn do not depend on the dataset X , therefore they can be
computed only once, along with the corresponding values dip(Urn ).
Those dip(Urn ) values are sorted, stored and subsequently used
each time we need to compute the p-value corresponding to a given
dip(X ) value. In this way the computational cost of computing the
p-value given the dip value is negligible.

To provide intuitive insight on the results provided by the dip-
test, we present in Fig. 1 several unimodal and bimodal histograms
along with the dip and p-values provided by the dip-test. It can
be clearly observed that as we move from unimodality (1st row)
to bimodality (2nd and 3rd rows) the dip value increases and the
p-value decreases.
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2.2 Dip-dist criterion
The dip-dist criterion has been proposed in [5] for deciding whether
a set data objects X is homogeneous with respect to content or not.
In other words it is used to decide whether dataset X contains
subclusters or not. The novel aspect of dip-dist is that it relates
homogeneity to unimodality. As stressed in [5], the empirical den-
sity of an acceptable cluster should have a single mode: a region
where the density becomes maximum, while non-increasing den-
sity is observed when moving away from the mode. There are no
other underlying assumptions about the shape of a cluster and
the distribution that generated the empirically observed unimodal
property. Unimodality is a very general assumption that allows to
go far beyond Gaussianity (which was the typical case) and includes
a very wide family of distributions. Note that even the uniform
distribution is an extreme case of a unimodal distribution.

Although there exist powerful 1-d unimodality tests like the
dip-test or the Silverman method [8], it is not straightforward to
check unimodality for higher dimensions. As the dimensionality
of the data increases, the tests require sufficient number of data
points in order to be reliable. For this reason, the dip-dist criterion
has been proposed [5] for determining unimodality in a set of data-
points using their pairwise distances (or similarities). The dip-dist
criterion is based on the notion of viewer which is an arbitrary data
object whose role is to suggest on the unimodality of the dataset by
forming the set of its distances to all other data objects and applying
the dip-test on this set of distances. The idea is that the distribu-
tion of the values in this distance vector could reveal information
about the cluster structure. In presence of a homogneous cluster,
the distribution of distances is expected to be unimodal. In the case
where distinct subclusters exist, the distribution of distances should
exhibit distinct modes, with each mode containing the distances to
the data vectors of each cluster. Therefore, the result of a unimodal-
ity test could provide evidence on whether the dataset contains
subclusters.

As mentioned in [5], there is a dependence of the results on the
selected viewer. Intuitively, viewers at the boundaries of the set
are expected to form distance vectors whose density modes are
more distinct in case of more than one cluster. For this reason, in
the dip-dist criterion all n data objects are considered as viewers,
thus the dip-test is applied separately on each row of the distance
matrix. If there exist viewers that reject unimodality (called split
viewers), the dataset is characterized as multimodal.

In Fig. 2 and Fig. 3 we provide an illustrative example for datasets
with two clusters and a single cluster respectively. We present the
histograms of the set of distances observed by two viewers (marked
with ’+’) which are clearly bimodal in Fig. 2 and unimodal in Fig. 3.
Note that the dip values in Fig. 2 are higher than those in Fig. 3.
Based on the results of the corresponding dip-tests we can correctly
decide on the unimodality of each dataset.

2.3 Dip-means algorithm
Dip-means is an incremental clustering algorithm that is based
on cluster splitting and employs the dip-dist criterion to decide
whether or not to split a cluster. Dip-means methodology takes as
input the dataset X and, at each iteration, all current clusters are
examined for unimodality using the dip-dist criterion. If a cluster

(a) (b)

Figure 2: A 2-d dataset, two viewers (marked with ’+’) (top
row) and the histograms of the distances of each of the two
viewers from all data points (bottom row). Both histograms
are found to be multimodal with dip values 0.054 and 0.043
and p-values equal to zero. Both viewers correctly character-
ize the dataset as multimodal.

(a) (b)

Figure 3: A 2-d dataset, two viewers (marked with ’+’) (top
row) and the histograms of the distances of each of the two
viewers from all data points (bottom row). Both histograms
are found to be unimodalwith dip values 0.012 and 0.014 and
p-values 0.991 and 0.927. Both viewers correctly characterize
the dataset as unimodal.

is found multimodal under the dip-dist criterion, it is considered as
a split candidate and obtains a non-zero score value.

