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Abstract—One of the most interesting problems in network
analysis is community detection, i.e. the partitioning of nodes
into communities, with many edges connecting nodes of the same
community and comparatively few edges connecting nodes of
different communities. We introduce a new quality measure to
evaluate a partitioning of an undirected and unweighted graph
into communities that is called inclusion. This quality measure
evaluates how well each node is included in its community by
considering both its existent and its non-existent edges. We have
implemented a strategy that maximizes the inclusion criterion
by moving each time a single node to another community. We
also considered inclusion as a criterion for evaluating partitions
provided by spectral clustering. In our experimental study, the
inclusion criterion is compared to the widely used modularity cri-
terion providing improved community detection results without
requiring the a priori specification of the number of communities.

Index Terms—social networks, community detection, modular-
ity, inclusion

I. INTRODUCTION

The detection of communities is of great significance in so-
ciology, biology, computer science and other disciplines where
complex systems are often represented as graphs or networks.
A graph cluster or community is typically considered as a
group of nodes with high connectivity among its members and
low connectivity to nodes of different communities. The gen-
eral methodology when trying to detect communities involves
two main steps: i) Define a quality measure (objective func-
tion), that captures the main property of community structure:
nodes in the same group have higher internal than external
connectivity. ii) Use search methods so that the nodes are
assigned to communities, through optimization of the objective
function. In many cases, the exact optimization of the objective
function leads to computationally hard problems. Therefore
a common approach is to employ some kind of heuristic
(e.g. greedy) algorithms or other approximation techniques. An
alternative approach is to consider typical clustering methods
(e.g. spectral clustering) to obtain partitions and then employ
the quality measure to select the best among various partitions.

A popular measure that has been widely used to evaluate the
quality of a a graph partition is modularity [1] . The main idea
behind modularity is that, given a graph partition, it measures

the difference between the number of edges that exist within
a community and the expected number of edges of a random
graph with the same degree distribution. More specifically,
given a graph G = (V,E) the modularity value Q of a partition
C = {C1, C2, . . . , Cm} of G is defined as:

Q =
1

2s

∑
ij

(eij −
didj
2s

)δ(Ci, Cj)

where i, j denote graph nodes, eij the weight of the edge
between i and j, di is the sum of edge weights attached to node
i, s is the sum of all edge weights, Ci denote the community
of node i and δ(u, v) is 1 if u = v and 0 otherwise.

It has been proved that exactly optimizing modularity is
a NP-complete problem [2]. Among various approaches (e.g.
agglomerative clustering, simulated annealing etc), a simple
heuristic algorithm [3] (usually called Louvain algorithm) has
gained wide acceptance due to its low complexity and good
performance. The Louvain algorithm implements a ’greedy
node movement’ strategy: it computes for each node the
change in modularity obtained by moving this node to an-
other community and selects the node movement that mostly
improves modularity. A notable property of modularity is that
it can be used to compare partitions with different number
of communities, thus modularity optimization be can used to
automatically infer the number of communities.

II. INCLUSION MEASURE

In this work we propose a new measure for the quality
of a graph partition that we called inclusion. Assume we
are given an undirected and unweighted graph G = (V,E),
where n = |V | the number of nodes, eij ∈ {0, 1}, i 6= j and
di > 0 the degree of each node i (i = 1, . . . , n). If eij = 1
we characterize the corresponding edge as existent, while if
eij = 0 we characterize the edge as non-existent. Assume
also a partitioning C = {C1, C2, , Cm} of this graph into
m communities Ci. As the name indicates, our measure for
evaluating the quality of a partitioning focuses on how well a
node is included in its community. Ideally, the node should be
connected to all nodes in its community and should not contain
edges to nodes in other communities. The ideal case occurs
when the community structure contains totally disconnected
subgraphs with each subgraph having full internal connectivity.IEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain
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In this case, the inclusion of each node should have the highest
possible value. Note that when a node is not connected to some
nodes of its community or it is connected to nodes of other
communities its inclusion should be much lower.

