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ABSTRACT

An algorithm for sampling image edge points is presented.
At first, the image edges are summarized by line segments,
which represent the long axis of highly eccentric ellipses.
Then, each line segment is partitioned into a number of bins
and the point which is closer to the center of the bin is se-
lected. Experiments on widely used databases demonstrate
that the proposed method is accurate and provides samples
that preserve the coherence of the initial information of the
edge map, which is of importance in image retrieval applica-
tions.

Index Terms— Sampling of point clouds, image repre-
sentation, image retrieval.

1. INTRODUCTION

As modern image analysis and computer vision algorithms
have become more complex requiring a large number of oper-
ations and the the data to be processed are big, a preprocess-
ing step is a necessary task that may assist toward efficient
and fast processing. In many cases, that step involves sam-
pling an original image or it edge map (e.g. computation of
the vanishing point) in order to keep a fraction of points that
describe with fidelity the initial information. More specifi-
cally, in image processing, this leads to edge pixel sampling
so as to extract the eventually hidden patterns (e.g. object
contours) inside an initial observation so that the result is as
close as possible to the observation.

The most straightforward approach is to apply random
sampling, which assumes that the edge points are observa-
tions of a random variable that follows a specific distribution.
As soon as we model that distribution, point sampling is aug-
mented to sampling observations from a known distribution.
In the simplistic random sampling, it is assumed that the orig-
inal set follows a uniform distribution. A more advanced,
but notoriously time consuming probabilistic model is Monte
Carlo sampling [1]. J. Malik independently proposed contour
sampling in [2] to apply it to an object retrieval algorithm [3].
Initially, a permutation of the points is computed and a large
number of the samples is drawn from that permutation. Then

iteratively, the pair of points with the minimum pairwise dis-
tance is detected and one of them is kept as a valid sample.
This process is iterated until the desired number of samples
is reached and it ensures that points from image regions with
large density will be part of the final data set.

In [4], the fast marching farthest point sampling method
is introduced for the progressive sampling of planar domains
and curved manifolds in triangulated point clouds or implicit
forms. The basic idea of the algorithm is that each sample
is iteratively selected as the middle of the least visited area
of the sampling domain. For a comprehensive review of the
method, the reader is also referred to [5].

The Fourier transform and other 2D/3D transforms have
been applied for describing shape contours for compres-
sion purposes. For example, in [6], the idea is to warp a
3D spherical coordinate system onto a 3D surface so as to
model each 3D point with a parametric arc equation. How-
ever, this method demands an ordering of points and cannot
model clouds of points, where more complex structures, like
junctions and holes, are present.

A framework for shape retrieval is presented in [7]. It is
based on the idea of representing the signature of each object
as a shape distribution sampled from a shape function. An
example of such a shape function would be the distance be-
tween two random points on a surface. The drawback of the
algorithm is that the number of initial points has to be rela-
tively small for the method to be fast and efficient. This may
lead to a compromise between the number of points of the
sample and the information loss. Moreover, the efficiency of
the method highly depends on the presence of noise.

This type of edge sampling is a preponderant step before
other algorithms are applied. This is the case in [3], where
sampling reduces the amount of data for object recognition
and in [8], where a shape classification algorithm necessitates
a small number of samples to reduce its complexity. Hence,
the quality of sampling may affect the final result if the re-
sulting point set does not preserve the coherence of the initial
information. Considering also that most of these algorithms
demand large complexity in terms of resources (i.e. memory
allocation) in order to extract complex features that discrimi-
nate better the various data, one may come to the conclusion
that sampling may be a very crucial step.
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In this work, we propose an algorithm for fast, accurate
and coherent sampling of image edge maps. The procedure
consists of two steps. At first, the image edges are sum-
marized by a set of line segments, which reduces the initial
quantity of points but accurately preserves the underlining in-
formation contained in the edge map. Then, based on the
ellipse-based representation, a decimation of the ellipses is
performed and samples are drawn according to their location
on the long ellipse axis.

2. SAMPLING IMAGE EDGE MAPS

The first step of the algorithm is accomplished using the Di-
rect Split and Merge Method (DSaM) [9], where the edges are
represented by the long axis of highly eccentric ellipses. The
main idea is that a set of points that are collinear, are charac-
terized by a covariance matrix with one very large eigenvalue
and one very low (ideally equal to zero) eigenvalue. In any
other case, the degree of non linearity of the points may be
represented by the minimum eigenvalue. Also, if there is no
large gap between collinear points we may assume that they
belong to the same line segment. Based on these remarks, the
iterative direct split-and-merge algorithm [9] is executed as
follows: at first, it considers that all points belong to a single
line segment and performs iterative splits, producing a rela-
tive large number of highly eccentric ellipses modelling the
point cloud. Then, in order to reduce the complexity of the
model, iterative merges of adjacent highly eccentric ellipses
are performed subject to the constraint that the resulting el-
lipses are still highly eccentric and the corresponding sets of
points assigned to these ellipses are tightly distributed (i.e.
there are no large gaps between successive points).

