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Abstract. Inversion of a neural network trained on some classification
problem has been an important issue related to the explanation of the
neural classification function. Inversion based on Interval Analysis (IA)
[1] showed that a reliable estimation of the neural network domain of
validity is feasible and a number of quantitative issues arise from this
inversion. This paper deals with the investigation of these quantitative
issues and more precisely with those concerning the evaluation of the
neural network classification function in terms of generalization, compar-
ison of different network models and classification accuracy. Preliminary
experimental results indicate that the IA-based inversion can offer a solid
basis towards reliable evaluation of the neural classification function.

Keywords: Neural networks · Generalization · Interval Analysis · Reli-
able computation

1 Introduction

Inversion of a trained network has always been one of the objectives in neural
network research as it permits to define the input space area covered by the
network function, to delineate the decision boundaries learned by the network
and to extract rules explaining the network operation. Hence, neural network
classification is related to the so-called domain of validity of the network, which
results from network inversion and it can be used either to provide a qualitative
conclusion of the neural classification function [12,14,17] or to extract prov-
ably correct rules [5,20,22] explaining neural network operation. A number of
approaches can be found in the literature which permit to define such a domain
[3,16]. However, while an accurate definition of the domain of validity should
be an obvious requirement of any approach used for this problem it seems that
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such a requirement had not effectively been tackled. As a result, to the best of
our knowledge, there has been no research effort towards examining the domain
of validity of a neural network in quantitative terms.

Recently, Adam et al. [1] proposed an IA-based approach for neural network
inversion resulting in reliable definition of its domain of validity. Inversion of the
network is carried out using an IA approach which, for any interval of the network
output activity, defines a unique, consistent and guaranteed domain in the input
space. The proposed method is termed to provide reliable estimation as it permits
to define regions of validity in a guaranteed way. The results obtained in [1] are
interesting in the sense that they provide quantitative information about the
domain of validity of the neural network. This level of information seems to be
inadequate for the classical explanation of neural network operation but as noted
in [1] it may be used to provide useful insight to the neural classification task
concerning the generalization ability of the trained network as well as the fitness
of the neural network model adopted.

The aim of this paper is to advance on the hypotheses formulated in [1] by
carrying out a number of experiments in order to evaluate the soundness of these
statements. This paper deals with the following matters:

– Based on the volume of the domain of validity derive empirical metrics for the
evaluation of the performance of a trained network in a classification task.

– Assess the generalization ability of a trained network using the previous met-
rics and compare the results with the classical cross-validation approach.

– Discuss open problems and future work.

The experimental results obtained provide concrete evidence that important
aspects concerning the validity of the neural classification task can be evaluated
using the empirical metrics defined. The reliability of the proposed metrics is
supported by the IA-based inversion which provides verified results in a guaran-
teed way, as the interval computations permit to automatically verify the results
obtained [13].

The paper is organized as following. Section 2 outlines the classification con-
text along with the main assumptions and some theoretical results. Section 3 is
dedicated to the description of the basic interval arithmetic concepts and the
inversion procedure based on IA. In Sect. 4 we present the proposed approach
along with the empirical metrics defined. Section 5 is devoted to the experimental
evaluation and the discussion of the results obtained. Finally, Sect. 6 concludes
the paper.

2 Problem Definition and Background

The analysis presented in this paper deals with, but is not limited to, multi-
layer perceptrons (MLPs) which are considered to have one or more hidden
layers, nodes with sigmoidal nonlinearities and being trained with some gradi-
ent descent procedure. The network is trained on a classification problem with
M classes, C1, C2, . . . , CM , using a sample data set D = (X,Y), of P examples



316 S.P. Adam et al.

defined by the N -dimensional patterns X = {x1,x2, . . . ,xP } instantiating the
random variable X , and the desired outputs Y = {y1,y2, . . . ,yP } for the ran-
dom variable Y. Output for each class is 1 of M , denoting that, there is one
output unit corresponding to the correct class while all others are zero.