At each dip-means iteration, among the clusters that are found
multimodal according to the dip-dist criterion, only the candidate
with maximum score is selected for splitting. This cluster is split
into two clusters using a 2-means local search approach with mul-
tiple restarts from random initial centers, thus number of clusters
increases by one. Then all clusters are refined using the k-means
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algorithm. Starting with one cluster, the above procedure termi-
nates when all clusters are found to be unimodal according to the
dip-dist criterion.

It must be noted that in the dip-means implementation used in
this work, the dip-dist criterion decides multimodality if at least
one split viewer is found. Moreover, the score corresponding to a
split candidate cluster is the maximum dip value among the split
viewers, ie. the dip value of the ’most multimodal’ viewer.

In the dip-means algorithm, the Euclidean distance among two
data points is used to compute the distance matrix. Note, how-
ever, that in the dip-dist criterion only the pairwise distances (or
similarities) between data points are used and not the vector rep-
resentations themselves. This allows to apply dip-means even in
kernel space, once a kernel matrix K with the pairwise similari-
ties is provided. In this case the kernel k-means is used for cluster
refinement instead of k-means.

3 PROJECTED DIP-MEANS
The projected dip-means algorithm (called pdip-means) constitutes
an alternative to the dip-means algorithm that, instead of using the
dip-dist criterion, it employs a different criterion (called projected
dip) to decide on cluster homogeneity. The projected dip criterion
also relies on the dip-test of unimodality, which is now applied on
different 1-d datasets compared to dip-dist criterion.

3.1 The projected dip criterion
As previously mentioned the dip-dist criterion acts on the matrix
with the pairwise distances among the data objects, applying the
dip-test for unimodality on each row of this matrix. In this sense
it is very general, and can be applied even in cases where the data
objects are not available and only the distance matrix is given.

In the typical case where the objects of a dataset correspond
to data vectors, it is possible to test the homogeneity of this set
by employing dip-test for unimodality [3] in a different and more
straightforward way. More specifically, we assume that a set of
data vectors is homogeneous if its 1-d projections are unimodal
(according to the dip-test). This is in analogy with the criterion
employed in the g-means algorithm [2] where the set of projections
on the first principal axis is tested for gaussianity. In this work,
we extend this idea by considering 1-d projections on several axes
and use the more general dip-test for unimodality, instead of a
gaussianity test.

We refer to the proposed criterion as projected dip (pdip) crite-
rion that can be applied to decide on the homogeneity of a set of
data vectors. To use this criterion, first a set ofM 1-d projections is
specified. Then for each projection j (j = 1, . . . ,M), the correspond-
ing projected value for each data vector is computed, thus the 1-d
set Pj is formed, and the dip test is applied on set Pj to obtain the
values dipj and p −valuej . In analogy with the dip-dist criterion,
each projection can be considered as a ’point-of-view’. Therefore
if multimodality is observed for several ’point-of-views’ (at least
one in our experiments) then the dataset is considered multimodal,
otherwise it is considered unimodal.

Three types of 1-d data projections could have been considered:
• Projections on each of the d the original axes, ie. we apply
the dip test on each column of the dataset.

(a) (b)

Figure 4: A 2-d dataset (top row) and the histograms of data
projections on each of the two original axes (bottom row).
The histogram on the left is found to be multimodal, with
dip=0.1 and with p-value=0. The histogram on the right is
found to be unimodal with dip=0.01 and p-value=0.94 Since
at least one multimodal projection is found, the pdip crite-
rion characterizes this dataset as multimodal.

• PCA projections, where Principal Component Analysis is
applied to the dataset to extract projections on each principal
axis. In our experiments, the dip-test is applied to each of
the d principal projections.

• Projections on randomly selected axes (random projections).
A sufficient number of random projections could reveal the
existence of Gaussian clusters with error probability 1% for
12 projections and 0.1% for 18 projections. In the current
work we did not use random projections to avoid the random-
ness that would have been introduced in the computation of
the pdip criterion.

In summary, to decide on content homogeneity of a set of real
valued data vectors using the pdip criterion, we apply the dip-test 2d
times: for each of the d columns of the data matrix and for each the
d PCA projections. If at least one dip-test indicates multimodality,
then the dataset is consideredmultimodal, otherwise it is considered
unimodal. In the case of multimodality, the largest among the dip
values of the projections is considered as the multimodality score
of the dataset.