Let e1i (in) the number of existent edges (eij = 1) that
connect node i to nodes in its community and let e0i (out) the
number of non-existent edges (eij = 0) from node i to nodes
outside its community. The ratio I1i (in) = e1i (in)/di expresses
the percentage of node i existent edges falling inside its
community and becomes maximum (equal to 1) when the node
is connected only to nodes in its community (e1i (in) = di).
The ratio I0i (out) = (e0i (out) + 1)/(n − di) expresses the
percentage of node i non-existent edges going outside its
community and becomes maximum (equal to 1) when all non-
existent edges go to other communities (ei0(out) = n−1−di).
The inclusion of node i (node inclusion) is defined as follows:

Ii =
I1i (in) + I0i (out)

2
=

1

2
(
e1i (in)

di
+
e0i (out) + 1

n− di
)

In other words, the inclusion of each node takes into account
the existing edges inside its community and the non-existing
edges to the other communities. If all existent edges of node
i are inside its community then e1i (in) = di and e0i (out) =
n− 1− di and inclusion becomes maximum, Ii = 1. If there
are non-existent edges to nodes in the same community or
existent edges to nodes outside the community then the node
inclusion gets lower. In case where each node forms its own
community, it holds that I1i = 0 and I0i = 1, thus inclusion
gets much smaller, Ii = 0.5. The minimum value of inclusion
is Ii = 1/2(n− di) and occurs when e1i (in) = e0i (out) = 0.

The inclusion measure I (graph inclusion) of a partitioning
C of graph G is defined as the average inclusion over all graph
nodes:

I =
1

n

n∑
i=1

Ii

Compared to modularity the inclusion measure exhibits two
notable differences. The first is that inclusion not only pro-
motes full connectivity inside a community, but also values
the absence of edges among different communities. Thus it is
a multi-objective criterion, while modularity focus only on the
internal connectivity of a community. The second difference
is that inclusion focuses primarily on evaluating nodes and not
communities as happens with modularity.

As it can be observed in Fig. 1, the inclusion value tends
to increase as the quality of the partition increases. In case (a)
the graph is under-partitioned into three communities and the
inclusion of the partition is I=0.85. In the second case, the
graph is separated in four communities, which is the visually
the best solution, and the inclusion is I=0.89. In the third
case, the graph is over-partitioned into five communities and
the inclusion is I=0.80. Is it clear that the quality of the three
partitions aligns with the corresponding inclusion values and
the maximization of inclusion can reveal the correct number
of communities.

Another indicative example is that of a fully connected
graph, thus for all edges eij = 1 and di = n− 1 for all nodes

Fig. 1. (a) Graph partitioned into three communities, I = 0.85 b) Graph
partitioned into four communities, I = 0.89 c) Graph partitioned into five
communities, I = 0.80.

i. Obviously the best partitioning occurs when all nodes are in
a single community. It can be easily shown that in such case
the corresponding inclusion value is maximum: I = Ii = 1.
On the hand, a bad solution occurs when each node forms
its own community and the corresponding inclusion value
is I = Ii = 0.5. In another example where the graph is
partitioned in isolated fully connected subgraphs the inclusion
of the optimal partition is I = Ii = 1.

III. INCLUSION FOR COMMUNITY DETECTION

In order to exploit the inclusion measure for community
detection search strategies should be developed aiming to
provide community partitions of maximal inclusion.

A. Greedy Node Movement

A typical first approach to follow is the agglomerative strat-
egy: starting each node in its own community, we iteratively
merge two communities as long as the total inclusion of the
new partition is increasing. However, it well-known that such
agglomerative approach suffers from increased computational
complexity. For this reason, inspired by the fast modularity
approach (Louvain algorithm) [3], we implemented a strategy
based on greedy node movement: each time a single node is
allowed change community (ie. to move between communi-
ties) instead of merging whole communities. The initialization
is the same as previously, with every node forming its own
community. At each iteration, we calculate for every node
i (currently in community Ck) and for every community Cl

(l 6= k), the difference ∆Ii(Ck, Cl) in graph inclusion caused
by moving i from Ck to Cl:

∆I1i =
1

2

∑
j∈Ck,j 6=i

{(1−eij)(
1

n− dj
+

1

n− di
)−eij(

1

dj
+

1

di
)}

∆I2i =
1

2

∑
j∈Cl

{eij(
1

dj
+

1

di
)− (1− eij)(

1

n− dj
+

1

n− di
)}

∆Ii(Ck, Cl) =
1

n
(∆I1i + ∆I2i)

Note that, since eij is zero or one, only one of the two terms
needs to be computed in the above formulas. Based on the
values of ∆Ii(Ck, Cl), we can decide an appropriate node



movement and this procedure is repeated until there is no
possible single node movement with ∆Ii > 0.