Classification decisions based on the ad hoc rule “the pattern x is assigned
membership in class Cj if the corresponding output value is greater than some
fixed threshold” are ambiguous as they may assign a pattern to multiple classes.
Such decisions become unambiguous, if the following rule is used instead, “x is
considered to belong to class Cj if the jth component of the network output is
greater than all the other components” [9].

Important research focused on the operation of a neural network, in terms
of defining decision rules governing their function and explaining how decision
boundaries are formed by neural network outputs in classification problems [9].
A significant part of this research relates operation of an MLP classifier with
Bayesian classification [2,4,6,15].

Hampshire and Pearlmutter [7] provided detailed proofs that, when deal-
ing with asymptotically large sets of statistically independent training samples,
MLP classifiers provide outputs which act as optimal Bayesian discriminant
functions for these training samples. They also discussed necessary and sufficient
conditions on the form of objective functions that yield Bayesian discriminant
performance by engendering classifier outputs that are true estimates of the a
posteriori probabilities P (Cj |x). Richard and Lippmann [18], also, advanced on
the previous statements, giving detailed proofs and analysis of some important
network models such as MLPs, radial basis function (RBF) and high-order poly-
nomial networks. They showed that the outputs of these networks provide good
estimates of Bayesian probabilities. Estimation accuracy depends on network
complexity the amount of training data, and the degree to which training data
reflect true likelihood distributions and a priori class probabilities.

Here, let us assume that the network target outputs are considered to be
binary, i.e. in the interval [0,1]. For an MLP classifier approximating the a pos-
teriori class probabilities means that the conditional expectation of the desired
output response vector, given the input data vector x, that is E(dj = 1|x), equals
the posterior class probability P (ω = ωj |x), where ω ∈ Ω = {ω1, ω2, . . . , ωm}
and ω = ωj denotes membership of x to class Cj for j = 1, 2, . . . ,M .

As Hampshire and Pearlmutter [7] showed, in the case of perfect training, suf-
ficiently large data set and complex network, the relation between the a posteriori
class probabilities and the network output values is linear and so P (ω = ωj |x) is
mapped to the interval [0,1]. However, due to various perturbations the target
values are non binary and so P (ω = ωj |x), while still being linear, it is mapped
to the interval [ε, 1 − ε] for some appropriate value of ε (e.g. ε = 0.2). Similar
conclusions were, also, provided by Richard and Lippmann in [18] regarding the
degradation of the estimation accuracy of Bayesian posterior probabilities.

In many practical classification tasks when the jth output node is active
assigning the input pattern to the jth class then its value is considered to be in
an interval [1 − β, 1], defined for some suitably chosen value of β (e.g. β = 0.4).
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This constitutes an intuitive, yet practical and efficient way, to deal with output
uncertainty due to imperfect training produced by various reasons such as an
inexact error threshold, insufficient number of training epochs or when having
a small sized training set. On the other hand, an output node is considered to
be inactive if its activation is in the interval [0, β]. The greater the value of β
the poorer the classification accuracy achieved by the trained network. Hence,
defining the domain of validity generating output values in the interval [1−β, 1]
seems to be a necessary tool to support the performance analysis of the network
classification function. This can be achieved using IA concepts and SIVIA [10].

3 IA-Based Inversion and SIVIA

Interval arithmetic was introduced as a means to perform numerical compu-
tations with guaranteed accuracy and bounding the ranges of the quantities,
used in the computations. An interval, or interval number, I is a closed interval
[a, b] ⊂ R of all real numbers between (and including) the endpoints a and b, with
a � b. In practical calculations interval arithmetic operation are reduced to oper-
ations between real numbers [10]. Hereafter, the bracketed notation [x] = [x, x]
denotes an interval object such as a number, variable, vector, matrix, etc. The
set of n-dimensional vectors of real intervals is denoted by IR

n. The definition
of interval objects such as vectors, matrices, functions, etc. and their subsequent
study resulted in the establishment of Interval Analysis.