In Fig. 4 and Fig. 5 we provide an illustrative example using arti-
ficial 2-d datasets with two clusters and a single cluster respectively.
For each dataset we present the two histograms corresponding
to the data projections on the two main axes. In Fig. 4 it is clear
that one histogram is bimodal and one unimodal and this also in
accordance with the results of the dip-test. In Fig. 5 both histograms
are multimodal and the dip-test also correctly decides on this issue.
Based on the results of the dip-tests, the pdip criterion can correctly
decide on the unimodality of each dataset.
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(a) (b)

Figure 5: A 2-d dataset (top row) and the histograms of data
projections on each of the two original axes (bottom row).
Both histograms are found to be unimodal with dip values
0.098, 0.089 and p-values 0.92 and 0.91. Both projections cor-
rectly characterize the dataset as unimodal.

3.2 The projected dip-means algorithm
Given a set of real valued data vectors, the projected dip-means
(pdip-means) can be obtained from the original dip-means algo-
rithm by replacing the dip-dist criterion with the projected dip
(pdip) criterion. Therefore, pdip-means is an incremental cluster-
ing algorithm that starts with a single cluster and iteratively adds
clusters to the solution through cluster splitting based on the pdip
criterion.

More specifically, the pdip criterion is applied on every cluster
of the current solution with say k clusters, and each cluster is
characterized as either multimodal or unimodal. In the case where
a cluster is found multimodal, the maximum dip value (maxdip)
computed in the dip-tests for this cluster is also retained. If one
or more multimodal clusters exist in the currest solution, then the
cluster with the highest multimodality score is selected and splitted
into two clusters. Thus, the number of clusters increases to k+1 and
the k-means with k+1 clusters is applied to further refine the k+1
clusters and provide the solution with k+1 clusters. The above steps
are repeated until all clusters in the current solution are found to
be unimodal, thus the algorithm terminates since no further cluster
splitting is suggested.

4 EXPERIMENTAL RESULTS
In our experimental evaluation we compare the proposed pdip-
means method with the original dip-means [5]. The two compared
methods were executed starting with a single cluster and, at each
iteration, the most multimodal cluster is selected and splitted in two
clusters. To implement splitting of a cluster in two subclusters, 10
trials are performed on the cluster data using a randomly initialized
2-means algorithm and the split with lower clustering error is kept.

(a) (b)

Figure 6: The same clustering solution provided by both
pdip-means and dip-means on two artificial datasets.

(a) (b)

Figure 7: The clustering solution provided by (a) pdip-means
and (b) dip-means on an artificial dataset four with uniform
clusters of rectangular shape.

Therefore, the major difference between the two methods con-
cerns the criterion that decides on cluster homogeneity. The param-
eters of the dip-dist criterion are set as a=0 for significance level of
dip test and b=1000 for the number of bootstraps, the same as in the
case of pdip. In all examined datasets ground truth cluster labels are
used. In artificial datasets they are specified by the data generation
mechanism, while in real datasets we assume that cluster labels
coincide with the available class labels. In order to compare the
ground truth labeling and the grouping produced by the clustering
methods, we utilize the Variation of Information (VI) metric [6] and
Rand Index (RI) [4]. Note that lower values of VI and higher for RI
indicate better solutions.

It should be emphasized that in all clustering experiments the
number of clusters was not given as input, instead it was automati-
cally determined by the clustering algorithms.

4.1 Synthetic datasets
We first provide clustering results for synthetic 2-d datasets. In
Fig. 6 we provide the solution obtained (a) on the three wings
dataset and (b) a difficult dataset with seven clusters of various
shape and density. Both dip-means and pdip-means provided the
same solution (shown in the figures). In the first dataset (Fig. 6a)
the number of clusters is correctly estimated, while in the second
dataset (Fig. 6b) eight clusters were found, while the correct number
is seven (the bottom left cluster has been split in two).

In Fig. 7 the clustering solutions for a dataset with four clusters
of orthogonal shape and uniform density are presented. In this case
pdip means (Fig. 7a) provides the correct solution and performs
better than dip-means (Fig. 7b) which splits the top right cluster in
two subclusters.
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(a) (b)

Figure 8: Representative 2-d datasets: (a) case 1 dataset (with
Gaussian and uniform clusters), (b) case 2 dataset (with
Gaussian, uniform and Student-t clusters). Note that in case
2, the Student-t distribution introduces noise and outliers.