An example of some steps of the execution of the DSaM
algorithm on an edge map of a natural image from the
database presented in [10] are shown in Fig. 1. The con-
tribution of DSaM is to model the local manifold by fitting
line segments. Experiments have shown that the DSaM pro-
vides better models compared to other line fitting algorithms.

Assume now that the goal is to sample the set of points
that are presented in Fig. 2 and keep only Q% of them. The
black dots represent the original points. This may be consid-
ered as the output of the DSaM algorithm [9]. More specif-
ically, these points lie on the long axis of a highly eccentric
horizontal ellipse. The axis is shown in red. In order to ap-
proximate the local point distribution, a histogram is com-
puted with a number of bins equal to Q × L, where L is the
number of initial points in the set to be sampled. Then, we
represent each bin by its mean value, which under e.g. Gaus-
sian assumption it is the geometric center of the points in the
bin and we select in each bin the point that is closer (in terms
of Euclidean distance) to this geometric mean. By repeating
the procedure for each line segment produced by the applica-
tion of the DSaM algorithm we are able to sample the original
point cloud.

(a) (b)

(c) (d)

Fig. 1. Steps of the DSaM algorithm [9] on the edgemap of a
natural scene image. (a) First step, (b) second step, (c) fourth
step, and (d) the final line segments after merging.

Fig. 2. An example of the sampling process. The black points
represent the original set of points, while the red line is the
is their summary computed by DSaM [9]. The vertical blue
lines depict the limits of the histogram bins. The green points
are those selected to represent the sampled set because they
are closer to the mean value of the bin. The figure is better
seen in color.

It may be easily understood that the efficiency of the
approach is highly related to the correct determination of a
model approximating the local manifold of the point set. The
larger the deviation of the model from the local manifold
becomes, the less accurate is the sampling method. This is
true as the model fails to compute the histograms correctly
and therefore to establish accurately the bin centers. Conse-
quently, the selected samples will be less representative of the
distribution of the initial edges. For that reason, we relied on
the DSaM algorithm which may accurately describe the edge
map.

An important issue of the sampling algorithm is the value
of the sampling frequency Q, that is how densely should we
sample? Moreover, the number of samples should vary lo-
cally with respect to the number of image edges present in an
image region. To this end, based on the clustering of points
to highly eccentric ellipses, we propose to select the number
of samples to be equal to δ times the number of points that
are present in the mostly populated ellipse, where δ ≥ 1.0.
This guarantees that, highly concentrated image regions will
be more densely sampled but also that sparse regions should
always have some representatives as they have already been
assigned to an ellipse. This is in contrast to random or even
Monte Carlo based sampling where sparse areas may have no
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representatives in the sampled data set.
In other words, the sampling rate is computed by

Q = δ
R

L
, (1)

where R is the maximum number of members in the clusters,
L is the total number of points in the original set and δ ≥ 1.0
is a real positive number. The larger the value of δ is, the
more samples we get, and thus the closer to the initial set our
sampling result is. In other words, the estimation of the p-
value of parameter δ is a compromise between the quality of
the result and its complexity.

3. EXPERIMENTAL RESULTS

Two widely used datasets containing shapes were employed
in our experiments. The MPEG-7 dataset [11], contains a col-
lection of contours belonging to 70 categories, with each cate-
gory containing 20 members. The Gatorbait dataset [12], is a
collection of 38 shapes of various fishes, belonging to 8 cate-
gories. Fig. 3 shows representative images from each dataset.
The edges were extracted with the Canny edge detector [13]

(a) (b)

Fig. 3. Some representative images from the datasets used in
our examples. (a) A butterfly from the MPEG7 dataset [11],
(b) the shape of a fish from Gatorbait dataset [12].

and the coordinates of the edge pixels were used as input to
our experiments.

A minimum description length (MDL) approach [1] is
adopted to compute the value of δ. We define:

Φ(δ) = D(↓ (Xor, δ), Xor) + λ| ↓ (Xor, δ)| (2)

where Xor is the original set of points, ↓ (Xor, δ) is the output
of the sampling process applied to set Xor with the sampling
rate computed by (1), | · | denotes the cardinality of the corre-
sponding set and D(P,Q) is the Hausdorff distance between
the set of points P and Q.

In order to learn parameter δ, we randomly selected 119
images from our dataset. The DSaM sampling method was
executed for various values of the parameter δ in the interval
[1.0, 3.0] and δ = 1.6 minimized Φ(δ), which was used in our
experiments (Figure 4).