If [x] ⊆ D is an interval in the domain of a real function f : D ⊂ R → R

then f([x]) is used to denote the range of values of f over [x]. Computing such a
range, f([x]), using IA tools means to enclose it by an interval which is as narrow
as possible. This constitutes an important matter in IA as it is used in various
problems: localization and enclosure of global minimizers of f on [x], verification
of f([x]) ⊆ [y] for given [y], nonexistence of a zero of f in [x] etc. In order to
enclose f([x]) one needs to define a suitable interval function [f ] : IR → IR such
that ∀[x] ∈ IR, f([x]) ⊂ [f ]([x]), see Fig. 1.

SIVIA is an interval method introduced by Jaulin and Walter [11] in order
to allow for the guaranteed estimation of nonlinear parameters from bounded
error data. The method proceeds by defining a box or union of boxes enclosing
a set of interest. Hence, given a function f : X → Y , where X ⊂ R

n, Y ⊂ R
m

and an interval vector, i.e. a box, [y] ⊆ Y , the objective is to define the set
of unknown vectors x ∈ X such that f(x) ∈ [y]. This set can be defined as
S = {x ∈ X ⊆ R

n|f(x) ∈ [y]} = f−1([y]) ∩ X, where X is the search space
containing the set of interest S; [y] is known in advance to enclose the image of
the set f(S) and S denotes the unknown set of interest. Note that, here, f−1

denotes the reciprocal image of f , as f may not be invertible in the classical
sense.

The solution proposed by SIVIA for this problem consists in computing boxes
and unions of boxes S− and S+ = S− ∪ ΔS which form guaranteed outer and
inner enclosures of S as they satisfy the relation S− ⊆ S ⊆ S+, [10]. SIVIA is
a branch-and-bound approach which computes enclosures by recursively explor-
ing the whole search space. During computation, a box [x] ∈ R

n is designated
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as feasible if [x] ⊆ S and f([x]) ⊆ [y], infeasible if [f ]([x]) ∩ [y] = ∅ and, in
all other cases, [x] is said to be indeterminate which means that [x] may be
feasible, unfeasible or ambiguous. The condition [x] ⊆ S and f([x]) ⊆ [y] is
necessary and sufficient for [x] to be feasible. Feasible boxes are added to S−

and infeasible become members of the complement of S+. Finally, any indeter-
minate box is bisected and the method recursively examines the two resulting
sub-boxes. Bisection is possible up to some limit, which is preset for the problem
and defines its resolution. Boxes that are indeterminate and cannot be further
bisected are added to the union ΔS. For a detailed description of the algorithm
implementing SIVIA the reader should refer to [10]. Finally, note that SIVIA
applies to any function f for which an inclusion function [f ] can be computed.

Fig. 1. A function f , an inclusion function [f ] and the images of [x]

4 Inversion-Based Generalization Metrics

The necessity of using an interval [1 − β, 1] is illustrated by the 2-dimensional
classification problem with two classes shown in Fig. 2a. A 2−10−2 MLP, using
the hyperbolic tangent activation for the hidden nodes and the logistic sigmoid
one for the output nodes, was trained on this problem and produced the output
shown in Fig. 2b. Patterns classified as class 1 form the white regions. Obviously,
the gray level zone depicts the ambiguity of classification for patterns near the
class 1 area which gives values of the MLP output in some interval [1 − β, 1].

The value of β clearly extends or restricts the area in the input space classified
by the MLP as class 1. One can verify this argument by simple reference to
Figs. 3a and b where the red colored areas have been defined by inverting the
MLP output using SIVIA. The striking difference between these two Figures
concerns a significant part of the input space effectively belonging to class 1
which is present in Fig. 3b but not in Fig. 3a. This shows the importance of β
which, here, needs to be given the value 0.1 if one wants to take into account a
significant part of the input space. However, as shown in Figs. 4a and b with a
higher number of training epochs and a smaller error threshold this deficiency
seems to be remedied.
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It is well known that the term generalization refers to the ability of a trained
neural network to correctly classify previously unseen patterns. Achieving good
generalization can be seen in two different ways; either have some fixed archi-
tecture of the network and determine the size of the training set, or start from
a fixed size of the training set and define the best network architecture [9]. A
number of studies carried out on these issues brought interesting research results,
which however rely on theoretical assumptions such as: the a priori knowledge of
the distribution of the network weight vectors, the confidence that the distribu-
tion of the training patterns is a good approximation of the distribution of the
input space or even that the network architecture is well suited for the problem
at hand, see [8] and references therein. In practice, none of these assumptions
is verified and both researchers and engineers proceed with a fixed data set and
an initial network model along with some complexity regularization technique
in order to achieve the best network architecture. A well known approach for
resolving the generalization issue is cross-validation [9] and especially the mul-
tifold cross-validation which is used in our experiments.