There are several strategies that could be followed to decide
on the single node movement to be implemented at each
iteration. One is to implement the best among all possible
node movements A faster alternative adopted in our approach
is to earlier accept movements that improve inclusion without
examining all nodes. To implement such a strategy three
decisions should be made: i) whether to examine nodes se-
quentially or to select nodes randomly, ii) whether to examine
movements only to communities adjacent to the community of
the examined node or movements to every other community,
iii) whether for each node to examine all possible movements
to other communities and find the best movement or to accept
the first encountered movement that improves inclusion. We
have implemented and compared the eight possible strategies
to maximize inclusion based on single node movement be-
tween communities. Considering both clustering performance
and computational cost we selected as more appropriate the
strategy which at each step: i) examines all nodes sequentially,
ii) allows node movement to adjacent clusters only, iii) accepts
the first encountered movement that increases inclusion.

B. Spectral Clustering

As already mentioned, a convenient characteristic of the
inclusion measure is that it can be used to compare among
partitions with different number of communities. Therefore
another approach to community detection is to produce several
graph partitions using spectral clustering [5] and use inclusion
as a quality measure to select the best partition. More specifi-
cally, for each graph, spectral clustering is executed for several
values of the number of communities m (eg. for m=2 to 20),
the inclusion of the partition for each m is computed and
the partition of maximum inclusion is considered as the final
result.

IV. EXPERIMENTAL RESULTS

In order to empirically evaluate the proposed approach, we
used several synthetic graphs as well as a real-world graph
with known ground-truth partitions. In order to evaluate the
quality of the compared methods, we computed the similarity
of an obtained solution with the ground truth solution employ-
ing two commonly used measures: Normalized Mutual Infor-
mation (NMI) and Adjusted Rand Index (ARI). Both measures
return values between zero and one and higher values indicate
better clustering performance. We also present the number
communities (clusters) of each solution for comparison with
the number of communities in the ground truth solution.

It is well-known that methods based on modularity opti-
mization suffer from the ’resolution limit’ problem [4]. More
precisely, modularity optimization might fail to detect clusters
smaller than a scale number, which is mainly dependent
on the graph size. This limitation is important because real
world networks, often contain communities of various sizes.
In order to test whether inclusion optimization can deal with
the resolution limit problem, we created ring graphs containing

small fully connected communities forming a ring with only
one edge from one community to the next one (see Fig. 1).
We compare our inclusion maximization method based on
greedy node movement to the Louvain algorithm maximizing
modularity [3]. In Table I we provide comparative performance
results on ring graphs with different numbers of communities
m and nodes per community L (thus the number of graph
nodes is n = m× L).

Fig. 2. A ring graph with m=10 fully connected communities. Each circle
represents a community.

TABLE I
COMPARTATIVE EXPERIMENTAL RESULTS ON RING GRAPHS

Inclusion Modularity
Clusters NMI ARI Clusters NMI ARI

m=10, L=3 10 1 1 5 0.836 0.524
m=15, L=4 15 1 1 8 0.872 0.587
m=30, L=5 30 1 1 16 0.899 0.617
m=50, L=6 50 1 1 25 0.907 0.616

From the results in Table I it is clear that, in contrast to
modularity, the proposed inclusion measure does not suffer
from the resolution limit problem and the inclusion optimiza-
tion strategy always discovers the ground truth community
structure, providing solutions with NMI and ARI equal to 1.

In order to produce synthetic graphs with specific proper-
ties, we implemented a function that creates a graph given
the following parameters: number of nodes (n), number of
communities (m), community size vector (CS) specifying the
size of each community, internal edge probability vector (IEP)
specifying for each community the probability of internal edge
existence and, finally, external edge probability (EEP) which
is the probability of each node to have an edge with nodes
outside its community.

In all cases the external edge probability (EEP) was fixed to
0.15. For given values of n and m, by adjusting the parameters
CS and IEP we created five categories of synthetic graphs
with different characteristics regarding the distribution of
community size and internal connectivity density: i) balanced
and dense communities (B&D), ii) balanced communities of
decreasing density (B&DD), iii) dense large communities and
low density small communities (DL&SS), iv) decreasing size
and decreasing density (DS&DD), v) increasing community
size and decreasing density (IS&DD).