Table 1: Results with synthetic datasets (20 clusters) (case 1)

Dataset k RI VI k RI VI
pdip pdip pdip dip dip dip

Case 2 means means means means means means

d=2 20 0.999 0.02 19.8 0.998 0.03
d=4 20 1 0 20 1 0
d=8 20 1 0 20 1 0

Table 2: Results with synthetic datasets (20 clusters) (case 2)

Dataset k RI VI k RI VI
pdip pdip pdip dip dip dip

Case 2 means means means means means means

d=2 19.4 0.982 0.095 19.1 0.965 0.152
d=4 19.6 0.987 0.088 19.4 0.976 0.111
d=8 19.8 0.991 0.082 19.7 0.990 0.081

Based on the experimental protocol suggested in [5], we cre-
ated synthetic datasets with true number k=20 clusters, with 100
datapoints in each cluster (thus n=2000), in d=2, 4, 8 dimensions
and with low separation degree. Two cases were considered: 1)
datasets with 50% Gaussian clusters and 50% Uniform clusters and
2) datasets with 40% Gaussian clusters, 40% Uniform clusters and
20% Student-t clusters. Note that the Student-t clusters introduce
outliers to the dataset, thus the datasets of case 2 are more difficult
to cluster correctly. Fig. 8 provides a representative 2-d dataset
for case 1 (Fig. 8a) and for case 2 (Fig. 8b) respectively. Note the
existence of noise and outliers in the case 2 dataset.

For each case and value of d, we generated 20 datasets that were
clustered with pdip-means and dip-means respectively. Average
performance results concerning the estimated k, RI and VI are
presented in Table 1 and Table 2. As the results indicate, both p-dip
and dip-means provide excellent clustering performance in all cases
estimating almost perfectly the true number of clusters, even in the
case of noisy datasets. Based on results, pdip-means seems to be
slightly superior to dip-means, however, this difference cannot be
considered as significant.

Table 3: Results on real datasets

Dataset k RI VI k RI VI
pdip pdip pdip dip dip dip
means means means means means means

Iris (k=3) 3 0.87 0.56 2 0.71 0.6
PD:047 (k=3) 5 0.82 0.97 5 0.84 0.95
PD:02468 (k=5) 5 0.57 0.98 6 0.88 0.78
PD:13579 (k=5) 7 0.73 1.66 6 0.82 1.41
HD:047 (k=3) 3 0.85 0.49 1 0.5 0.69
HD:02468 (k=5) 6 0.79 1.51 2 0.56 1.82
HD:13579 (k=5) 7 0.85 1.56 1 0.49 1.61

We also conducted clustering experiments using several real
world datasets [1], where the provided class labels were considered
as ground truth. The clustering performance results are presented
in Table 3.

The first dataset is the well-known Iris dataset containing 150
4-dimensional examples belonging to 3 classes. It can be observed
that the proposed pdip-means outperforms dip-means and correctly
estimates the number of clusters. We also conducted experiments
with several subsets of i) the Pendigits dataset (PD) that contains
16-dimensional vectors, each one representing a digit from 0-9 as
written by a human subject and ii) the USPS Handwritten digits
dataset (HD) that contains 64-dimensional vectors corresponding
to 8x8 images of the digits 0-9. The datasets are provided in the
form of training and test sets. We clustered three subsets of the test
sets containing the data vectors of the digits {0,4,7} (k=3), {0,2,4,6,8}
(k=5) and {1,3,5,7,9} (k=5). We do not apply any preprocessing on
the data vectors.

From the results in Table 3, it can be observed that for the PD
dataset, both methods provide reasonable estimates of the number
of clusters, with dip-means being more accurate than the proposed
pdip-means. For the HD dataset, the dip-means encounters diffi-
culty in deciding to split clusters thus, it underestimates the cluster
number, while pdip means does not seem to have such problem pro-
viding solutions of much better quality. A general empirical remark
is that for some real datasets, the dip-means algorithm sometimes
does not manage to split the initial clusters. This problem could
be alleviated by running dip-means with larger initial k (e.g. k=3).
In the pdip-means case such a problematic behavior has not been
observed.