In the context of this paper classification of previously unseen patterns is
considered under the following statement; the network will be able to correctly
classify those patterns that fall into the area of the input space learned by the
network during training. This area is, precisely, the domain of validity of the
network as defined by the IA-based inversion of the network. The larger the
domain of validity, the bigger its volume and so the higher the probability for
some unknown pattern to be in this area and be classified. Hence, the first
condition for some unknown pattern to be classified correctly is to be in the
domain of validity of the network. Then, assigning the pattern to the right class
requires the pattern to be in the area corresponding to the domain of validity of
its respective class. These two conditions are the basis of the definition of two
metrics.

In the case of an MLP classifier and a 1 of M encoding, in order to compute
the total volume of the domain of validity of the network one needs to perform
M inversions, one for each output node, compute the volume of each defined area
and finally sum up the volumes of all the classes. Hence, if V1, V2, . . . , VM are
the volumes computed for the M classes, then the total volume of the domain
of validity is Vnet =

∑M
i=1 Vi.

In consequence, if Vinput denotes the finite, non zero, volume of the input
space then the ratio Vnet

Vinput
, defines a measure of the probability for some new

pattern to be effectively classified by the network. Moreover, this ratio is a metric
for measuring over-training of the network. In order to cope with the second
condition and evaluate the ability of the trained network to correctly classify a
new pattern we need to rate the ability of the domain of validity of each class
to contain the patterns effectively belonging to this class while excluding all
the others. Actually for some class Ci some patterns may happen either to be
misclassified to another class Cj or to be unclassified, which means that these
patterns are outside the domain of validity of the network, i.e. the network
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(a) The artificial data set (b) Contour plot of the MLP output

Fig. 2. An artificial problem and the contour plot of an MLP trained on this data set

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

(a) Input area for the interval [0.999,1]
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(b) Input area for the interval [0.9,1]

Fig. 3. How the interval [1− β, 1] affects the domain of validity of an MLP trained for
500 epochs and MSE � 1e − 03
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(b) Input area for the interval [0.9,1]

Fig. 4. How the interval [1− β, 1] affects the domain of validity of an MLP trained for
5000 epochs and MSE � 1e − 05



Towards Reliable Evaluation of the Neural Generalization Ability 321

output signal for those patterns is not in the interval [1−β, 1]. In order to tackle
this problem two solutions are envisaged in this paper:

A. Penalize the domain of validity for the incorrect classifications by subtracting
from its volume the volume corresponding to each misclassified or unclassified
pattern.

B. For each box defined by SIVIA for any class Cj compute its volume by taking
into account the number of patterns correctly classified in this box.

For the first approach we need to define the volume of the input space corre-
sponding to each misclassified/unclassified pattern. A simple way to do this is
to consider that to any input pattern corresponds an elementary volume Velem

of the input space which can be defined by simply taking Velem = Vinput

P , that is
this elementary volume is proportional to the number of patterns available for
the classification problem. This choice can be explained by the following argu-
ment; the more the input patterns the lower the probability of having a defective
classification function due to the size of the training set. So, the penalty imposed
on the domain of validity is proportional to the size of the training set. Hence, if
l is the total number of misclassified/unclassified patterns then a generalization
metric is given by the formula:

Gnet =
Vnet − lVelem

Vinput
. (1)

This quantity Gnet defines a metric measuring over-training while taking into
account the classification errors of the trained network. Concerning the second
approach let us consider the following:

– for each pattern xn in the training set X let C(xn) denote the class of this
pattern,

– if Ck, 1 � k � M , is the kth class then the following set of boxes is
defined by IA-based inversion of the kth output node of the MLP: B

k ={
Bk

1 ,Bk
2 , . . . ,Bk

Nk

}
,

– let V k
i denote the volume of Bk

i ,
– let Xk

i be the set of patterns xn found to be inside the box Bk
i .