The efficiency of our method was evaluated by comparing
it to widely used methods such as the sampling scheme pro-
posed by Malik [2], Monte Carlo sampling and simple ran-
dom sampling. In order to quantitatively measure the fidelity

Fig. 4. The value δ = 1.6, which minimizes Φ(δ) was used
in our experiments.

of the sampled point set to the original one we used the Haus-
dorff distance between the aforementioned point sets. The
rational is that the smaller the D(X,Y ) becomes, the closer
the sample is to the initial data. This concept may be consid-
ered as a try to minimize the distortion-compression rate. In
other words, we wish to sample a set of points (compress) by
keeping the information loss small (distortion). Moreover, to
establish a common baseline, we used the same sampling rate
for all of the compared methods, which is the one described
in the previous section. In order to avoid any possible bias,
we also tested smaller sampling rates for the other methods.
the idea was to explore whether they produce better results, in
terms of similarity with the original shape using these smaller
sampling rates. However, the results proved that by decreas-
ing the sampling rate the results become poorer for the other
methods.

The overall results are summarized in Table 1. As it can be
observed, our method provides better results in all cases with
regard to all of the compared methods. Representative results
on Gatorbait [12] dataset are demonstrated in Fig. 5. The
reader may observe that our method manages to preserve bet-
ter the details of the original set, as it produces more uniform
results and thus the distribution of the points in the sampled
set is closer to the original.

In a second set of experiments we examined the improve-
ment of the result of a shape retrieval algorithm that includes a
sampling preprocessing step. This is a very common problem
in computer vision and image analysis and much research has
been performed in this field. We focused on the pioneering
algorithm introduced in [3] and explored the improvement of
the detection rate (Bull’s Eye Rate) by applying various sam-
pling methods including ours.

The overall evaluation is presented in Table 2. It may be
seen that the proposed method improves the retrieval percent-
age . In case of the Gatorbait dataset [12] the improvement of
the Bull’s Eye Rate is around 2.5% with respect to the second
method.
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Table 1. hausdorff distance between the and the sampled sets
using different sampling methods.

MPEG7 [11] (70 shapes)
Algorithm mean std min max
Proposed method 0.00 0.02 0.00 0.29
Malik [2] 0.00 0.05 0.00 1.10
Monte Carlo 0.03 0.32 0.00 6.21
Random Sampling 0.01 0.19 0.00 3.31

GatorBait100 [12] (38 shapes)
Algorithm mean std min max
Proposed method 0.21 0.04 0.05 0.35
Malik [2] 0.30 0.11 0.11 0.51
Monte Carlo 3.08 3.27 0.61 17.02
Random Sampling 1.09 0.38 0.51 1.88

(a) (b)

(c) (d)

Fig. 5. Representative results of sampling of the Gatorbait
dataset [12]. Details of the upper left part of a fish contour.
Sampling with (a) the proposed method, (b) the method of
Malik [3], (c) Monte Carlo sampling and (d) Random sam-
pling.

In order to measure the similarity between two shapes we
adopted the χ2 distance between shape contexts, as explained
in [3]. However, in this problem, a more informative index
should be applied to take into consideration the deformation
(e.g. registration) energy that is demanded so as to transform
one edge map onto the other. Yet, as we wish to investigate the
improvement that our method provides in terms of similarity
between samples and original signals, we opted not to com-
pute the related parts of the similarity metric in [3]. More-
over, to speed up our experimental computations, we opted
not to use a dynamic programming approach to guarantee a
one-to-one matching. Instead, we assigned each point from
one set to each closest in the other and computed the cost

of this assignment in terms of corresponding histogram dis-
tances. By repeating that process for all points and summing
the related distances, we computed the total distance between
two shapes. These remarks, explain the differences in Bull’s
Eye Rate index computed for the MPEG7 dataset, compared
to the one provided in [3].

Since a crucial step of the proposed method is the accurate
manifold detection, we compared our sampling method with
a widely used method for manifold detection, namely Locally
Linear Embedding (LLE) [14]. The reader may observe that
LLE does not provide accurate results, since it fails to model
the various inner structures and junctions that are present in
the experimental data (Table 2).

Table 2. Bull’s Eye Rates for the retrieval of sampled sets
using different sampling methods.

MPEG7 [11] (70 shapes)
Algorithm Bull’s Eye Rate
Proposed method 65.40%
Malik [2] 64.96%
Monte Carlo 50.71%
Random Sampling 57.86%
LLE 53.81%

GatorBait100 [12] (38 shapes)
Algorithm Bull’s Eye Rate
Proposed method 96.57%
Malik [2] 93.89%
Monte Carlo 77.69%
Random Sampling 91.11%
LLE 93.98%

4. CONCLUSIONS

A method for sampling image edge points was presented,
which is based on an unsupervised fitting of line segments.
The experimental results demonstrated that that our method
provides a better result regarding the similarity between the
initial and the sampled sets. Also, shape retrieval indices were
improved by the proposed algorithm. Finally, the method can
be easily modified to handle 3D points. In that case, instead
of computing the 1D histogram over the principal axis of
each line segment, the analogous 2D principal plane should
be computed.
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