4.2 Computational Cost
In what concerns the comparison of the computational complex-
ity of the two methods, assume a cluster with n data vectors of
dimensionality d. Both the pdist and dip-dist use the dip-test on 1-d
dimensional sets of size n, thus the dip-test complexity is O(n). The
computation of pdist requires 2d applications of dip-test, while the
computation of dip-dist requires n applications of dip-test. Usually
d ≪ n, thus in typical cases the pdist can be considered much
faster. However, it must be stressed that application of pdip has
the additional cost of computing the PCA projections that is in the
general case O(n3). In practice, and for the datasets examined in this
paper where d ≪ n, pdip-means was always faster than dip-means
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if both provided solutions with similar number of clusters. More
specifically, we conducted experiments using the case 1 (section 4.1)
synthetic datasets with 20 clusters, having N=2000, 4000 and 8000
data vectors and with d=2, 4 and 8 dimensions. All the combinations
of N and d were examined. We empirically found that execution of
pdip-means was 1.5 to 4 times faster than dip-means.

5 CONCLUSIONS
Estimating the number of clusters is a difficult and important issue
in data clustering. We have presented the pdip-means algorithm, a
clustering approach that automatically determines the number of
clusters. The method can be applied in the typical case where the
dataset is given as a set of data vectors. It constitutes an adaptation
of the dip-means algorithm [5] employing a different criterion (pdip
criterion) for deciding on the homogeneity of a given cluster. More
specifically, in the pdip criterion the unimodality tests are applied
on 1-d projections of the data vectors, while the dip-dist criterion
used in the dip-means algorithm applies unimodality tests on the
rows of the distance matrix.

Experiments on difficult synthetic datasets withmany nonGauss-
ian clusters indicate that both methods provide solutions of very
good quality, and estimate accurately the correct number of clusters.
In the case where noise and outliers are added to the datasets, pdip-
means seems to be slightly superior to dip-means. In the case of real
datasets, pdip-means seems to be more effective than dip-means,
in the cases where the latter has difficulty in deciding to split the
initial clusters.

One direction of future work aims at assessing the performance
of the pdip-means algorithm in real world clustering applications
(e.g. face clustering). We also plan to experimentally test whether
the applications of dip-test on random projections (that is not con-
sidered in this work) would improve the performance of pdip. Fi-
nally, it is worthwhile to examine the combination of the pdip and
dip-dist criteria into a composite decision criterion for cluster uni-
modality. Such a criterion would take into account the unimodality
observed both in various data projections (pdip) and on the rows
of the distance matrix (dip-dist).

REFERENCES
[1] A. Asuncion and D. Newman. [n. d.]. UCI Machine Learning Repository. University

of California at Irvine, Irvine, CA. ([n. d.]). http://www.ics.uci.edu/mlearn/
MLRepository.html

[2] G. Hamerly and C. Elkan. 2003. Learning the k in k-means. In Advances in Neural
Information Processing Systems (NIPS ’03). 281–288.

[3] J.A. Hartigan and P. M. Hartigan. 1985. The dip test of unimodality. Annals of
Statistics 13, 1 (1985), 70–84.

[4] L. Hubert and P. Arabie. 1985. Comparing partitions. Journal of Classification 2, 1
(1985), 193–218.

[5] A. Kalogeratos and A. Likas. 2012. Dip-means: an incremental clustering method
for estimating the number of clusters. In Advances in Neural Information Processing
Systems (NIPS ’12). 2393–2401.

[6] M. Meila. 2007. Comparing clusterings Ű an information based distance. Multi-
variate Analysis 98, 5 (2007), 873–895.

[7] D. Pelleg and A. Moore. 2000. X-means: extending k-means with efficient estima-
tion of the number of clusters. In Interantional Conference on Machine Learning
(ICML ’00). 727–734.

[8] B. Silverman. 1981. Using Kernel density estimates to investigate multimodality.
Journal of Royal Statistic Society B 43, 1 (1981), 97–99.

http://www.ics.uci.edu/ mlearn/MLRepository.html
http://www.ics.uci.edu/ mlearn/MLRepository.html

	Abstract
	1 Introduction
	2 Dip-means and the Dip-dist criterion
	2.1 Dip test for unimodality
	2.2 Dip-dist criterion
	2.3 Dip-means algorithm

	3 Projected dip-means
	3.1 The projected dip criterion
	3.2 The projected dip-means algorithm

	4 experimental Results
	4.1 Synthetic datasets
	4.2 Computational Cost

	5 Conclusions
	References