Then the validity of the box Bk
i can be defined as

Ek
i =

⎡

⎣
∑

xn∈Xk
i

(1C (C(xn) = Ck) − 1C (C(xn) 
= Ck))

⎤

⎦ V k
i , (2)

where 1C is a suitable indicator function. Finally, if one wants to obtain the total
validity of the trained network according to these hypotheses then one has to
compute the formula

E =
M∑

k=1

Ek
i . (3)
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The second approach for every box, identified by IA-based inversion, computes its
part effectively belonging to some class by taking into account the patterns found
in this box. In consequence, the metric provided by this approach has a twofold
effect; first, for every box belonging to some class Cj , as determined by inversion,
it accounts only the part of the box effectively containing patterns of the class
Cj , and second it rejects those parts of the input space that do not contain any
pattern at all. Doing so it rejects an important part of the interpolations and
the extrapolations computed by the network during its training and hence it
provides a validity index for the trained network.

5 Experimental Evaluation and Discussion

In this section we describe the setup for the experiments carried out in order
to evaluate the statements of the previous section. Then, we discuss the results
obtained pointing out some interesting characteristics and finally, we describe
some potential issues for future work.

5.1 Experimental Evaluation

Experiments in this paper were executed using SCS Toolbox [23] which imple-
ments SIVIA using INTLAB, the MATLAB package of Rump [19] for interval
computations.

Two data sets were used for our experiments. The first is the artificial data
set for the classification of a pattern belonging to one of two classes originally
defined in [21]. This data set is perfectly balanced as it accounts 100 patterns per
class and the distribution of the classes has been modified in order to increase
overlapping between them, Fig. 2a. For this data set we used 8 MLPs having an
architecture 2 − H − 2 with H taking on the values 4, 5, 6, 8, 10, 15, 20, 25, and
using the hyperbolic tangent for all nodes in the hidden layer and the logistic
sigmoid for the output nodes. The data set was divided in twenty subsets in order
to compare the results obtained by the proposed approach with the multifold (20-
fold) cross-validation. Each MLP was trained until reaching a MSE of 0.001 or
for a maximum number of 5000 epochs thus giving a total number of (20 trials×
8models) = 160 training trials. For each trial the generalization was computed as
the average of the correctly classified validation patterns for the cross-validation
method.

For the proposed generalization metrics the network trained in each trial was
first inverted using SIVIA. Hence, for each network model 20 trials resulted in 20
inversions and the volumes of the 20 domains of validity were used to compute
the mean value for each metric and each network model. The interval of the
output values inverted is [0.8, 1]. Table 1 outlines the results of this experiment.

The second data set used is the well known Fisher-Iris problem. Experiments
were carried out for 6 MLPs having an architecture 4 − H − 3 with H taking
on the values 2, 3, 5, 8, 10, 15, and using the hyperbolic tangent for all nodes in
the hidden layer and the logistic sigmoid for the output nodes. The data set was
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Table 1. Results for the artificial data set (higher values indicate better generalization)

Network model Cross-validation
mean (std)

Metric 1
mean (std)

Metric 2
mean (std)

2-4-2 90.50% (9.45%) 96.45% (2.81%) 16.92 (18.57)

2-5-2 91.50% (8.75%) 94.50% (2.76%) 10.52 (7.75)

2-6-2 91.00% (9.68%) 91.35% (1.72%) 9.98 (4.36)

2-8-2 93.00% (8.65%) 90.63% (2.64%) 11.29 (4.64)

2-10-2 93.50% (6.71%) 88.84% (1.54%) 9.51 (1.76)