At first we compared our greedy inclusion maximization
algorithm to the Louvain algorithm that maximizes modularity
[3] in a similar way. For each of the above graph categories,
we created: i) a set of 100 graphs with n = 60 nodes and
m = 4 communities and ii) a set of 100 graphs with n = 80



and m = 5. For each graph set, we applied the two compared
methods on all graphs. For each obtained partition we store the
number of communities (graph clusters) as well as the NMI
and ARI values. Average results (over the 100 graphs of each
set) are presented in Table II. As it can be easily observed from

TABLE II
PERFORMANCE RESULTS ON SYNTHETIC GRAPHS USING GREEDY

MAXIMIZATION OF INCLUSION (PROPOSED ALGORITHM) AND
MODULARITY (LOUVAIN AGORITHM).

n=60, m=4
Inclusion Modularity

Clusters NMI ARI Clusters NMI ARI
B&D 4 1 1 4 1 1

B&DD 4.01 0.995 0.995 3.99 0.996 0.994
DL&SS 4 0.998 0.999 3.48 0.954 0.955
DS&DD 4.09 0.975 0.982 3.14 0.906 0.901
IS&DD 3.96 0.994 0.993 3.71 0.968 0.963

n=80, m=5
Inclusion Modularity

Clusters NMI ARI Clusters NMI ARI
B&D 5 1 1 4.99 0.999 0.998

B&DD 5.03 0.931 0.913 4.73 0.902 0.865
DL&SS 4.91 0.995 0.991 4.36 0.957 0.932
DS&DD 4.98 0.928 0.932 3.95 0.880 0.860
IS&DD 5.03 0.950 0.940 4.56 0.9225 0.895

Table II, for the first graph category (B&D) (relatively easy
problems), both inclusion and modularity discover the ground
truth solution. For the other graph categories where parti-
tioning becomes harder, the superiority of inclusion is very
clear. In some cases the performance of modularity decreases
considerably, especially in what concerns the detected number
of communities (clusters). On the contrary, the inclusion-based
method consistently provides higher NMI and ARI values
and also estimates very accurately the ground-truth number
of communities.

We also considered a real graph, namely the American
College Football dataset [6], with 112 nodes and 616 edges
that represents a network of American football games between
colleges during regular season Fall 2000. The ground-truth
solution contains 12 communities. Optimizing inclusion yields
a solution with 11 communities, NMI=0.91 and ARI=0.86,
outperforming the modularity-based approach that gives a
solution with 10 communities, NMI=0.89 and ARI=0.81.

Finally we compared inclusion and modularity when used
as criteria to select the best among a set of solutions provided
by applying spectral clustering [5] on the edge matrix. More
specifically, for a given graph we ran the spectral clustering
from m=2 to m=20 clusters and kept the partition that max-
imized modularity and inclusion respectively. For each of the
five graph categories defined previously, we created synthetic
sets containing 20 graph instances for n=1000 nodes and
m=8 communities as well as for n=2000 and m=16. Average
performance results are presented in Table III. The conclusions
that can be drawn are analogous to those in Table II. As it
can be observed from Table III, for the first graph category
(B&D) both inclusion and modularity discover the ground
truth solution while for harder partitioning problems inclusion

TABLE III
PERFORMANCE RESULTS ON SYNTHETIC GRAPHS USING SPECTRAL

CLUSTERING FOR GRAPH PARTITIONING.

n=1000, m=8
Inclusion Modularity

Clusters NMI ARI Clusters NMI ARI
B & D 8 1 1 8 1 1

B & DD 8 0.997 0.997 7.3 0.967 0.909
DL & SS 8 1 1 6.9 0.979 0.973
DS & DD 7 0.975 0.977 5 0.893 0.783
IS & DD 8 0.999 0.999 8 0.999 0.999

n=2000, m=16
Inclusion Modularity

Clusters NMI ARI Clusters NMI ARI
B & D 16 1 1 16 1 1

B & DD 14.8 0.963 0.899 13 0.933 0.702
DL & SS 15.7 0.998 0.997 13.9 0.985 0.975
DS & DD 13.4 0.976 0.963 10.1 0.908 0.708
IS & DD 15.4 0.9818 0.942 13.8 0.960 0.862

is superior. For the difficult DS&DD problems inclusion leads
to solutions of good quality, while the solutions selected using
modularity are clearly inferior.

V. CONCLUSIONS

In this work we have introduced inclusion for community
detection and evaluation in unweighted graphs. Inclusion is
node-centric, in the sense that is measures how well a node
is included in its community, and promotes the absence
of edges between nodes in different communities. We have
also presented an approach to maximize inclusion based on
greedy node movement between communities in analogy to
the Louvain algorithm for maximizing modularity. We have
experimentally shown that inclusion does not suffer from
the resolution limit problem and that it clearly outperforms
modularity, especially in hard partitioning cases.

Future work could focus on comparing inclusion to other
related measures and also testing the approach on various
community detection applications arising in biological, social
and other types of networks. Another important research
direction concerns the possible use of inclusion to detect
communities in weighted graphs. In such a case, a considerable
adaptation of the method would be necessary.
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