2-15-2 92.00% (8.34%) 89.08% (2.10%) 9.87 (1.23)

2-20-2 93.00% (8.65%) 88.38% (1.35%) 8.45 (0.76)

2-25-2 93.00% (7.33%) 87.65% (1.07%) 7.49 (0.80)

divided in ten subsets in order to compare the results obtained by the proposed
approach with the multifold (10-fold) cross-validation. Each MLP was trained
until reaching a MSE of 0.001 or for a maximum number of 5000 epochs and for
each trial the generalization was computed as the average of the correctly clas-
sified validation patterns for the cross-validation method. The proposed metrics
were computed as in the previous experiment and the interval of the network
output values inverted using SIVIA is again [0.8, 1].

5.2 Discussion

Prior to a discussion of the results, we need to note the following; lower values of
the Metric 1 indicate higher over-training (i.e. lower generalization ability), as
the domain of validity of an over-trained network tends to concentrate around the
input areas of higher density. On the other hand the values of the Metric 2, which
“corrects” the domain of validity of the network, indicate the discrimination
of the overlapping areas between different classes, thus contributing to a more
accurate evaluation of the generalization. We consider that these two metrics
should be taken as a set, and in future work we will be able to propose some
aggregate form of them.

Comparing the results of the proposed metrics, as reported in Tables 1 and 2,
against the results of the classical cross-validation one may easily notice that the
proposed metrics detect and indicate both over-training and generalization of the
network models tested, while the results of cross-validation do not confirm this
essential theoretical issue.

The proposed Metric 2 evaluates the boxes as they are derived by the branch-
and-bound searching performed by SIVIA which might result in rejecting areas
that should be more carefully examined. This may be the cause of the high
standard deviation observed for this metric in the case of the Fisher-Iris problem.
Nevertheless, this metric merits to be further investigated in future work.

The proposed metrics are calculated based on the trained network itself, irre-
spectively of the data set used for training and validation. So, these metrics may
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Table 2. Results for the Fisher-Iris data set (higher values indicate better generaliza-
tion)

Network model Cross-validation
mean (std)

Metric 1
mean (std)

Metric 2
mean (std)

4-2-3 94.67% (6.13%) 80.42% (10.58%) 2.14 (4.09)

4-3-3 94.00% (6.63%) 79.66% (7.0%) 1.69 (1.28)

4-5-3 93.33% (7.70%) 73.59% (6.08%) 1.15 (1.05)

4-8-3 91.33% (8.92%) 67.67% (6.68%) 1.01 (0.74)

4-10-3 94.67% (10.33%) 66.98% (10.04%) 0.84 (0.75)

4-15-3 92.67% (7.98%) 63.91% (8.49%) 0.51 (0.51)

be used for a given data set in order to compare the performance of two different
networks regardless of the way they were trained. Concerning the implementa-
tion of the approach, we foresee to take over a suitable implementation of SIVIA
for neural network inversion which will perform inversion incrementally, i.e., for
each class exclude from the search space the area found to belong to previously
examined classes.

A hypothesis that seems to be strongly advocated by the experimental
results, is that a suitable combination of the proposed metrics may constitute
an effective means for comparing the performance of different network models
on the same classification task. However, the proposed metrics should be exam-
ined from a mathematically defensible point of view and this constitutes another
objective for future work. For the time being we need to note the strong simi-
larity between the domain of validity derived as a level set and the density level
sets that can be defined in the input space using clustering or other techniques.

6 Conclusion

In this paper we advanced the results obtained in [1] concerning the quantita-
tive aspects of a neural network’s domain of validity. The volume of the area
defined by IA-based inversion constitutes a guaranteed quantity for computing
the empirical metrics of the network classification performance, mainly, in terms
of generalization and comparative evaluation of different network models. The
results obtained provide concrete evidence of the potential suggested by the pro-
posed metrics. However, we consider that these empirical metrics need to be
validated from a mathematical point of view which will take into account the
Bayesian aspects of the neural network classification function. This is one of the
objectives of our current work.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their comments and suggestions on earlier draft of the manuscript.
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